孙政浩 秦克章** 毛亚晶 唐冬梅 马德成
1. 中国科学院新疆矿产资源研究中心,中国科学院新疆生态与地理研究所,乌鲁木齐 8300112. 中国科学院大学,北京 1000493. 中国科学院矿产资源研究重点实验室,中国科学院地质与地球物理研究所,北京 1000294. 新疆维吾尔自治区有色地质勘查局701队,昌吉 831100
辉石和角闪石是岩浆岩中最为常见的造岩矿物之一,其组合特征和成分变化与寄主岩浆的成分和物理化学条件密切相关,是记录岩石成因机制及演化过程的重要载体(Nimis and Ulmer,1998;白志民,2000;Belousovaetal.,2002;Downesetal.,2003;蒋少涌等,2006,2008;Yogodzinski and Kelemen,2007;苏慧敏等,2008;朱碧等,2008;Driouchetal.,2010;邹金汐等,2012;薛胜超等,2015;Tangetal.,2017; Maoetal.,2019;Kangetal.,2020)。对于辉石族和角闪石族矿物,钙碱性角闪石组和Ca-Mg-Fe辉石组矿物研究程度相对较高,这些矿物的成分特征可以有效指示寄主岩石的成岩物理化学条件(Kushiro,1960;Thompson,1974;Ague,1989)、岩石成因(Tanaka,1975;Nisbet and Pearce,1977;Loucks,1990;Seyler and Bonatti,1994;Suetal.,2012;)和岩浆演化(Le Bas,1962;Campbell and Borley,1974;Spear,1987;邱家骧和廖群安,1987;Streck,2008)。但是,相对于钙碱性组,富钠的碱性辉石组和碱性角闪石组研究尚比较缺乏,有关其成分变化及对寄主岩的成因指示并不清楚。霓石和钠铁闪石是最为常见的碱性暗色矿物,是判别碱性岩,尤其是碱性花岗岩类的重要矿物指标。它们的形成条件与钙碱性组矿物差别显著(赵斌,1973),且其组分特征受体系氧逸度变异和源区性质的影响(杨富贵等,1999)。谢应雯和张玉泉(1990,1998)曾对横断山区富碱花岗岩类中角闪石的化学成分、晶胞参数和物理性质等特征开展研究,利用角闪石的成分差异揭示出不同成因类型的花岗岩。赵广涛和王文正(1998)、夏斌等(2009)、秦锦华等(2019)利用碱性角闪石Al值、Fe/(Fe+Mg)及(Na+K)A等指标的特征及变化,分析出角闪石形成的温度、压力和氧逸度等,进而对岩体形成的物理化学环境进行有效制约。因此,碱性辉石和碱性角闪石的成分研究是全岩地球化学研究的有效补充,是进一步准确指示碱性岩成因类型和岩浆作用过程的重要途径,不同岩相中发育的不同成分的碱性暗色矿物能为解析碱性岩浆演化过程提供更详细的矿物学信息。
图1 中亚造山带南天山及其邻区大地构造简图(a,据Zhang et al.,2010)及塔里木盆地北缘碱性岩分布图(b,据邹天人和李庆昌,2006)Fig.1 Tectonic units and location of southern Tianshan region of CAOB in Xinjiang, NW China (a,modified after Zhang et al., 2010) and distribution of the Boziguoer deposit in the southern Tianshan region and coveal alkaline rocks in the Tarim north rim (b, modified after Zou and Li, 2006)
碱性岩在地球上分布较少,且其产出环境特殊,通常被认为是伸展构造背景下壳幔相互作用或地幔柱在地壳浅部的表现(Wilsonetal.,1995;Jahnetal.,2000a; Songetal.,2016)。碱性岩的成分复杂且类型多变,其定义和划分标准难以统一。但是,出现碱性矿物组合的岩浆岩无疑是属于碱性岩类的。碱性岩的成因目前仍存在包括碱性基性岩浆的结晶分异、富集地幔源区的低程度部分熔融和壳源岩石的部分熔融等争议(Werleetal.,1984;Bailey,1980;Kramm and Kogarko,1994;陈肇博,1996;Marksetal.,2004;Halamaetal.,2005;徐夕生和邱检生,2010;Zhuetal.,2016),但岩石富碱的特征与源区富集和/或强烈分异作用密切相关已达成共识。碱性岩通常形成于造山后的伸展背景、大陆裂谷及地幔柱背景,也可见于造山带的增生阶段,少量产于岛弧环境和地壳加厚地区(Thompson and Gibson,1994;Wilsonetal.,1995;Xuetal.,2008;Yangetal.,2012)。不同构造背景的碱性岩在岩石组合、成岩温度和成矿金属组合上存在差异。例如,增生阶段的岛弧环境和地壳加厚地区的碱性岩主要发育与钾玄质正长岩、正长斑岩、二长岩和粗玄岩有关的铜-金矿化,钾质火山岩浆-流体作用是矿化的控制因素(Richards,1995;张伟波和王丰翔,2014;王丰翔等,2017);造山后伸展构造背景的碱性岩可以发育与碱性花岗岩有关的锡(钨)矿化和与、霓霞正长岩、霞石正长岩、正长岩及碱性花岗岩有关的铌、稀土、钽(锆、铪、铀)等稀有金属矿化,前者成矿的重要条件是地壳组分的混染,后者一般不受到地壳物质的混染,且这类碱性岩通常与造山带演化相关的弧型花岗岩和高分异I型花岗岩存在时空联系(Zhaoetal.,2001;Lenharoetal.,2003;王莉娟等,2012;Wuetal.,2016;Zhuetal.,2016;钟军等,2020);地幔柱背景下的碱性岩可以发育与正长岩和碱性花岗岩有关的铌、钽、稀土(锆、铀)稀有金属矿化,在时间和空间上与基性-超基性岩紧密伴生,矿化时代与相应的大火成岩省活动时间一致(王汾连等,2013,2015;徐义刚等,2013;Wangetal.,2015;王焰等,2017)。因此,对不同构造背景下的典型碱性岩体及伴生矿床开展成因研究,不仅可以对碱性岩的成岩过程提供约束,还可以揭示碱性岩型矿床的成矿机制。
波孜果尔碱性花岗质岩体位于塔里木北缘-西南天山晚古生代造山带。岩体内发育有重要的铌-钽-锆-铷-稀土矿床,是塔里木地块北缘铌成矿带中典型的与碱性岩有关的矿床(李建康等,2019),其Nb2O5储量达到15万t、Ta2O5储量为1万t、锆石为70万t,伴生稀土储量达20万t、Rb2O储量为30万t,整体属超大型稀有金属矿床(徐海明,2011(1)徐海明. 2011. 波孜果尔铌、钽矿勘探报告. 中国地质科学院矿产资源研究所)。前人研究大多聚焦于波孜果尔矿床含矿岩体的地质及地球化学特征、矿物组成及其成分、成岩时代和岩石成因、矿床地质特征和成矿机制等方面(徐海明等,2010,2012;刘春花等,2012,2013,2014;Yinetal.,2013;尹京武等,2013,2014;Huangetal.,2014,2018;解艳春,2017;吴欢欢等,2019),但对其含矿岩体的岩相划分还存在分歧,与碱性暗色矿物相关的研究不够深入,岩体的演化特征、构造背景及其在演化过程的成矿条件变化也有待进一步明确。基于此,本文对波孜果尔主要含矿岩体的岩石组构、全岩地球化学成分和矿物成分进行了分析,系统研究了不同岩石类型中的霓石和钠铁闪石主微量元素成分变化,并对含矿岩体的岩浆演化、形成条件、物质来源和构造背景进行探讨。
图2 波孜果尔区域地质图(据刘春花等,2014修改)1-第四纪洪积层;2-第三纪砾岩、砂砾岩、砂岩、泥岩;3-白垩纪砂质泥岩、粉砂岩、长英质砂岩、砾岩;4-侏罗纪泥岩、泥质粉砂岩、泥质页岩、泥灰岩、砂岩、炭质页岩、石英砂岩、粉砂岩、砾岩、粗砂岩、煤层;5-三叠纪砾岩、中粒砂岩、泥质粉砂岩夹粗砂岩、细砾岩;6-二叠纪小提坎立克组酸性熔岩、凝灰岩及碎屑岩建造;7-石炭纪干草湖组浅-滨海相碳酸盐及碎屑岩建造;8-志留纪大理岩、灰岩、石英片岩、混合岩、变质粉砂岩;9-志留纪穷库什太组片理化泥质粉砂岩、大理岩、结晶灰岩、绢云母石英片岩、安山玢岩,辉绿岩、英安斑岩;10-波孜果尔岩体;11-断层;12-砾岩;13-大理岩Fig.2 Regional geological map of Boziguoer area (modified after Liu et al., 2014)1-Quaternary diluvial layer; 2-Tertiary conglomerate, glutenite, sandstone and mudstone; 3-Cretaceous sandy shale, siltstone, felsicsandstone and conglomerate; 4-Jurassic mudstone, argillaceous siltstone, argillaceous shale, marl, sandstone, carbonaceous shale, quartz sandstone, siltstone, conglomerate, grit stone and coalbed; 5-Triassic conglomerate, medium-grained sandstone, argillaceous siltstone fold grit stone and conglomerates; 6-Permian Xiaotikanlike formation acidic lava, tuff and clastic rock; 7-Carboniferous Gancaohu formation shallow and marine carbonate and clastic rock; 8-Silurian marble, limestone, quartz schist, migmatite and metamorphic siltstone; 9-Silurian Qiongkushitai formation schistose argillaceous siltstone, marble, crystalline limestone, sericite quartz schist, andesitic porphyry, diabase and dacite porphyry; 10-Boziguoer intrusion; 11-fault; 12-conglomerate; 13-marble
中亚造山带是在中朝、塔里木板块与西伯利亚古陆之间的古亚洲洋闭合、消亡过程中形成的一条巨型造山带(图1a),是全球规模最大的增生造山带之一,以多岛洋、小陆块复杂拼合造山为特征(Windleyetal.,1990;Jahnetal.,2000a,b,2004;秦克章,2000;Xiaoetal.,2004,2013;Cawoodetal.,2009;Qianetal.,2009)。由于塔里木二叠纪地幔柱的叠加,导致该地区地质演化与成岩成矿组合复杂多样(Qinetal.,2011;Suetal.,2011;秦克章等,2012)。南天山位于中亚造山带西南缘,中国的南天山地区由北到南包括中天山地块、南天山造山带和塔里木地块北缘(图1b)。中天山地块为古老的大陆微板块,基底由中新元古界大理岩、片岩、片麻岩和混合岩等构成,直接被震旦系的冰碛岩和碳酸盐岩覆盖,中天山地块与南天山造山带以中-南天山缝合带(YCSF)为界。南天山造山带的形成与南天山洋古生代俯冲闭合及随后的中天山地块和塔里木地块的陆陆碰撞造山密切相关,为陆陆碰撞发生之前塔里木地块最北端部分(engöretal.,1993;Xiaoetal., 2004;Gaoetal.,2009;Zhangetal.,2010;Hanetal.,2011)。因此,南天山造山带组成复杂,包含塔里木地块北缘陆缘/浅海沉积物、前寒武纪塔里木基底岩石及上覆的洋壳增生物质,其南与塔里木地块北缘以塔里木北缘断裂(TNF)为界线。塔里木地块内部被沙漠覆盖,北缘绝大多数固结的基岩都被中-新生代未固结或半固结的沉积岩或沉积物所覆盖,仅在其中部和最东部有部分出露(Zhangetal.,2010)。塔里木北缘及邻区发育一套以碱性花岗岩、石英正长岩、正长岩、霓辉石正长岩、霓霞正长岩为主,包含碱性辉长岩、霓辉石闪长岩、钠铁闪石正长岩、霓辉石花岗岩等岩石类型在内的碱性侵入岩体,其西起阿图什、东到尉犁以东,近东西向呈带状分布,长约1100km,主体形成于泥盆-二叠纪(杨树锋等,1996;刘楚雄等,2004;邹天人和李庆昌,2006)。区域地质工作程度较低,发现的矿产资源非常有限,包括一些稀有和稀土元素矿床和矿化点,赋矿岩石类型主要为碱性花岗岩型、正长岩型、碳酸岩型、碱性伟晶岩型(伴有宝玉石矿化)和热液型,其中,铌、钽、锆、铷、稀土、铀矿与碱性花岗岩类岩石侵入关系密切(邹天人等,2002)。
图3 波孜果尔岩体地质图(据徐海明,2011修改)Fig.3 Geological map of Boziguoer intrusion (modified after Xu et al., 2011)
波孜果尔矿床位于拜城县城正北约43km处碱性岩带中部偏东、天山山脉西段的哈里克套山南坡,其区域地层属天山地层区-南天山分区-哈里克套小区。出露地层主要为志留纪穷库什太组(S3q)、石炭纪干草湖组(C1g)及二叠纪小提坎里克组(P1x)。区内侵入岩不甚发育,仅在中东部发育波孜果尔碱性(花岗)岩岩株(图2),而火山岩则较为发育,火山活动可分为志留纪、早石炭世和早二叠世三个旋回。阿克牙伊利亚克塔格断裂(F1和F2)近东西向分布,长约160km,为区内主要断裂,且有多期次活动特点。
波孜果尔矿区出露地层为志留系穷库什太组(S3g),其岩石类型包括灰白色大理岩、片理化泥质粉砂岩、绢云黑云石英片岩和结晶灰岩。矿区褶皱构造不甚发育,总体为走向呈近东西,倾向北的单斜构造。霓石钠铁闪石碱长正长岩-花岗岩(含矿岩体)东侧与黑云母碱长花岗岩呈NNE向的断层接触(F7),南侧与志留系穷库什太组大理岩呈NWW向的断层接触(F8)。
波孜果尔岩体为东西向鱼状展布的岩株,侵入于上志留统的大理岩中(图3),且与地层走向基本一致,东西长约4.45km,南北宽0.5~1.3km,平均约0.9km左右,总体面积约为2.6km2。该碱性侵入体实际为一个花岗质杂岩体的组成部分。这个杂岩体的东部为黑云母碱长花岗岩,西部为含霓石和钠铁闪石的碱性(花岗)岩,西岩体含矿,且由多个岩相组成。据刘春花等(2014)报道,东岩体黑云母碱长花岗岩的锆石LA-ICP-MS U-Pb年龄为287.7±2.9Ma,西岩体的霓石钠闪碱长花岗岩为280.9±2.6Ma、霓石钠闪石英碱长正长岩为291.6±2.9Ma。Huangetal.(2014)认为含矿岩体由斑状钠长花岗岩和等粒状粗粒黑云母-钠铁闪石-霓石花岗岩两个岩性单元组成,且两个单元之间并没有明显的界线,暗示他们几乎同时形成,并对斑状钠长花岗岩锆石进行U-Pb定年,结果为290.1±1.4Ma。以上年代学数据说明波孜果尔岩体形成于早二叠世。岩体围岩蚀变较弱,且类型简单,主要发育绿泥石化、绿帘石化、萤石化和褐铁矿化。含霓石和钠铁闪石的碱性(花岗)岩(西岩体)呈椭圆形小岩株分布于矿区中东部一带,出露长约1km,宽约0.7km,面积约0.8km2左右,走向NWW,倾向NNE,倾角约70°。该岩株全岩矿化,矿体规模、形态与岩体一致,主要为铌、钽矿化,并伴有铷、锆、铀、钍和稀土矿化(徐海明等,2010),经初步勘查,已成为一处超大型Nb-Ta-Zr-Rb-REE矿床(邹天人和李庆昌,2006;徐海明,2011)。
本次选择在近似含矿岩体走向方向的3处露头进行了采样,采样位置见图3。在完成系统的薄片鉴定的基础上,选取包含三种岩石类型在内的10件样品用于岩石主量和微量元素的测试,选取各岩石类型具有代表性的9件钠铁闪石、6件霓石样品分别进行了主量和微量元素测试。
图4 波孜果尔岩体手标本及镜下照片(a、b)霓石钠铁闪石碱长花岗岩; (c、d)霓石钠铁闪石石英碱长正长岩; (e、f)霓石钠铁闪石碱长正长岩). Q-石英;Ab-钠长石;Kf-钾长石;Aeg-霓石;Arf-钠铁闪石Fig.4 Microphotographs of Boziguoer intrusionQ-quartz; Ab-albite; Kf-K-feldspar; Aeg-aegirine; Arf-arfvedsonite
全岩主量和微量元素分析工作于武汉上谱分析科技有限责任公司完成。主量元素分析利用X射线荧光光谱法(XRF),详细的仪器参数和操作流程等可见(Maetal.,2012)。全岩微量元素测试通过Agilent 7700e ICP-MS分析完成,具体的操作流程和规范可见(Songetal.,2010)。
霓石和钠铁闪石的主量元素测试工作于中国地质调查局天津地质调查中心实验测试室完成,测试仪器为SHIMADZU-EPMA1600型电子探针,能谱仪为EDAX-GENESIS。点分析的实验条件为:加速电压15kV,束流20nA,束斑直径5μm,结果采用ZAF校正方法,当元素含量大于0.1×10-6时其1σ小于10%。
霓石和钠铁闪石的原位微区微量元素测试工作在合肥工业大学资源与环境工程学院矿床成因与勘查技术研究中心(OEDC)矿物微区分析实验室完成。激光剥蚀系统为CetacAnalyte HE,ICP-MS为Agilent 7900。激光剥蚀过程中采用氦气作载气、氩气为补偿气以调节灵敏度,二者在进入ICP之前通过一个T型接头混合。激光能量为2.5J/cm2,斑束为30μm。每个时间分辨的分析数据包括20s的空白信号和40s的样品信号。对分析数据的离线处理采用软件ICPMSDataCal(Liuetal.,2008)完成,包括对样品和空白信号的选择和灵敏度漂移校正。详细的仪器操作条件和数据处理方法可见汪方跃等(2017),分析误差小于1.5%。矿物微量元素含量利用多个参考玻璃(NIST610、NIST612、BCR-2G)作为多外标单内标(43Ca)进行定量计算。标准玻璃中元素含量的推荐值据GeoReM数据库。
通过对波孜果尔含矿碱性花岗质岩体的露头、手标本及光薄片进行详细观察,含矿岩体的岩石类型有以下三种:
霓石钠铁闪石碱长花岗岩(图4a,b),灰白色,中-细粒结构,块状构造。主要矿物有钠长石(35%~45%)、钾长石(20%~25%)和石英(20%~25%);次要矿物有钠铁闪石(5%~10%)、霓石(3%~5%)和多硅锂云母(3%~5%),副矿物主要包括锆石、烧绿石、星叶石、独居石、钍石、氟碳铈镧矿、磷钇矿、萤石、磁铁矿等。
图5 波孜果尔岩体中碱性暗色矿物镜下照片Ast-星叶石Fig.5 Microphotographs of alkaline melano minerals in Boziguoer intrusionAst- astrophyllite
霓石钠铁闪石石英碱长正长岩(图4c,d),灰白色,相较霓石钠铁闪石碱长花岗岩色率稍深,细粒结构,块状构造。主要矿物包括钠长石(45%~55%)和钾长石(20%~30%);次要矿物有钠铁闪石(8%~15%)、霓石(5%~8%)和石英(5%~8%),副矿物主要包括锆石、烧绿石、星叶石、钍石、独居石、氟碳铈镧矿、磷钇矿、萤石等。
霓石钠铁闪石碱长正长岩(图4e,f),灰白偏淡蓝色,细粒结构,条带-条纹状构造,是区别于其他两种岩石类型的典型特征。主要矿物包括钠长石(55%~65%)和钾长石(25%~30%);次要矿物钠铁闪石(10%~15%)、霓石(5%~8%)和石英(0%~3%),副矿物主要包括锆石、烧绿石、星叶石、钍石、独居石、氟碳铈镧矿、磷钇矿、萤石等。
各岩相中钾长石由正长石和微斜长石组成,钠长石消光角测得其An牌号均小于5.0,结合其成分分析,所有钠长石都应归属于碱性长石。
三种岩石类型主要矿物和副矿物类型相似,主要鉴别特征是石英及碱性暗色矿物的相对含量和岩石结构构造特征,野外没有找到各岩石类型较为明显的岩性界线和穿插关系,推测其为渐变过渡关系。
三种岩石类型的霓石和钠铁闪石镜下特征相似,其中,霓石粒度分布不均,大多数霓石粒度介于0.1~0.5mm之间,半自形-自形结构。在单偏光下,霓石多色性不明显,为浅黄绿-浅棕绿的多色性,发育辉石式解理,且柱面解理发育不连续。正交偏光下,呈现鲜艳的Ⅱ级蓝绿-Ⅲ级绿干涉色,少部分可见Ⅱ级黄-Ⅱ级蓝的干涉色。斜消光,消光角为30°~50°。霓石均与钠铁闪石、星叶石共生,或发育于钠铁闪石之中(图5a,b)。钠铁闪石呈长柱状-针柱状,呈半自形-自形,其粒度介于0.1~2.5mm之间,大部分集中于0.8~1.2mm之间。正中突起,边缘糙面显著。有明显的闪石组矿物的多色性特征,内部解理明显,发育闪石式解理和(110)柱面完全解理,部分碎裂较为严重,由于被自身色调所覆盖,正交光下颜色较深。钠铁闪石多色性明显,在单偏光下呈现棕黄-深蓝的多色性,在正交偏光下,其自身颜色较深,呈现Ⅱ级蓝的干涉色,钠铁闪石多为填隙结构,产出于碱性长石和石英的间隙中(图5c,d),指示其生成时间较晚。霓石钠铁闪石碱长正长岩中的霓石和钠铁闪石相互交生,其集合体可呈条带状分布,构成条带-条纹状构造(图4e,f)。
矿石矿物以烧绿石为主,次为锆石、星叶石、独居石、磷钇矿、氟碳铈镧矿等;脉石矿物以正长石、微斜长石、钠长石、石英为主,少量霓石、钠铁闪石、磁铁矿、磷灰石等,矿石矿物多呈粒状集合体或单体充填于脉石矿物颗粒间,或被早期生成的碱性长石包裹,形成典型的稀疏浸染状构造(图6a),偶见有团块状构造(图6b)。通过对矿石矿物的成分研究,结合徐海明(2011)、尹京武等(2013)工作,矿石中的铌和钽主要来自于烧绿石;铷和铯主要分布在星叶石中;锆主要来自锆石(图6c);钍主要由钍石提供(图6d);稀土元素主要来自于独居石、磷钇矿和氟碳铈镧矿(图6e,f);铀主要来自于烧绿石和钍石。
波孜果尔碱性花岗质侵入岩的全岩主量元素分析结果列于表1。SiO2含量为65.65%~76.74%,平均为68.80%;Na2O含量为5.29%~8.41%,平均为7.33%;K2O含量为3.00%~5.24%,平均为4.37%;Al2O3含量为12.64%~17.65%,平均为15.87%,A/CNK=0.84~0.92,A/CNK均值为0.897;Fe2O3T为1.25%~4.45%,平均2.44%;CaO为0.1%~0.86%,平均为0.54%;MgO含量为0.01%~0.04%,平均为0.03%;碱度率(AR)=5.45~8.02,平均6.05。里特曼指数(σ)=2.34~7.14,平均为5.61,只有两个霓石钠铁闪石碱长花岗岩接近3.3,属于偏碱性岩石,其他都大于3.3,属于碱性岩石。CIPW标准矿物软件计算出矿物体积百分含量可知(表1),其主要矿物包括钾长石、钠长石、石英、紫苏辉石和锥辉石,不含刚玉分子,也指示其不是富铝质系列的岩石,主要矿物组成和体积占比与实际观察一致,Q-A-P图解投图分析(图7),由于钠长石成分分析得其An牌号均小于5,因此在投图时和钾长石都属于碱性长石系列(A),结果指示波孜果尔碱性花岗质侵入岩的岩石类型为碱长花岗岩、石英碱长正长岩和碱长正长岩,与手标本及显微镜下观察结论相一致,收集前人相关数据进行投图也落在同样的区间内。
表1 波孜果尔岩体主量元素(wt%)和微量元素(×10-6)分析结果
续表1
图6 波孜果尔霓石钠铁闪石碱长花岗岩副矿物镜下及BSE照片Pyr-烧绿石;Zr-锆石;Th-钍石;Bas-氟碳铈镧矿;Mnz-独居石Fig.6 Microphotographs and BSE of accessory minerals in Boziguoer intrusionPyr-pyrochlore; Zr-zircon; Th-thorite; Bas-bastnaesite; Mnz-monzonite
在SiO2-(Na2O+K2O)图解中(图8a),波孜果尔碱性花岗质侵入岩中霓石钠铁闪石碱长花岗岩落入碱性和钙碱性的临界区域,其他两种岩石类型均落入碱性区域,作为对比的巴楚地区的正长岩都落在碱性区域,哈拉峻地区的碱性花岗岩在两个区域都有分布。在SiO2-AR图解中(图8b),波孜果尔三种岩石类型、巴楚地区的正长岩和哈拉峻地区的碱性花岗岩均落在碱性的区域内。在A/CNK-A/NK图解中(图8c),波孜果尔三种岩石类型均落在过碱质岩区域内,巴楚地区正长岩主要落入准铝质区域,哈拉峻地区碱性花岗岩落在准铝质-过铝质区域内。
图8 波孜果尔岩体岩石地球化学分类图解(a)TAS分类图解(底图据Middlemost,1994);(b)SiO2-AR图解(底图据Wright,1969);(c)A/CNK-A/NK图解(底图据Maniar and Piccoli,1989). 巴楚地区正长岩数据引自:杨树锋等(2006);Zhang et al.(2008);位荀和徐义刚(2011);哈拉峻地区碱性花岗岩数据引自Zong et al.(2021)Fig.8 Geochemical classification diagrams for Boziguoer intrusion(a) TAS classification diagram (after Middlemost, 1994); (b) SiO2 vs. AR diagram for granite (after Wright, 1969); (c) A/NK vs A/CNK diagram for granite (after Maniar and Piccoli, 1989). The data for syenitic rocks in Bachu area from Yang et al. (2006); Zhang et al. (2008); Wei and Xu. (2011). The data for alkaline granite in Halajun area from Zong et al. (2021)
波孜果尔碱性花岗质侵入岩的全岩微量元素分析结果见表1。全岩稀土总量较高,∑REE=233.7×10-6~1269×10-6,平均为576.4×10-6,LREE/HREE=2.88~13.17,平均为6.17,(La/Yb)N=2.41~16.09,以轻稀土富集和重稀土亏损为特征,且所有样品的配分模式相似,均呈现低缓右倾的分配特征(图9a),Eu的负异常显著(δEu=0.05~0.14,平均为0.11),没有Ce异常(δCe=0.96~1.21,平均为1.05),总体来看,波孜果尔碱性花岗质岩体的稀土元素表现为明显Eu负异常、轻稀土轻度富集的“V”型配分曲线。
图9 波孜果尔岩体球粒陨石标准化稀土元素配分模式图(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDonough,1989)Fig.9 Chondrite-normalized REE diagram (a) and primitive-mantle-normalized trace element spider diagram (b) of Boziguoer intrusion (normalization values after Sun and McDonough, 1989)
全岩Rb/Sr=103~118,平均为175;Rb/Ba=48.8~382,平均为98.8,Nb+Ta=26.67×10-6~447.8×10-6,平均为170.7×10-6,原始地幔标准化微量元素蛛网图中(图9b),所有样品均表现出相似的微量元素配分特征,以富集U、Th及Nb、Ta、Zr、Hf等高场强元素、亏损Ba、Sr等大离子亲石元素为特征,指示三种岩石类型是同源岩浆演化的产物。其中,碱长花岗岩相较碱长正长岩和石英碱长正长岩更富集U、Nb、Ta,且更亏损Ba、Sr,两种碱长正长岩则更富集Zr。
波孜果尔岩体各岩石类型的霓石主量元素均显示高硅、钠、铁,低钛、钙、镁、锰的特征,SiO2含量为49.52%~52.76%,Na2O含量为11.21%~14.57%,FeOT含量为27.39%~31.08%。计算结果显示锥辉石/霓石(Ac)含量为44.68~57.14,正铁辉石(Fs)含量为42.72~48.15,硅灰石(Wo)(0.02~8.59)和顽火辉石(En)(0~0.52)含量比较低(电子版附表1)。
Morimoto和黄婉康(1988)将辉石分为Ca-Mg-Fe辉石、Ca-Na辉石、Na辉石和其他辉石(Li、Sc、Sr等)四个族,总计20余种,辉石族矿物Q-J图解中(Q=Ca+Mg+Fe2+;J=2Na),波孜果尔所有岩石类型中的霓石由于钠含量较高,均落于钠辉石族以外的富钠其他辉石组区域(图10a)。在Q(Wo+En+Fs)-Jd(NaAlSi2O6)-Ae(NaFeSi2O6)组分图解中,大部分落在霓石区域内,少部分石英碱长正长岩中的测点落于霓辉石区域(图10b),从石英碱长正长岩到碱长正长岩再到碱长花岗岩,越来越接近Ae端元。因此,波孜果尔碱性花岗质侵入岩的辉石族矿物为霓石-霓辉石系列,其中霓辉石仅在石英碱长正长岩中少量发育。
波孜果尔碱性花岗质侵入岩各岩石类型的霓石微量元素分析结果见电子版附表2。霓石的稀土总量很低,∑REE=2.51×10-6~34.95×10-6,平均为9.80×10-6,以重稀土轻度富集为特征,LREE/HREE=0.04~0.38,平均为0.12,(La/Yb)N=0~0.04,在球粒陨石标准化稀土元素配分模式图中(图11a),所有样品均表现出相似的配分模式,即呈现出低缓左倾的分配特征,且具有弱的Eu负异常(δEu=0.06~0.71,平均为0.32)。霓石钠铁闪石石英碱长正长岩中的霓石具有弱的正Ce异常(δCe=2.07~2.48),其他样品的霓石几乎没有Ce异常(δCe=0.50~1.34,平均为1.04)。在霓石原始地幔标准化微量元素蛛网图中(图11b),所有样品均表现出相似的微量元素特征,都富集Th、U及Nb、Zr、Hf等高场强元素,亏损Ba、Sr等大离子亲石元素,指示三种岩石类型的霓石结晶时的熔体微量元素成分相似。
图10 波孜果尔岩体辉石Q-J(a)及Q-Jd-Ae(b)图解(底图据Morimoto和黄婉康,1988)霓石1-霓石钠铁闪石花岗岩中的霓石;霓石2-霓石钠铁闪石石英碱长正长岩中的霓石;霓石3-霓石钠铁闪石碱长正长岩中的霓石. 图11同Fig.10 The 10Q vs. J (a) and Q-Jd-Ae (b) diagrams of pyroxenes in the Boziguoer intrusion (base map after Morimoto and Huang, 1988)Aegirine1-aegirine in aegirine arfvedsonite alkali feldspar granite; Aegirine2-aegirine in aegirine arfvedsonite quartz alkali feldspar syenite; Aegirine3-aegirine inaegirine arfvedsonite alkali feldspar syenite. Fig.11 is the same
图11 霓石稀球粒陨石标准化土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDonough,1989)Fig.11 Chondrite-normalized REE patterns (a) and primaitive-mantle-normalized trace element spider diagram (b) of aegirine in Boziguoer intrusion (normalization values after Sun and McDonough, 1989)
波孜果尔碱性花岗质岩体各岩石类型的钠铁闪石主量元素成分相似(电子版附表3),都具有富钠、高铁、多硅,极低镁、钙、钛的特征,SiO2含量为48.62%~51.77%,Na2O含量为6.07%~8.91%,FeOT含量为29.59%~33.35%,MgO含量为0.09%~0.58%,CaO为0.01%~2.55%,按23个氧原子为基准,计算阳离子系数,结果显示其M值(Mg/Mg+Fe2+)=0.015~0.26,指示极度贫镁富铁,(Na+K)A的值为0.55~1.22,均大于0.5,指示富碱的特征。
根据角闪石晶体结构中的阳离子数可以对角闪石进行分类划分(Leakeetal.,1997,2004),(Na+Ca)B-NaB图解中(图12a),全部分析点均落在碱性角闪石区域。全部分析点的(Na+K)A均大于0.5,且AlⅥ 图12 角闪石(Na+Ca)B-NaB(a)及Mg/(Mg+Fe2+)-Si(b)图解(底图据Leake et al.,2004)钠铁闪石1-霓石钠铁闪石花岗岩中的钠铁闪石;钠铁闪石2-霓石钠铁闪石石英碱长正长岩中的钠铁闪石;钠铁闪石3-霓石钠铁闪石碱长正长岩中的钠铁闪石. 图13、图14、图15同Fig.12 (Na+Ca)B vs. NaB (a) and Mg/(Mg+Fe2+)vs. Si (b) diagrams of amphibole (base map after Leake et al., 2004)Arfvedsonite1-arfvedsonite in aegirine arfvedsonite alkali feldspar granite. Arfvedsonite2-arfvedsonite in aegirine arfvedsonite quartz alkali feldspar syenite. Arfvedsonite3-arfvedsonite inaegirine arfvedsonite alkali feldspar syenite. Fig.13, Fig.14 and Fig.15 are the same 图13 钠铁闪石球粒陨石标准化稀土元素配分图(a)及原始地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDonough, 1989)Fig.13 Chondrite-normalized REE distribution patterns (a) and primaitive-mantle-normalized trace element spider diagrams (b) of arfvedsonite in Boziguoer intrusion (normalization values after Sun and McDonough, 1989) 波孜果尔碱性花岗质侵入岩各岩石类型的钠铁闪石稀土及微量元素分析结果列于电子版附表4。钠铁闪石的稀土总量较低,∑REE=11.22×10-6~146.2×10-6,平均为102.3×10-6,以重稀土轻度富集为特征,其LREE/HREE=0.12~0.80,平均为0.56,(La/Yb)N=0.01~0.12。球粒陨石标准化稀土元素配分模式图中(图13a),两类碱长正长岩和碱长花岗岩的钠铁闪石表现出不一样的配分模式,钠铁闪石稀土总量上,两类碱长正长岩明显高于碱长花岗岩,碱长花岗岩中的钠铁闪石具有明显的Ce正异常(δCe=1.73~7.09,平均为4.17),两类碱长正长岩没有或弱正Ce异常(δCe=0.96~2.84,平均为1.28),但所有的钠铁闪石均具有Eu的负异常(δEu=0.03~0.18,平均为0.13)。钠铁闪石原始地幔标准化微量元素蛛网图中(图13b),所有样品表现出相似的微量元素特征,即富集U、Th及Nb、Ta、Zr、Hf等高场强元素,亏损Ba、Sr等大离子亲石元素。碱长花岗岩钠铁闪石的总体微量元素含量较两种碱长正长岩偏低,即两种碱长正长岩中的钠铁闪石更富集Zr、Hf、Nb、Ta等元素,但碱长花岗岩中的钠铁闪石更富集U,碱长花岗岩钠铁闪石的U含量为1.99×10-6~103.0×10-6,平均为33.3×10-6,而其他两种碱长正长岩中的U含量为0×10-6~4.12×10-6,平均为0.33×10-6。 碱性暗色矿物的发育是碱性岩的一个鉴别标志,指示岩浆中Al含量相对于碱质的不足,导致碱质在形成碱性长石后仍有剩余,从而多余的碱质进入暗色矿物的晶格中形成碱性暗色矿物。波孜果尔含矿岩体中碱性暗色矿物(霓石、钠铁闪石)广泛发育,而且角闪石族矿物的化学组分特征受到寄主岩石的成分和体系环境变化等的控制,因此不同主岩条件下形成的角闪石在结构特征和化学组分等方面会存在明显的差异,这种差异是由于矿物中不同的元素通过类质同象置换和替代造成的(陈光远,1987;薛君治等,1990;Ridolfietal.,2008),选择差别大、含量高且能反映成因特点的阳离子或阳离子组合作为矿物化学-成因图解的端元成分,可以用以进行寄主岩石类型判别。Al/Si-Mg/(Fe+AlⅥ)图解中,波孜果尔各岩石类型中的钠铁闪石均落在碱性岩区域(图14a),在Mg-(Na+K+Ca)-(Fe2++Fe3+)三元图解中,所有钠铁闪石也都落在碱性成因区(图14b),指示这些碱性暗色矿物为非交代或变质成因,与岩相学观察一致,是碱性岩浆结晶矿物。此外,岩石化学成分在AR-SiO2图等各类判别图解中(图8)也都落在碱性岩区域,因此,波孜果尔含矿岩体是碱性岩体,其所含的碱性暗色矿物为碱性(花岗)质岩浆结晶形成。 图14 角闪石Al/Si-Mg/(Fe+AlⅥ)(a, 底图据薛君治等,1990)和Mg-(Na+K+Ca)-(Fe2++Fe3+)(b, 底图据陈光远,1987)判别图解5-碱性岩浆角闪石Fig.14 Al/Si vs. Mg/(Fe+AlⅥ) (a, after Xue et al., 1990) and Mg-(Na+K+Ca)-(Fe2++Fe3+) (b, after Chen, 1988) discrimination diagrams of amphibole5-alkaline magmatic amphibole 含矿岩体各岩相的细致划分是探讨岩浆演化和成矿机制的重要前提,但是波孜果尔含矿岩体的岩石类型划分和定名存在一定争议,主要原因在于:(1)地形和交通条件的制约对样品的系统采集造成困难,导致缺失部分岩相;(2)主要矿物(长石、石英及碱性暗色矿物)的相对含量没有细致判定,导致整体简单定名为碱性花岗岩;(3)定名时缺少对长石类型的准确判定,未区分富钠斜长石与碱性长石。目前已报道的岩石类型包括霓石花岗岩(徐海明,2011; 徐海明等,2010,2012)、霓石钠闪石英碱长正长岩-霓石钠闪碱长花岗岩(刘春花等,2012,2014)、石英二长闪长岩-花岗闪长岩-石英二长岩(尹京武等,2013)和斑状钠长花岗岩-等粒状粗粒黑云母钠铁闪石霓石花岗岩(Huangetal.,2014,2018)等。本文结合已有的工作基础,在穿切整个岩体的剖面上进行系统采样,通过细致的岩相学和岩石化学工作对不同位置岩石的矿物相对含量和长石种属进行判别。识别出三种不同不类型的岩相,并且发现各岩相所含长石均为An<5%的碱性长石,未见斜长石。按照碱性岩定名中的暗色矿物四原则(曾广策和邱家骧,1996),波孜果尔含矿岩体可分为霓石钠铁闪石碱长花岗岩、霓石钠铁闪石石英碱长正长岩和霓石钠铁闪石碱长正长岩。根据前人对富碱岩石类型的物质组成总结(周玲棣和赵振华,1994;赵振华和周玲棣,1994),波孜果尔含矿碱性岩体包含了碱性花岗岩和碱性岩,这是碱性花岗质岩浆分异演化的结果(章节6.2重点讨论),而且其具有典型A型花岗岩的岩相学、岩石化学、矿物学等方面的特征(刘春花等,2012,2014)。因此,本文认为波孜果尔含矿岩体总体为碱性A型花岗质岩体。 图15 角闪石Al2O3-TiO2(a, 底图据姜常义和安三元,1984)和Ca-(Fe2++Fe3+)-Mg(b, 底图据谢应雯和张玉泉,1990)图解Fig.15 Diagrams of Al2O3 vs. TiO2 (a, after Jiang and An, 1984) and Ca-(Fe2++Fe3+)-Mg (b, after Xie and Zhang, 1990) of amphibole 关于A型花岗质岩石的来源,当前主要有以下几种观点:①来源于富集地幔源区的基性-超基性岩浆极端分离结晶形成(Loiselle and Wones,1979;Currieetal.,1986;Marksetal.,2003;Bonin,2007);②来源于麻粒岩相变质的镁铁质火成岩的部分熔融(Truaetal.,1999;Wangetal.,2005);③长英质地壳的重熔(Harris and Marriner,1980;Collinsetal.,1982;Anderson,1983;Clemensetal.,1986);④壳源岩浆与幔源岩浆的混合(杨树峰等,2006)。本文认为波孜果尔A型花岗质岩石起源于古老地壳岩石的熔融。首先,已报道的波孜果尔岩体全岩Nd同位素组成(εNd(t)=-4.4~-3.1)与近似代表该时期南天山南缘地幔Nd同位素组成的小提坎里克组基性熔岩(εNd(t)=+0.6~-0.3)有明显的差异,指示波孜果尔岩体壳源重熔或壳幔混源的特征(Huangetal.,2014)。其次,麻粒岩相变质的镁铁质火成岩在在重熔形成碱性花岗质岩浆之前,会先期经历一次部分熔融事件并抽取出长英质熔体(Clemensetal.,1986;Whalenetal.,1987;Creaseretal.,1991;Douce,1997)。而郑建平等(2005)对西南天山托云盆地麻粒岩捕虏体进行研究,指出西南天山下地壳除稀土元素变化范围较宽外,碱质和高场强元素等都显示亏损到轻度亏损的特征。波孜果尔岩体高度富集碱质、高场强元素和稀土元素,因而其不太可能是残留麻粒岩相变火成岩重熔的产物。另一方面,花岗岩中角闪石族矿物的M值(Mg/(Mg+Fe2+))对于指示岩浆起源有重要意义,前人统计发现, M值>0.7为幔源型, M值=0.7~0.5为壳幔混合型, M值<0.5为壳源型(谢应雯和张玉泉,1990)。经计算,波孜果尔岩体钠铁闪石的M值=0.02~0.26,平均为0.04,且在钠铁闪石成分的Al2O3-TiO2图解(图15a)和Ca-(Fe2++Fe3+)-Mg三元图解(图15b)中,钠铁闪石均落在壳源区域,指示其岩浆起源主要为壳源物质重熔。同时,这些花岗岩类岩石的锆石εHf(t)值为-6.3~+9,且大部分εHf(t)负值,对应的模式年龄为0.7~1.7Ga(刘春花等,2014)。这与全岩Nd同位素的两阶段模式年龄(1.3~1.4Ga)重合(Huangetal.,2014),表明其岩浆来源主要为古元古代-中元古代的古老地壳物质,可能有少量亏损地幔物质参与形成。综合岩体矿物化学和同位素地球化学特征,波孜果尔岩体主要来源于古老地壳物质的重熔,可能有少量地幔物质的参与。 碱质A型花岗岩岩浆形成所需的熔融温度较高,所需的热异常通常与地幔活动有关(钟玉婷和徐义刚,2009)。通过锆石饱和温度计进行计算,波孜果尔岩体形成温度为832~839℃(刘春花等,2012),明显高于华南地区的造山带背景A型花岗岩(集中在760℃),且与地幔柱有关的A型花岗岩的形成温度较为接近(钟玉婷和徐义刚,2009)。同属塔里木北缘早二叠世碱性岩带的哈拉峻地区A型花岗岩的锆石饱和温度为721~924℃,与波孜果尔岩体相似,其异常高的形成温度被认为和塔里木地幔柱活动造成的幔源岩浆底侵有关(Zhangetal., 2010;Huangetal., 2012;曹俊等,2013;Suetal.,2019;Zongetal.,2021)。塔里木地幔柱的活动时间为300~280Ma,其影响范围包含西南天山(Weietal.,2014;Xuetal.,2014),与波孜果尔岩体时空上一致。因此,造成波孜果尔岩体源区地壳岩石部分熔融的热异常可能与同时期发育的塔里木地幔柱活动引起的幔源岩浆底侵有关。同时,有学者认为底侵的幔源岩浆可以释放出一定量的超临界流体,从而导致金属元素在地壳的“预富集”(Bailey,1980;Woolley,1987;Martin,2006,2012),这可能是波孜果尔岩体形成铌钽稀土矿化的主要因素(Huangetal.,2018)。 在含有碱性暗色矿物的碱性岩中,霓石、钠铁闪石等一般分布在间隙相(呈针状)或矿物的边部,指示其是最后残余岩浆结晶的产物(林培英等,1986;Wolff,1987;Andersen,1988;Woolley and Platt,1988;许继锋,1993),且鲍文反应序列也指出碱性岩中的碱性暗色矿物通常比长石和石英晚结晶。波孜果尔岩体的霓石和钠铁闪石共生,多为填隙结构,产出于碱性长石和石英的间隙中,指示碱性暗色矿物结晶晚于碱性长石和石英。烧绿石、锆石、独居石、星叶石等副矿物多呈粒状集合体或单体充填于脉石矿物颗粒间,或被早期生成的碱性长石或石英包裹,钍石、磷钇矿和氟碳铈镧矿等副矿物仅以它形填隙状发育,这些现象说明大多数稀有稀土副矿物的结晶时间晚于主要的造岩矿物,因此,波孜果尔岩体的矿物结晶顺序为碱性长石+石英→霓石+钠铁闪石→副矿物。 波孜果尔三种岩石类型主要组成矿物和副矿物类型相似,野外没有找到各岩石类型的岩性界线,可能为渐变过渡关系,前人对其主量元素的研究认为它们系同源岩浆演化的产物(刘春花等,2011,2014)。碱性花岗质岩浆体系中,当有超过0.5%的F加入时,会显著增强岩浆的分离结晶程度(Moghazietal.,2011;Baker and Alletti,2012;Sheardetal.,2012),波孜果尔岩体的副矿物发育有萤石,且钠铁闪石、烧绿石等副矿物F的含量也很高,指示平衡熔体富含F。而且F和HFSE及REE形成的络合物可以在岩浆演化的绝大多数时间内保持熔融态(Kohnetal.,1991;Zeng and Stebbins,2000;Liu and Nekvasil,2001;Mysenetal.,2004),从而增加了Nb、Ta、Zr、Hf、U、Th及REE在熔体中的溶解度。随着岩浆演化,当络合物分解即会结晶稀有稀土矿物形成矿化,这可能是波孜果尔矿床的成矿机制。在La-La/Yb图解(图16a)和Zr-Zr/Nb图解(图16b)中也都指示结晶分异作用控制岩体的形成,因此,波孜果尔岩体各岩石类型的演化受结晶分异作用的控制。 图16 波孜果尔岩体La-La/Yb(a)及Zr-Zr/Nb(b)图解(底图据Geng et al., 2009)Fig.16 La vs. La/Yb (a) and Zr vs. Zr/Nb (b) diagrams of Boziguoer intrusion (base maps after Geng et al., 2009) 在正常的钙碱性岩浆岩中,镁铁质矿物早期结晶,石英在最晚期结晶,因此,随着岩浆的结晶分异,残余岩浆会越来越富集SiO2,因而对于同源演化的岩浆形成的不同岩石类型,往往利用全岩SiO2的含量指示岩浆的演化方向(SiO2含量越高,演化程度越高),进而根据各元素与SiO2的相关性判断演化过程中分离结晶的矿物相。据此,前人研究认为波孜果尔碱性岩体的母岩浆形成后的分异演化过程以碱性长石、Fe-Ti氧化物、磷灰石和独居石的分离结晶为主导(Huangetal.,2014)。但是,镜下观测与矿物成分分析表明石英和碱性长石同为早期结晶的矿物,因此根据SiO2含量增加趋势判断岩浆演化方向这一方式在波孜果尔岩体并不适用。 波孜果尔岩体为完整长英质岩浆系统出露在地表的部分,代表了最终侵位到地壳浅部的分异后期的岩浆产物。在Qtz-Ab-Or所代表的长英质岩浆体系中,不同初始成分的岩浆演化程度越高,其残余岩浆成分越接近,且越趋向于最低共熔点区域(吴福元等,2017)。这与波孜果尔岩体不同岩石类型相同的矿物组成和相似的全岩微量和稀土元素配分模式一致(图9)。因此,利用全岩微量和稀土元素特征判断各岩石类型的演化方向较为困难。研究发现,岩浆演化过程中,不相容元素在霓石和钠铁闪石与碱性花岗质熔体之间的平衡系数相对稳定(Hart and Dunn,1993;Haurietal.,1994;Marksetal.,2004),且随着岩浆结晶分异演化,残余熔体会富集不相容元素进而影响矿物的稀土和微量元素总量。因此,同一岩浆性质不同演化阶段碱性暗色矿物的微量和稀土总量可以反映其分异演化程度。波孜果尔岩体中霓石钠铁闪石碱长花岗岩的钠铁闪石稀土和微量元素总量明显最少,霓石钠铁闪石石英碱长正长岩稍低于霓石钠铁闪石碱长正长岩,指示演化程度由低到高依次为霓石钠铁闪石碱长花岗岩→霓石钠铁闪石石英碱长正长岩→霓石钠铁闪石碱长正长岩。不同岩石类型中烧绿石的成分特征也指示这样的演化趋势(待发表)。 图17 波孜果尔岩体不同岩石类型中的成矿元素含量1-霓石钠铁闪石花岗岩;2-霓石钠铁闪石石英碱长正长岩;3-霓石钠铁闪石碱长正长岩Fig.17 Contents of ore elements in different rock types of Boziguoer intrusion1-aegirine arfvedsonite alkali feldspar granite; 2-aegirine arfvedsonite quartz alkali feldspar syenite; 3-arfvedsonite inaegirine arfvedsonite alkali feldspar syenite 从早期的霓石钠铁闪石碱长花岗岩到晚期的霓石钠铁闪石碱长正长岩,不同岩性中的霓石和钠铁闪石都显示相似的微量和稀土元素配分模式(图11、图13)。稀土元素以富集Tm、Yb和Lu等重稀土为特征,有显著的Eu的负异常。微量元素上都富集U、Th及Nb、Ta、Zr、Hf等高场强元素,亏损Ba、Sr等大离子亲石元素。这些特征表明霓石和钠铁闪石来源于封闭体系,是同源岩浆演化的产物。相对于全岩成分,碱性暗色矿物富集Tm、Yb和Lu等重稀土元素,相对亏损轻、中稀土,与世界上其它碱性岩体中的碱性暗色矿物组成相同,指示碱性暗色矿物的稀土配分系数不同于钙碱性暗色矿物(Marksetal.,2004)。但是,霓石钠铁闪石花岗岩中的钠铁闪石具有较明显的Ce的正异常,而晚期岩相中缺失。通常控制矿物中Ce异常和Eu异常的因素有岩浆性质、矿物结晶顺序以及氧化还原条件(Rudnick,1992;Bindeman and Davis,2000)。从全岩的稀土元素配分特征可以看出,波孜果尔碱性花岗质岩浆没有Ce正异常的稀土元素特征,因此可以排除继承于岩浆性质的可能。一般来说,富Ce的矿物也会富La等其它轻稀土元素,单独富Ce元素的矿物并不常见,因此矿物的分离结晶不可能导致熔体出现单独Ce的含量异常高的情况。矿物的Ce异常和Eu异常的变化可以反映其结晶的物理化学条件的改变。例如,对于锆石来说,岩浆中Ce3+一旦氧化呈Ce4+,其地球化学行为则与Zr、Hf极为相似,相较于其他轻稀土元素也更容易进入锆石的晶体中,反之,一旦Eu3+还原成Eu2+,与相邻元素相比,Eu更难进入锆石的晶体中(Lietal.,2012a;Trailetal.,2012)。本文认为钠铁闪石可能具有与锆石相似的性质。相对于全岩微量元素配分图上Zr、Hf元素含量的波动,钠铁闪石的Zr、Hf元素呈明显的正异常,指示钠铁闪石对Zr、Hf等高场强元素具有高相容性。可以推测,而当Ce被氧化后也可能会大量进入钠铁闪石进而造成Ce的正异常。因此,造成霓石钠铁闪石花岗岩中钠铁闪石Ce正异常的原因可能是波孜果尔岩体演化的早期阶段(初始熔体)氧逸度较高,且体系处于封闭的环境。晚期岩相中Ce异常的缺失可能为早期岩相中磁铁矿的结晶带走体系中的Fe3+,使得熔体的演化环境趋于还原的结果。由于缺少碱性暗色矿物相关的温压计和氧逸度计,寄主岩浆的氧化还原条件一直难以限定。本文发现钠铁闪石的稀土元素特征与体系氧逸度有关,对于定性描述寄主岩石氧化还原环境提供了很好的借鉴。 波孜果尔岩体所在的塔里木北缘碱性岩带,在我国境内发育的主要岩性包括碱性花岗岩、正长岩和碳酸岩等,时代均为早二叠世,近东西向呈带状分布(刘楚雄等,2004;邹天人和李庆昌,2006)。除了波孜果尔,代表性岩体还有:瓦吉里塔格岩体主要岩石组合为方解霞黄煌岩-基性/超基性层状岩体-正长岩-碳酸岩,其中碳酸岩发育稀土-铌矿化(李昌年等,2001;Lietal.,2012b;Caoetal.,2014;李凤鸣和颜芳林,2015;Chengetal., 2017, 2018;厉子龙等,2017);麻扎尔塔格碱性杂岩体岩石组合为辉石正长岩-角闪正长岩-细粒花岗岩,外围基性、超基性小型岩墙或岩脉十分发育,西侧有一个由辉长岩和含长辉石岩组成的杂岩体,不发育稀有稀土矿化(孙燕等,2009;陈咪咪等,2010;位荀和徐义刚,2011)。哈拉峻地区至少有8个大小不一的碱性花岗岩出露,这些岩体均为A性花岗岩,多数岩体含少量的钠铁闪石,不发育稀有稀土矿化,富含铁钛氧化物的皮羌基性-超基性杂岩体出露在哈拉峻地区的东部(曹俊等,2013;Zongetal.,2021)。当前对这些碱性岩体的成岩构造背景研究存在争议,主要有以下三种观点:①俯冲背景(Xiaoetal.,2008);②造山后伸展背景(刘家远和袁奎荣,1996;刘楚雄等,2004);③地幔柱对造山带的叠置背景(Qinetal.,2011;Suetal.,2011;Xuetal.,2014;杨树锋等,2014;秦克章等,2017)。 俯冲背景的碱性岩一般发育铜、金(钼)矿化(Richards,1995;张伟波和王丰翔,2014;王丰翔等,2017),而波孜果尔岩体所在的塔里木北缘碱性岩带主要发育铌、稀土、钽、锆、铷、铀等稀有稀土金属矿化,所以俯冲环境不太可能是其成岩构造背景。造山后伸展的构造背景可以发育锡(钨)矿化和铌、稀土(钽、锆、铀)稀有金属矿化(Zhaoetal.,2001;Lenharoetal.,2003;王莉娟等,2012;Wuetal.,2016;Zhuetal.,2016;钟军等,2020),且当地壳组分混染程度较高时为锡(钨)矿化。波孜果尔岩体的岩浆起源为壳源物质重熔,但却发育铌、稀土(钽、锆、铀)稀有金属矿化,与造山后伸展背景碱性岩成矿组合存在差异。其成因可能与底侵的幔源岩浆释放超临界流体导致稀有稀土金属元素在地壳的“预富集”有关。而塔里木地幔柱对造山带的叠置可能是导致幔源岩浆底侵的诱发机制。同时,高于正常造山带碱性岩的成岩温度也指示其可能的构造背景为地幔柱对造山带的叠置。另一方面,塔里木大火成岩省的年龄数据显示存在3期岩浆活动(Weietal.,2014;Xuetal.,2014):①分布在巴楚瓦吉利塔格地区的方解霞黄煌岩,时代为~300Ma;②分布在盆地内部的溢流玄武岩和流纹岩,时代为~290Ma;③零星分布于盆地边缘或接近造山带部位的镁铁-超镁铁质岩体、岩墙群、正长岩和A型花岗岩,时代为~280Ma。这些岩浆活动与塔里木北缘的碱性岩存在明显时空联系,说明是其重要组成部分。因此,波孜果尔矿床所在的早二叠世碱性岩带的构造背景为地幔柱对造山带的叠置。 前人研究认为波孜果尔岩体全岩矿化,矿体与岩体产状一致,形态单一,呈岩株状产出。矿体品位变化不大,较稳定。矿石中的主要组分(铌、钽)与伴生有用组分(铷、锆、稀土等)关系密切,且分布较均匀(徐海明等,2010,2012; 徐海明,2011)。但是本文通过对不同岩石类型中的成矿元素含量投图发现(图17),Nb主要富集在霓石钠铁闪石花岗岩中,且其平均品位已经超过最低工业品位,霓石钠铁闪石石英碱长正长岩中的Nb的平均品位超过最低边界品位但是低于最低工业品位,霓石钠铁闪石碱长正长岩中的Nb的平均品位低于最低边界品位,指示随着岩浆演化程度的增加,岩体中的Nb的含量有逐渐降低的趋势。三种岩石类型中的Rb的品位均超过了最低综合回收品位。三种岩石类型中的Zr的品位虽然都超过了最低边界品位,但是两种正长岩中的Zr明显高于霓石钠铁闪石花岗岩。霓石钠铁闪石石英碱长正长岩中的稀土品位最高,且平均品位超过了最低边界品位,其他两种岩石类型中的稀土平均品位均达不到最低边界品位,且霓石钠铁闪石花岗岩中含量最低。综上,波孜果尔矿床各成矿元素的分布并不都是均匀的,仅Rb分布较均匀,而演化早期的花岗岩相更富集Nb,演化晚期的正长岩相更富集稀土和Zr,以上分析对于区内开采类似波孜果尔的稀有多金属矿床,更有利于高效的综合利用。 (1)塔里木北缘波孜果尔岩体为碱性(花岗质)岩体,岩石类型有霓石钠铁闪石碱长花岗岩、霓石钠铁闪石石英碱长正长岩、霓石钠铁闪石碱长正长岩,为碱性-过碱性中酸性岩石,碱性特征矿物以广泛发育钠铁闪石、霓石-霓辉石,不含霞石等硅酸不饱和矿物为特征。各岩石类型稀土和微量元素总量较高,轻稀土富集,重稀土亏损,具有显著Eu负异常,富集U、Th和高场强元素,亏损大离子亲石元素。 (2)波孜果尔岩体的辉石族矿物显示高硅、钠、铁,低钛、钙、镁、锰的特征,为霓石-霓辉石系列;角闪石族矿物都具有富钠、高铁、多硅,极低镁、钙、钛的特征,为碱性角闪石组的钠铁闪石。霓石和钠铁闪石均显示相似的微量和稀土元素配分模式,以重稀土轻度富集为特征,有显著的Eu负异常,仅霓石钠铁闪石碱长花岗岩中的钠铁闪石具有Ce的正异常,微量元素上都富集U、Th和高场强元素,亏损大离子亲石元素。 (3)波孜果尔岩体的岩浆起源为壳源物质重熔,岩体的时代与塔里木大火成岩省玄武岩的时代一致,地幔柱造成的幔源岩浆底侵为波孜果尔岩体的形成提供了热源和成矿有利条件。 (4)波孜果尔岩体的矿物结晶顺序为碱性长石+石英→霓石+钠铁闪石→副矿物,各岩石类型的演化受结晶分异作用的控制,演化程度由低到高依次为霓石钠铁闪石碱长花岗岩→霓石钠铁闪石石英碱长正长岩→霓石钠铁闪石碱长正长岩,且演化的早期阶段氧逸度较高。 (5)波孜果尔岩体所在的塔里木北缘碱性岩带成岩构造背景可能为地幔柱对造山带的叠置,波孜果尔岩体中,Rb分布较均匀,演化早期的岩相更富集Nb,演化晚期的岩相更富集稀土和Zr。 致谢野外工作得到新疆维吾尔自治区有色地质勘查局701队李晨工程师、魏贤锋工程师和拜城县国土局程汪毅局长等同志的大力帮助,承蒙中国地质科学院矿产资源研究所徐海明高级工程师帮助介绍当地情况和向导; 天津地质调查中心郭虎老师、合肥工业大学汪方跃副教授在实验过程中给予了指导和帮助; 承蒙朱昱升副研究员、程志国副教授悉心审稿提出宝贵的意见与建议,使文章得以提升和完善。在此一并表示衷心的感谢!6 讨论
6.1 矿化岩体的岩石类型及来源
6.2 矿物形成顺序与岩浆演化规律
6.3 构造背景与含矿性特征
7 结论