吉姆·艾尔-哈利利 约翰乔·麦克法登 侯新智 祝锦杰
假如今天在科学家中进行一项民意调查,问他们什么是整个科学领域最成功、影响最深远、最重要的理论,答案可能会取决于你所问的科学家是在非生物科学领域还是生物科学领域。
绝大多数生物学家认为,达尔文的自然选择进化论是人类有史以来意义最深远的理论;物理学家则更倾向于认为,量子力学理论才应该占据科学中的首要位置。因为,量子力学构筑了大部分现代物理学与化学的基石,揭示了宇宙的基本构成单位,并向人类展现了一幅非凡的宇宙全景。
确实,如果没有量子力学的解释,我们目前对世界是如何运转的大部分看法都不能成立。
几乎每个人都听说过“量子力学”,不过,认为“量子力学是一门艰深而难以理解的科学,只有极小部分非常聪明的人能够理解它”的想法一直很普遍。但事实是,从20世纪早期开始,量子力学就已经成了我们所有人生活的一部分。
量子力学在20世纪20年代中期发展为一种解释极小世界(现称微观世界)的理论。原子构成了我们眼睛所见的一切事物,而量子力学描述了原子的行为以及构成这些原子的更小粒子的性质。比如,通过描述电子运动所遵循的规则,以及电子在原子内部如何安排自己的行为,量子力学奠定了整个化学、材料科学甚至电子学的基础。不仅如此,过去半个世纪中,大多数技术进步都以量子力学的数学规则为核心。
如果没有量子力学对电子如何在材料中穿梭的解释,我们就无法理解半导体的行为;而半导体又是现代电子学的基础,如果没有对半导体的理解,我们就无法发明出硅晶体管,以及后来的微芯片及现代计算机。没有量子力学对我们知识的提升,就不会有激光,不会有智能手机、卫星导航或是核磁共振成像扫描仪。这样的例子不胜枚举。事实上,有估计称,如果没有我们对量子世界中力学原理的理解,发达国家超过1/3的国内生产总值将无法实现。
这才仅仅是个开始。在有生之年,我们十有八九会见证一个量子时代的到来。那个时候,人类可以从激光驱动的核聚变中获得近于无限的电能;分子级别的人造机器会在工程、生化及医药领域帮助人类完成大量的任务;量子计算机将开始提供人工智能;从前只在科幻作品中出现的远距传物技术将很有可能成为信息传递的常规方式。发端于20世纪的量子革命将在21世纪持续加速,以不可想象的方式改变我们的生活。
但是,量子力学究竟是什么呢?对初次接触量子力学的尝鲜者,此处我们以几例量子力学对生活潜移默化的影响,向你展现这些真相如何塑造了我们的生活。
奇特的波粒二象性
第一个例子表现的是量子世界中最奇特的特征,也可以说是量子世界的决定性特征:波粒二象性。
我们已经熟悉了世界的构成,知道自己周围的所有物体都是由许许多多微小而离散的粒子构成的,比如原子、电子、质子和中子。你可能也知道,能量(比如声或光)以波的形式传播,而非粒子。波会向外扩散,而不是像粒子那样向四周移动;波在空间穿过,会像大海里的波涛一样,形成波峰和波谷。20世纪早期,科学家发现亚原子粒子可以像波一样运动,而光波具有粒子的性质。量子力学正是在那个时候诞生的。
虽然波粒二象性不是什么你每天都需要考虑的事情,但它构成了许多非常重要机械的基础,比如电子显微镜。电子显微镜让医生和科学家能够看见、分辨并研究用传统光学显微镜看不见的极微小物体,比如艾滋病毒和普通流感病毒。“电子具有波的性质”这一发现直接催生了电子显微镜的发明。
德国科学家马克斯·克诺尔(Max Knoll)和恩斯特·鲁斯卡(Ernst Ruska)发现,因为電子产生的波长(指任一波中连续两个波峰或波谷之间的距离)比可见光的波长要短得多,因此基于电子成像的显微镜会比普通的光学显微镜捕捉到更多的细节。这是因为,当波遇到任何微小的物体后,如果这一物体的三维比波的波长要短,那么这个物体将不会影响和改变波的传播,就像波长几米的海浪冲击着沙滩上的鹅卵石一样。你需要更短的波长,比如那种在学校的科学实验课上常见的水槽里的涟漪,才能在遇到鹅卵石后产生反射和衍射,使我们最终“看见”这个鹅卵石。因此,克诺尔和鲁斯卡在1931年制造了世界上第一台电子显微镜,并用它拍下了世界上的第一张病毒照片。恩斯特·鲁斯卡因此获得了1986年的诺贝尔物理学奖。这个奖颁得或许有些迟了,因为克诺尔在多年前已经逝世(1969年),而鲁斯卡在得奖两年后也离开了人世。
量子隧穿:“穿墙而过”的粒子
第二个例子将更加重要。
你知道太阳为什么会发光吗?大多数人可能知道太阳本质上是一个核聚变反应堆,消耗氢来释放热量和阳光,而阳光维持了地球上的所有生命。但是,很少有人知道,如果没有那让粒子“穿墙而过”的奇异量子性质,太阳根本不会发光。
太阳(或者说宇宙中的所有恒星)之所以能够放射如此大量的能量,是因为氢原子的原子核(也就是带有一个单位正电荷的质子)能够聚变,并以我们称为阳光的电磁辐射释放能量。两个氢原子核要想聚变,就需要靠得非常近,但两者靠得越近,相互间的排斥力就越大,因为它们各携带一个正电荷,而同种电荷互相排斥。
事实上,如果要让两个质子靠近到足以聚变,那么两个质子必须要有能力穿越一堵亚原子尺度的“砖墙” ——一个明显不可穿透的能量壁垒。经典物理学——构建在牛顿定律之上,能够很好地描述日常生活中的各种现象,甚至是天体的受力和运动——认为这样的穿越不可能发生。换句话说,因为粒子不可能穿墙而过,所以太阳也不应该发光。
但是,原子核这一类遵循量子力学原理的粒子却暗藏玄机——它们通过一种被称为“量子隧穿”的过程,可以轻松地穿透上述的壁垒。从本质上讲,是它们的波粒二象性使它们能够完成隧穿。正如海浪可以绕过物体(比如沙滩上的卵石)传播一样,波也可以绕过物体传播(比如声波可以穿透墙壁,让你听到邻居家的电视声)。当然,作为声波的介质,空气并没有真正地穿透墙壁——空气中的振动,也就是声音,使你和邻居共用的墙壁发生振动,而此振动又推动你房间中的空气,将相同的声波传入你的耳中。
但原子核不一样。如果你能像原子核一样行动,那么有时候,你真的能够像幽灵一般直接穿过坚实的壁垒。
太阳内部的氢原子核所做的正是如此——它能让自己传播出来,像幽灵一样穿透能量壁垒,使自己与墙另一边的伙伴靠得足够近来完成聚变反应。因此,当你下一次在沙滩上晒太阳时,不妨看看拍打着沙滩的海浪,想一想量子粒子像幽灵一样波动,这种波动不仅能够让你享受温暖的阳光,也使我们星球上所有的生命成为可能。
叠加态:华尔兹与爵士共舞
第三个例子与前面的例子也相关,但展现了量子世界不同甚至更加奇怪的特征:一种被称为“叠加态”的现象。
叠加态现象指粒子可以同时完成2件、100件甚至100万件事情。这个性质可以解释我们的宇宙为什么如此复杂而有趣。在大爆炸之后,宇宙诞生,彼时的空间中充斥着单一的原子,即以最简单的形式存在的氢原子——由一个带正电荷的质子和一个带负电荷的电子构成。那是一个相当单调的世界,没有恒星或是行星,当然,也不会有任何生命。因为,包括我们自己在内,构成我们周围一切事物的“基本单位”,都是比氢原子更为复杂的物质,比如像碳、氧、铁这样更重的元素。幸运的是,在充满氢的恒星内部,可以利用氢的另一种形态来生成这些更重的元素。氢的这种更重的形态叫作氘或重氢。而氘原子之所以能存在,多少要归功于量子的魔法。
如前所述,合成的第一步是两个氢原子核,也就是质子,通过量子隧穿效应靠得足够近时,释放一些能量。正是这些能量变成的阳光温暖着我们的星球。第二步,两个质子必须结合在一起,这个过程并不容易,因为两个质子间的作用并不能提供足够的黏合力。
所有的原子核其实由两种粒子构成:质子和电中性的中子。如果原子核中某一种粒子太多,量子力学的原理就认为原子核内的平衡会重新调整,部分多余的粒子会转变为另一种粒子:质子变成中子或是中子变成质子。这种转变的过程被称为β 衰变。
两个质子结合时发生的事情正是如此:两个质子不能共存,其中之一会β 衰变为中子。剩余的质子与新生成的中子会结合形成一种新的物质氘核(氢的同位素氘的原子核),之后,氘核会进一步发生核反应,合成更加复杂的、重于氢的原子核,从氦(两个质子加一个或两个中子)到碳、氮、氧,以此类推。
此处的重点在于,氘核的存在歸功于其能同时以两种状态出现的能力,而这种能力恰是量子叠加态的体现。这是因为,由于自旋方式的不同,质子和中子能以两种不同的方式结合。把氘核内质子和中子的共同旋转,想象成一场精心编排的“舞蹈”,而这舞蹈结合了“缓慢亲密的华尔兹”与“节奏稍快的爵士”两种特点。早在20世纪30年代晚期,科学家就发现,氘核内部的这两种粒子并不是以一种形式在共舞,而是同时以两种状态在舞蹈——它们同时跳着“华尔兹”和“爵士”——而正是这种舞蹈形式,将它们紧密结合在了一起。
看了上文,你可能不禁要问:“你们是怎么知道的?”是的,原子核太小了,远非肉眼所能看见,那么,为了更合情理,我们是不是该假设自己对“核力”的理解还不够完善呢?答案是否定的。上文的结论已经在多个实验室被反复证明:如果质子和中子以“量子华尔兹”或“量子爵士”的任意一种形式结合,两者间的核“黏合力”都不足以强到使两者结合在一起;只有两者互相叠加时,也就是两种状态同时存在时,黏合力才足够强。我们可以将这两种状态的叠加想象为两种颜料的混合(如蓝色和黄色,混合后会形成一种新的颜色——绿色),虽然你知道绿色是由最初的两种颜色混合而成的,但它既不是蓝色也不是黄色。不同比例的蓝色和黄色混合,也能创造出不同色调的绿色。同样,质子和中子能够结合为氘核,是因为它们的舞蹈大部分是“华尔兹”,但同时也混合着一小部分“爵士”。
因此,如果粒子们不能同时共舞“华尔兹”和“爵士”,那么我们的宇宙到现在还是一锅氢气粥,除了氢气外别无他物——没有发光的恒星,没有其他元素,你也不会在这儿读这些文字了。我们能够存在,是因为质子和中子以反直觉的量子方式存在着。
核磁共振的秘密
我们的最后一个例子要把大家带回到技术世界中。量子世界的性质不仅可以用来观察像病毒一样微小的事物,也可以用来观察我们的身体内部。
核磁共振成像是一种医疗扫描技术,能够造出细节极其丰富的软组织图像。核磁共振成像通常被用来诊断疾病,特别是探测内部器官上的肿瘤。大多数介绍核磁共振成像扫描仪的通俗说明都没有提到,其实此项技术依赖于量子世界奇特的运转原理。
核磁共振成像扫描仪使用磁力强劲的大型磁铁将病人体内氢原子核的自旋轴排列整齐。之后,这些原子被放射波脉冲刺激,迫使排列整齐的原子核以奇特的量子状态存在,同时向两个方向自旋。试着将这个过程视觉化对理解它并没有什么作用,因为目前它离我们的日常生活还很遥远。重点在于,当这些原子核重新回到最初的状态(即它们还未接受能量脉冲的刺激而进入量子叠加态)时,它们会把之前接受的能量释放出来。核磁共振成像扫描仪上的电子仪器将收集这些能量,并以此为患者体内的器官造影,生成细节丰富的图像。
因此,如果你有机会躺在一台核磁共振成像扫描仪里,或许还一边听着耳机里的音乐,不妨花一小会儿时间想想亚原子粒子反直觉的量子行为,因为正是这种行为让核磁共振成像技术成为可能。
本文内容摘编自《神秘的量子生命》一书,吉姆· 艾尔-哈利利、约翰乔· 麦克法登著,侯新智、祝锦杰译,浙江人民出版社,2016年8月