富锂煤层碎屑物源探讨
——以平朔矿区安家岭煤矿太原组煤层为例

2021-08-16 06:28成贤康孙蓓蕾曾凡桂解锡超畅向东
煤炭学报 2021年7期
关键词:碎屑泥岩图解

成贤康,孙蓓蕾,刘 超,曾凡桂,解锡超,畅向东

(1.太原理工大学 矿业工程学院,山西 太原 030024; 2.山西省地质矿产研究院,山西 太原 030001; 3.煤与煤系气地质山西省重点实验室,山西 太原 030024)

近年来的研究发现在华北北部石炭—二叠纪煤层中,存在Li,Al,Ga,REE等多种关键金属富集现象,如山西宁武煤田煤中铝、锂、镓及稀土等元素富集,是煤型关键金属潜在有利区[1]。平朔矿区位于宁武煤田北部,其煤炭总储量达130亿t,安家岭煤矿9号煤中锂元素质量分数达60.4×10-6~840.1×10-6,形成了超大型煤型锂矿床[2-3]。SUN等[4]通过SCEP,SEM-EDS,XRD等方法对山西宁武煤田平朔等多个矿区太原组煤中超常富集的Al-Li-Ga多金属成矿的成因机制进行了深入剖析,研究认为其中Li,Ga和Al富集与无机质有关,高岭石等硅酸盐矿物可能是Li,Ga和Al的载体,他们还认为这些元素的富集属于陆源型成因,来源于阴山古陆。刘蔚阳等[5]通过运用相关性分析、XRD、逐级化学提取等方法对山西宁武煤田中南沟煤矿和大恒煤矿的多个煤层中REE富集的成因及赋存状态进行了探讨,研究发现煤中稀土元素主要赋存在硅铝酸盐等矿物中,属于无机来源且物源主要来自于华北板块北缘的阴山古陆。王金喜[6]运用相关性分析、逐级化学提取等方法对宁武煤田石炭二叠系各矿区煤中Li的赋存状态与沉积控制模式进行研究,发现煤中Li主要以硅酸盐矿物赋存为主,Li的富集为陆源控制型且最初来源来自于北部阴山古陆。虽然对宁武煤田煤中Al-Li-Ga-REE多金属成矿的成因机制进行了探究,且发现不同煤层Li等关键金属的富集程度及元素富集组合存在较大的差异,但对导致这种差异的原因没有深入系统的分析。在煤层剖面中,可以发现在夹矸附近的煤层Li富集程度高,系统分析煤层中夹矸的母岩类型及其构造背景,可能是认识这一问题的途径。因此,笔者以安家岭煤矿晚古生代太原组煤层中19个煤层顶、底板和夹矸为研究对象,进行岩石学、地球化学分析,试图揭示富锂与非富锂煤层碎屑物质母岩类型及构造背景,从而为煤中Li的富集机制及成矿规律的认识奠定基础。

1 区域地质背景

宁武煤田位于山西省北部,面积约2 760 km2,分为4个矿区:平朔、朔南、轩岗和岚县矿区(图1)。宁武煤田在地质上形成于宁武盆地,宁武盆地在大地构造上处于比较特殊的地理位置,其东侧为五台山复背斜,西部为芦芽山复背斜,北部为桑干河地堑,西南紧邻吕梁山隆起[9]。宁武盆地呈北东—南西条带展布,以古、中生代地层组成的向斜构造为主。盆地基底为早前寒武纪变质岩系,其核部由侏罗纪地层组成,两翼依次出露三叠系、二叠系、石炭系、奥陶系和寒武系及前寒武系,缺失泥盆系与志留纪系,两翼地层产状较陡[10]。平朔矿区位于宁武盆地北部,区内晚生代含煤地层包括本溪组、太原组和山西组,其中山西组和本溪组仅见少量煤线,太原组为矿区内主要含煤地层,太原组厚度63~117 m,平均厚度90 m,煤层总厚度32 m。主采4号、9号和11号煤层,含煤系数高达36.5%。除煤层外,岩性以黄绿色砂岩、灰色泥岩为主,含少量灰岩。其中4-1号煤层厚9.16 m,8号煤层厚3.14 m,9号煤层厚度2.4~36.5 m,平均厚度为13.45 m[11],11号煤层厚度0~8.7 m,平均厚度为3.61 m。

图1 山西省安家岭煤矿地理位置[7-8]Fig.1 Geographical location of Anjialing Coal Mine in Shanxi Province[7-8]

2 样品与实验方法

在平朔矿区安家岭煤矿按照标准GB482—2008进行分层刻槽取样,共采集了太原组4-1号、8号、9号、11号煤层的19件样品,包括7件煤层顶底板样品,12件煤层夹矸(图2),其中8号煤层底板因岩芯钻取过程中发生了损失,剩余样品量不足以进行测试。其中4-R为灰白色含砾中砂岩,取样厚度度0.08 m;4-J1为灰黑色泥岩,取样厚度度0.03 m;4-F为含黄铁矿灰色泥岩,取样厚度度0.06 m;8-R为灰黑色泥岩,取样厚度度0.05 m;9-R为灰白色中砂岩,取样厚度0.09 m;9-J1为含方解石薄膜灰黑色泥岩,取样厚度0.11 m;9-J2为灰黑色泥岩,取样厚度0.11 m;9-J3为灰黑色泥岩,取样厚度0.03 m;9-J4为含方解石脉灰黑色泥岩,取样厚度0.02 m;9-J5为灰黑色泥岩,取样厚度0.07 m;9-J6为灰黑色泥岩,取样厚度0.06 m;9-J7为含黄铁矿灰黑色泥岩,取样厚度0.06 m;9-J8为灰色泥岩,取样厚度0.06 m;9-F为含方解石灰色细砂岩,取样厚度0.1 m;11-R为灰黑色泥岩,取样厚度0.04 m;11-J1为灰黑色泥岩,取样厚度0.04 m;11-J2为灰黑色泥岩,取样厚度0.05 m;11-J3为灰黑色泥岩,取样厚度0.03 m;11-F为灰白色细砂岩,取样厚度0.16 m。

图2 安家岭煤矿地层柱状及采样层位Fig.2 Stratigraphic column of Anjialing Coal Mine and Sampling location

送样前,对样品进行预处理,流程如下:先使用地质锤对样品进行粗碎,后将碎样放入玛瑙研钵中进行细碎,手工磨至200目,保存于聚乙烯塑料自封袋中,并进行编号、称重。所有样品进行主量元素、微量元素(包括稀土元素)测试,所有测试在南京聚谱检测科技有限公司完成。主量元素测试采用安捷伦公司5110型ICP-OES,测试相对标准偏差小于1%,实验采用美国地质调查局安山岩标准物质AG-2和美国地质调查局玄武岩标准物质BHV0-2作质量监控,样品编号遇尾号为5的样品做平行样一次,保证实验流程的稳定性;微量元素(包括稀土元素)采用ICP-MS方法进行测试,美国地质调查局USGS地球化学标准岩石粉末(玄武岩BIR-1,BHVO-2,BCR-2、安山岩AGV-2、流纹岩RGM-2、花岗闪长岩GSP-2)被当做质控盲样。样品编号逢尾号为9的样品做平行样一次,保证实验流程的稳定性。

由于砂岩结构稳定,含大量砂级陆源碎屑,有效保存了物源区的信息。因此选取4-R,9-R,9-F和11-F等4件砂岩样品制作岩石薄片,同一件样品制作两块岩石薄片,编号分别为A,B,如4-R-A,4-R-B。在偏光显微镜下采用Gazzi-Dickinson点计数法[12]进行碎屑成分的统计,每个薄片统计500个点左右。统计内容具体见表1。

表1 砂岩薄片统计内容及描述Table 1 Statistical content and description of sandstone thin section

3 实验结果

3.1 岩石学特征

对砂岩样品4-R,9-R,9-F,11-F进行碎屑成分统计(表2)和部分图像如图3所示。4-R砂岩碎屑成分以石英和岩屑为主,局部可见褐铁矿碎屑。砂岩粒径主要分布在0.50~0.25 mm,分选差,磨圆度差,以次棱角-棱角为主,颗粒间接触多以缝合线接触。石英主要为单晶石英,颗粒表面洁净明亮,多具均一消光,多晶石英以燧石为主。岩屑颗粒主要以火成岩为主。9-R砂岩碎屑成分以岩屑和石英为主。砂岩粒径主要分布在0.10~0.25 mm,分选较差,磨圆度较差,以次棱角状为主,杂基含量低,颗粒接触多以缝合线接触,局部交代砂级碎屑。岩屑主要是火成岩岩屑为主。9-F砂岩碎屑成分以岩屑和石英为主,可见少量云母碎屑,填隙物为黏土杂基和钙质胶结物。砂岩粒径主要分布在0.01~0.05 mm,分选较好,磨圆度较差,以次棱角-亚圆形为主,颗粒接触多以缝合线接触。岩屑主要是火成岩岩屑。11-F砂岩碎屑成分以石英和岩屑为主。砂岩粒径主要分布在0.05~0.10 mm,分选较差,磨圆度较差,以次棱角-亚圆形为主,颗粒间接触多以点接触。以上特征表明,研究区岩性为砂岩的夹矸碎屑都未经长距离搬运,反映为近源快速沉积[13]。总之,砂岩样品中的岩屑主要以火成岩岩屑为主,含部分沉积岩岩屑和变质岩岩屑。

表2 煤层砂岩的碎屑组成Table 2 Detrital components of sandstone in coal seams

图3 安家岭煤矿太原组煤层夹矸和顶底板砂岩显微照片Fig.3 Micrographs of coal seam gangue and sandstone of roof and floor of Taiyuan Formation in Anjialing Coal Mine

3.2 地球化学特征

3.2.1 主量元素特征

表3列出了样品元素质量分数测试结果,可以看出,研究区样品主要成分为SiO2和Al2O3,其他元素的质量分数都比较低。SiO2质量分数最高且变化范围大,为25.39%~83.44%,平均为43.33%,表明样品中含石英或含硅质物质量分数较高。Al2O3质量分数次之,为7.93%~39.38%,平均为28.89%,说明样品含有较多的长石及黏土矿物,这与镜下观察的结果一致。TiO2为0.47%~2.18%,平均为0.90%;Fe2O3为0.06%~12.80%,平均为2.30%;MgO为0.04%~0.92%,平均为0.18%;P2O5为0.02%~0.11%,平均为0.04%;K2O为0.02%~2.45%,平均为0.52%;Na2O为0.01%~0.12%,平均为0.05%。K2O质量分数明显高于Na2O质量分数,说明顶底板和夹矸中长石组分主要为钾长石。

表3 样品主量元素分析结果Table 3 Test results of major elements in samples %

3.2.2 微量元素特征

所有样品微量元素质量分数和上地壳微量元素质量分数标准化蛛网如表4和图4所示。煤层顶底板和夹矸样品中微量元素Zr质量分数相对较高,平均值达到了100×10-6以上。与大陆上地壳平均值相比[14],其中Li的富集程度最高且富集系数变化较大,富集系数在0.02~26.25,平均值为7.50。除了4-R,4-F,8-R和9-R四件样品以外,其他样品均表现为Li富集。其中11号煤层夹矸及顶底板Li的质量分数最高,最高可达551×10-6,9号煤层夹矸及顶底板相对富集Li,富集系数介于0.56~19.82,8号煤层仅有1个样品,Li质量分数很低,为20.20×10-6,4号煤层3个样品中仅有1个样品富集Li,顶底板样品均不富集Li元素。所有样品中的Th,Hf,Zr和Nb等元素富集系数的均值在1.03~1.70,表现出相对富集的特征;Co,Sc,Cr,Ni,V,Rb,Cs和Ga等富集系数的均值在0.21~0.89,为相对亏损的元素。

表4 样品微量元素测试结果Table 4 Test results of trace elements in samples 10-6

图4 样品微量元素标准化蜘蛛网(其中4-R,4-F,8-R和9-R为不富锂煤层)Fig.4 Normalized diagram of trace elements of samples(Among them 4-R,4-F,8-R and 9-R are non-lithium-rich coal

由表5,6可知,样品ΣREE变化范围较大,在0.67~260.00,均值为106.41。LREE/HREE均值为9.89~15.7,(La/Yb)N均值为13~20,轻、重稀土分馏明显。以球粒陨石标准值[15]进行标准化后得到REE分布模式(图5),可知:① 同一成因煤分层中顶底板和夹矸稀土元素配分模式应该相同,大部分样品曲线变化基本一致,分布曲线在轻稀土处具有较大斜率,而在重稀土处较为平坦,为明显的左倾趋势,轻稀土富集,重稀土亏损。但是9号煤层夹矸9-J3,9-J4,9-J5三件样品的稀土元素分布曲线出现差异,表现为重稀土富集,轻稀土亏损,为右倾趋势。安家岭太原组9号煤层形成于海陆交互的环境中,但是这3件样品并未出现Ce的异常。根据SEREDIN等[16]认为可能是受到富含重稀土元素的碱性内陆水等自然水循环的影响;②δCe范围为0.94~1.60,Ce总体无明显异常;③ 曲线在Eu处有明显的“V”形,Eu存在负异常,表明稀土元素主要来源于陆源碎屑[17]。

表5 样品稀土元素测试结果Table 5 Test results of rare earth elements in samples 10-6

表6 样品稀土元素计算结果Table 6 Calculation results of rare earth elements in samples

图5 样品球粒陨石标准化的REE配分模式(其中4-R,4-F,8-R和9-R为不富锂煤层)Fig.5 Chondrite-normalized REE distribution patterns of samples(Among them 4-R,4-F,8-R and 9-R are non-lithium-rich coal seams)

4 讨 论

4.1 母岩类型

在风化、搬运及成岩过程中,Ca,Na等元素由于活动性较强,含量会发生富集或亏损,而另一些主量元素(如Al,Ti)由于其氧化物在低温下的低溶解性而未受影响。因此,主量元素通常用作物源指示剂[18]。w(K2O/Al2O3)可以用来确定碎屑岩源区岩石的成分[19](w为成分的质量分数)。当w(K2O/Al2O3)比值在0.4~1.0,说明母岩中含有相当数量的碱性长石;在伊利石中比值接近于0.3;在其他黏土类矿物中比值接近于0[20]。研究区煤层夹矸和顶底板的w(K2O/Al2O3)平均值相近,均接近于0,说明母岩中碱性长石和伊利石含量低,其他黏土类矿物含量高。由于Ti和Al很少被风化影响,保存母岩信息良好,因此w(Al2O3/TiO2)也广泛用来推断碎屑沉积物的来源[21]。当w(Al2O3/TiO2)在3~8,沉积物物源可能来自于镁铁质岩石,而w(Al2O3/TiO2)在21~70,物源可能来自于长英质岩石[22-23]。本文所有样品w(Al2O3/TiO2)比值为14.03~66.31,表明以上其母岩主要来自于长英质岩石。所有不富Li样品用红色标注,在图SiO2-TiO2图解中(图6(a)),不富Li样品4-R,4-F和9-R落入了沉积岩区域,8-R落入了火成岩区域。说明不富Li煤层样品源岩中有更多沉积岩的加入。ROSER 和 KORSCH[24]通过对砂泥岩的研究,提出根据Ti,Al,Fe,Mg,Ca,Na,K主量元素氧化物,建立判别函数F1=-1.773w(TiO2)+0.607w(Al2O3)+0.76w(Fe2O3)-1.5w(MgO)+0.616w(CaO)+0.509w(Na2O)-1.224w(K2O)-0.909,判别函数F2=0.445w(TiO2)+0.07w(Al2O3)-0.25w(Fe2O3)-1.142w(MgO)+0.438w(CaO)+1.475w(Na2O)+1.426w(K2O)-6.861,根据F1-F2图解(图6(b))可以有效区分镁铁质、中性或长英质火成岩和石英岩沉积岩等物源区。在F1-F2(图6(b))图解中,只有4-1号不富Li样品落在了石英质沉积岩区域,而其他样品都落在了火成岩区域,这也说明了不富集Li煤层样品源岩中虽然以火成岩为主,但是仍旧存在较大比重的沉积岩。

图6 样品物源属性判别(红色填充的为不富集Li的样品)Fig.6 Discrimination diagram for provenance attribute of samples(The ones filled in red are samples that are not enriched in Li)

微量元素在沉积作用过程中含量变化很小,能够很好地保留成岩物质来源的有关信息,如Zr,Hf,Th等。因此,微量元素及某些微量元素的比值,如La/Th,La/Yb,Cr/Zr,Sm/Nd等,可作为物源判别的理想对象[25-28]。由于稀土元素在风化、搬运、沉积及成岩过程中具有稳定的特性,因此,稀土元素特征是反映沉积物物源性质的良好标志[29-32]。Cr和Zr元素主要反映铬铁矿和锆石的含量,其质量分数比值可以反映镁铁质和长英质物质对沉积物的相对贡献[33]。研究区煤层顶底板和夹矸的w(Cr/Zr)在0.01~0.26,w(Cr/Zr)平均值均小于1,说明源区物质以长英质为主。Th和Sc质量分数比值是最适合物源判别的参数之一[34]。研究区样品的w(Th/Sc)变化较大,比值在0.96~6.08,平均值都高于上地壳的w(Th/Sc)比值(0.97),表明源区物质以长英质为主。通过Hf-La/Th(图6(c))、∑REE-La/Yb(图6(d))图解可以进一步探究物源的来源问题。将研究区内样品投入上述图中,从图6(c)可以看出,大多数样品落在长英质源区附近,一部分样品落在长英质源区的右侧,表明有古老沉积物的混入;从图6(d)可以看出,Li富集与Li不富集煤层顶底板和夹矸主要落入花岗岩区域附近。结合砂岩岩屑类型与上述源岩判别图解,说明研究区晚古生代太原组Li富集与Li不富集煤层顶底板和夹矸的母岩岩性均以花岗岩为主,而Li不富集煤层样品的母岩中有更多沉积岩的加入。

4.2 物源区构造背景

沉积盆地陆源碎屑成分受多种因素控制,其中母岩区的构造属性对陆源碎屑成分及其空间上的分配组合起重要作用,故可以通过碎屑组分特征分析构造属性[35]。根据对区内碎屑岩的统计分析,利用Dickinson的陆相碎屑砂岩Qt-F-L,Qm-F-Lt判别模式图判别物源区的构造环境(图7),结果表明,在Qt-F-L源区构造背景判别图解中,所有样品落入再旋回造山带区域。在Qm-F-Lt三角图解中,样品都落入过渡再旋回区域。表明物源区构造环境属于再旋回造山带。这与晚古生代华北板块受古亚洲洋大洋板块向南俯冲碰撞,板块北缘转化为安第斯型活动大陆边缘,内蒙古隆起发生强烈的构造隆升和地壳剥蚀状态相一致[36-37]。

图7 煤层砂岩的Dickinson图解(红色填充的为不富集Li的样品)Fig.7 Dickinson diagram of sandstone in coal seams(The ones filled in red are samples that are not enriched in Li)

ROSER[38]通过对不同地区已知构造背景的古代砂岩和泥岩主量元素特征的分析,认为主量元素的w(K2O/Na2O)是反映构造背景的最有效的指标,提出K2O/Na2O-SiO2构造背景判别图解。样品投点大部分落在被动大陆边缘和活动大陆边缘区域,少部分落在岛弧区域(图8(a))。BHATIA和CROOK[39]通过对砂岩和泥岩地球化学特征的研究,认为La,Th,Sc,Zr等不活泼微量元素比较稳定,总结出适用于砂岩及泥岩样品的La-Th-Sc及Th-Sc-Zr/10构造背景判别图解。在图解La-Th-Sc(图8(b)),除个别一些样品偏离外,绝大部分样品落入活动大陆边缘区和被动大陆边缘区,部分样品落入大陆岛弧区域;在图解Th-Sc-Zr/10(图8(c)),绝大多数样品落在被动大陆边缘区域和大陆岛弧区域,少数样品落入活动大陆边缘区域,这与岩石学的结果相悖。

图8 样品构造背景判别(红色填充的为不富集Li的样品)Fig.8 Discrimination diagram for tectonic setting of samples(Theones filled in red are samples that are not enriched in Li)

值得注意的是,VERMA等[40]收集了被动大陆边缘和活动大陆边缘硅质碎屑样品的地球化学资料(3 668个),将数据点投入到K2O/Na2O-SiO2构造背景判别图解中发现该图不能很好地区分主动大陆边缘和被动大陆边缘沉积物,该图解主要的缺点是没有对组成数据进行一致的统计处理,正确性值得商榷[41]。在微量元素构造背景La-Th-Sc及Th-Sc-Zr/10判别图解中也存在同样的问题,其成功率仅在0%~30%。因此,这些构造背景判别图解未能很好地区分2种大陆边缘。VERMA等[40]基于已知构造环境数据库,使用等距对比数比变化(ilr)来处理地球化学数据,利用10种主量元素及6种微量元素构建出的DF(A-P)MT函数来判别构造主动大陆边缘和被动大陆边缘。依据此函数,将本文中所有岩石的地球化学数据进行重新计算后投点,可以看出所有样品在主量和微量元素联合构建的图解中(图9)均落入活动大陆边缘区域内。

图9 样品新的基于主微量元素(MT)的构造背景判别图解(红色填充的为不富集Li的样品)Fig.9 New tectonic background discrimination diagram based on major and trace elements (MT) (The ones filled in red are samples that are not enriched in Li)

晚古生代时期,古亚洲洋板块向华北板块俯冲,华北北缘由被动大陆边缘转化为活动大陆边缘,发生大量岩浆活动[42-43]。赵越等[44]对华北克拉通北缘主要地质事件的研究表明晚古生代时期华北北缘的内蒙古隆起存在火山活动;张栓宏[45]通过对北京上古生界凝灰岩夹层锆石U-Pb测年及Lu-Hf同位素分析研究发现这些凝灰岩主要源于华北北缘的内蒙古隆起,证明当时华北北缘确实存在火山活动,只是后期被剥蚀殆尽;马收先等[46]通过对冀北-辽西地区上石炭—中三叠统碎屑岩的研究认为在石炭纪华北北缘的内蒙古隆起强烈隆升,开始遭受剥蚀,其剥蚀厚度至少有15.6 km[47],为华北内部的盆地提供了大量的碎屑物质[11]。宁武煤田安家岭煤矿太原组煤层沉积时,内蒙古隆起处于抬升剥蚀阶段,接受了大量来自北部内蒙古隆起上的碎屑物质,岩石学和地球化学结果表明富锂煤层与不富锂煤层夹矸和顶底板中的碎屑物质主要来源于内蒙古隆起上的长英质火成岩,相较于富锂煤层夹矸和顶底板,不富锂煤层样品碎屑物质中有更多沉积岩的加入。

5 结 论

(1)通过煤层顶底板砂岩碎屑组分的观察和统计,碎屑成分以石英和岩屑为主,杂基含量低,胶结类型主要为钙质胶结。

(2)通过对研究区4号、8号、9号和11号煤层顶底板及夹矸样品进行主量元素和微量元素的分析。其结果显示主量元素主要成分为SiO2和Al2O3,其他元素的含量都比较低。微量元素Li在各个煤层夹矸和顶底板的富集系数变化较大,其中11号煤层煤层夹矸和顶底板中Li富集程度最高,9号煤层样品相对富集Li,8号煤层仅有1个样品,Li表现为相对亏损,4号煤层3个样品中仅有1个样品富集Li,顶底板样品均不富集Li元素。其余微量元素在各个煤层样品中表现为Th,Hf,Zr和Nb等相对富集,Co,Sc,Cr,Ni,V,Rb,Cs和Ga等元素相对亏损。轻重稀土元素分馏明显,稀土元素分布曲线在Eu处有明显的“V”形,Eu存在负异常,表明稀土元素主要来源于陆源碎屑。

(3)通过砂岩岩屑类型统计和地球化学结果投点分析富锂程度不一致的2类煤层夹矸和顶底板中母岩类型主要为内蒙古隆起上的长英质火成岩,而相较于富锂煤层顶底板和夹矸,不富锂煤层样品中碎屑物质的来源还有更多沉积岩的加入。碎屑物质都主要来自于具活动大陆边缘构造背景的内蒙古隆起。

猜你喜欢
碎屑泥岩图解
泥岩路基填料抗剪性能实验研究
不同pH条件下红层泥岩崩解特性研究
Sweet Carrots甜甜的胡萝卜
胜利油田垦119区块塑性泥岩钻井模式研究
风化泥岩地质断层水疏排工艺探讨
清洁搅拌机的小妙招
图解十八届六中全会
图解天下
滑坡-碎屑流物理模型试验及运动机制探讨
碎屑粉煤灰在管桩中的应用