江锦赵,邹立秋,张豪,钟文新,程琳,沈新平*,杨洋
慢性肝病发展为肝纤维化(liver f ibrosis,LF)[1],肝损伤促纤维化细胞包括肝星状细胞等激活与增殖,进而激活肌纤维母细胞,分泌大量细胞外基质(ext racel l ul ar mat r ix,ECM)沉积于细胞外间隙,若不治疗,最终发生肝硬化及并发症[2-4]。因此检测肝纤维化发展,早期诊断尤为重要。肝脏穿刺活检虽然为诊断参考标准,但出血、取样误差等诸多缺点却限制了临床应用[5-6]。近年,磁共振动态增强扫描技术(dynamic cont r ast-enhanced magnet ic resonance imaging,DCE-MRI)广泛应用于临床检测肝癌,许多研究者将其应用于评估LF分期[7-8],而钆塞酸二钠(Gd-EOB-DTPA)作为肝脏特异性MR对比剂,在扫描早期能反映慢性肝病的变化,肝胆期(注射后20 min)可以反映肝脏细胞的损伤程度[1,9]。本文旨在讨论Gd-EOB-DTPA DCE-MRI定量评估兔肝纤维化早期分期的血流动力学改变的定量研究。
本实验研究经本单位动物实验伦理委员会批准(20170218)。
本实验由广东医学动物实验中心提供实验兔及病理学检测。200只纯种、健康新西兰大白兔,雄性、6月龄、体质量2.0 ~2.5 kg,单笼饲养(饲养温度16~28℃、环境湿度40%~70%、昼夜间断照明10 h∶14 h)。
将100%四氯化碳(CC14液)与橄榄油(体积比1∶1)均匀混合,配成50%CC14油溶液。LF组兔每周经颈背部皮下注射50%CC14油溶液2次,第1~3周剂量约0.1 mL/kg,第4~6周剂量约0.2 mL/kg,第7~10周剂量约0.3 mL/kg。
采用荷兰Phil ips Achieva 3.0 T MR扫描仪,体部线圈。扫描前实验兔禁食12 h,肌肉注射甲苯噻嗪(0.1 mL/kg)行肌肉内注射,10 min后经耳缘静脉注射3%戊巴比妥钠溶液(0.1 mL/kg),将实验兔置于仰卧位下,腹带固定减轻呼吸运动。第4、5、6、15周末分别随机选取LF组40只及对照组10只行MR肝脏轴位扫描,包括:(1)轴位T1WI(FSE):TR/TE 185/3.3 ms,FOV 160 mm×140 mm,翻转角15°;(2)轴位DCE-MRI(3D快速梯度回波序列):TR/TE 126/13 ms,FOV 160 mm×140 mm,翻转角15°;以上序列层厚4 mm,层间距0.4 mm。DCE-MRI先行两期增强前连续脂肪抑制扫描作为每个像素的T1弛豫时间的基线,于第3期末经耳缘静脉注射对比剂(Gd-EOB-DTPA 0.0 25 mmol/kg),3 s内注射完成,再用生理盐水(2 mL)冲管,连续扫描60期,每期采集16层,总时长10 min 27 s。肝胆期在注射后20 min进行扫描,扫描后耳缘静脉注射空气20 mL处死取肝组织进行病理学肝纤维化分期。
双盲前提下,由两名具备5年以上腹部影像诊断经验的放射诊断医师进行定量分析。将扫描所得Gd-EOB-DTPA DCE-MRI图像传输至DCE-MRI分析软件,采用配准技术校正,应用双输入-双室Extended Tof ts药物代谢动力学模型[10],动脉输入函数选取腹主动脉、静脉输入函数选取门静脉主干进行勾画ROI测量,计算生成对比剂时间-信号强度曲线,拟合获得各定量参数伪彩图;避开伪影,勾画3个ROI(15~20 mm2),并计算平均值,包括容积转运常数(vol ume t r ansf er constant,Ktrans)、返流速率常数(ref l ux rate constant,Kep)、血管外细胞外间隙容积分数(vol ume f raction of extravascul ar extracel l ul ar space,Ve)、血浆容积分数(vol ume f raction of pl asma,Vp)。
扫描后采用空气栓塞法处死所有实验兔,取兔肝脏并放入10%甲醛固定后制石蜡切片,行HE、Masson三色染色,采用Scheuer评分标准进行病理分期[11],分为5期:F0:无纤维化;F1:门静脉汇管区扩大,局限窦周、小叶内纤维化;F2:汇管区周围纤维化或者少量纤维间隔形成,小叶结构保留;F3:大量纤维间隔、小叶结构紊乱,无肝硬化;F4:肝硬化。
应用SPSS 22.0 及MedCal c 18.2 .1 软件行统计学分析,数值用±s表示。Kol mogor ov-Smirnov检验所有计量资料是否符合正态分布。使用单因素方差分析(one-way anal ysis of var iance,ANOVA)比较各LF分期间Ktrans、Kep、Ve、Vp的差异,组间两两比较采用Dunnet t’s T3法。采用Spear man相关性分析各定量参数与LF分期之间的相关性。应用ROC曲线研究各定量参数的诊断效能,包括AUC、最佳截断值、敏感度、特异度、Youden指数和P值,采用DeLong进行各定量参数AUC的两两比较。P<0.0 5为差异有统计学意义。
剔除死亡、图像质量差的实验兔,余150只兔纳入本研究,包括F0期32只、F1期32只、F2期35只、F3期30只、F4期21只(图1)。
采用Kol mogor ov-Smir nov检验,Ktrans、Kep、Ve、Vp均不呈正态分布。各定量参数分布用±s表示,见表1,后处理图像见图2。
表1 不同肝纤维化分期兔肝脏Ktrans、Kep、Ve、Vp结果(±s)Tab.1 Summary values of DCE-MRIparameters in different LFstages(±s)
注:两两比较,Ktrans:在F0与F2、F3、F4组间,F1与F2、F3、F4组间,F2与F4组间差异有统计学意义(P<0.0 5);Kep:在F0与F2、F3、F4组间,F1与F2、F3、F4组间差异有统计学意义(P<0.0 5);Vp:在F1与F0、F2、F3、F4组间差异有统计学意义(P<0.0 5);Ve:各组间Ve差异均无统计学意义(P>0.0 5)。
ANOVA分析:经Levene方差齐性检验,Kep、Vp方差齐(P>0.0 5),Kt rans、Ve方差不齐(P<0.0 5),因此Kep、Vp采用ANOVA分析。Kep在F0与F2、F3、F4组间,F1与F2、F3、F4组间两两比较有统计学意义(P<0.0 5);Vp在F1与F0、F2、F3、F4组间两两比较差异有统计学意义(P<0.0 5)。Ktrans、Ve进行Wel ch方差分析,Ktrans在F0与F2、F3、F4组间,F1与F2、F3、F4组间,F2与F4组间两两比较差异有统计学意义(P<0.0 5);而各组间Ve差异均无统计学意义(P>0.0 5)。各定量参数值的F值与P值见表1。
Ktrans与LF分期呈正相关(r=0.7 30,P<0.0 001);Kep与LF分期呈负相关(r=-0.6 17,P<0.0 001);而Ve、Vp与LF分期相关性无统计学意义(P>0.0 5)。相关关系见图3。
图3 Ktrans、Kep、Ve、Vp与肝纤维化分期的相关性曲线。A:Ktrans与肝纤维化分期呈正相关(r=0.7 30,P<0.0 001);B:Kep与肝纤维化分期呈负相关(r=-0.6 17,P<0.0 001);C:Ve与肝纤维化分期间无相关性(r=-0.0 74,P=0.3 67);D:Vp与肝纤维化分期间无相关性(r=-0.0 78,P=0.3 42)Fig.3 Correlational trendline graph of Ktrans,Kep,Ve,and Vp values with liver fibrosis stage F0 to F4.A:Positive correlation between liver fibrosis stage and Ktrans values(r=0.7 30,P<0.0 001);B:Negative correlation was identified between Kep values and liver fibrosis stage(r=-0.6 17,P<0.0 001);C:No correlation between liver fibrosis stage and Ve values(r=-0.0 74,P=0.3 67);D:No correlation between liver fibrosis stage and Vp values(r=-0.0 78,P=0.3 42).
ROC分析显示Ktrans诊断效能最高,在鉴别正常肝脏与LF(F0 vs.F1~F4)、诊断早期LF(F0 vs.F1~F2)、诊断晚期LF(F0 vs.F3~F4)、鉴别早期LF与晚期LF(F1~F2 vs.F3~F4)的AUC分别为0.8 97、0.8 63、0.9 42、0.8 09,稍优于Kep(AUC分别为0.8 20、0.7 87、0.8 64、0.7 68),Vp在鉴别各组的诊断效能较低(AUC分别为0.6 70、0.7 40、0.5 78、0.7 04),其中在诊断晚期LF差异无统计学意义(P>0.0 5),而Ve鉴别各组LF的诊断效能差异无统计学意义(P>0.0 5)。各定量参数值对LF分期的诊断效能见表2,ROC曲线两两比较(DeLong法)的Z值、P值分布见表3,相应ROC曲线见图4。
表2 比较Ktrans、Kep、Ve、Vp在肝纤维化分期的诊断效能Tab.2 ROCcurve analysis of DCE-MRIparameters in different LFstages
表3 ROC曲线两两比较(DeLong法)Ktrans、Kep、Ve、Vp值在诊断肝纤维化分期分期的Z值、P值分布Tab.3 Comparison of ROCs(DeLong)result in the distribution of Z value and P value of DCE-MRIparameters in different LFstages
图4 Ktrans、Kep、Ve、Vp在鉴别正常肝脏与肝纤维化(F0 vs.F1~F4)(A)、诊断早期肝纤维化(F0 vs.F1~F2)(B)、诊断晚期肝纤维化(F0 vs.F3~F4)(C)、鉴别早期肝纤维化与晚期肝纤维化(F1~F2 vs.F3~F4)(D)的ROC曲线Fig.4 ROC curve of Ktrans,Kep,Ve,and Vp in identifying LF stage between F0 and F1—F4(A),F0 and F1—F2(B),F0 and F3—F4(C),and F1—F2 and F3—F4(D),respectively.
Gd-EOB-DTPA是肝细胞特异性MRI对比剂,在肝细胞内聚集,10 min达峰值,50%经胆道排泄;肝细胞受损,它的摄入和胆道排泄降低文献报道慢性肝病以肝损伤后炎症后肝脏血管形成与肝纤维化密切相关,炎症和低氧、肝纤维化激发血管生成的主要诱导因素[12-14]。肝脏血管生成比较复杂,因肝实质具有两类不同微血管结构,内皮细胞的粘附、迁移和作用对血管生成重要的作用,肝纤维化也不例外,阻止血管生成将成为治疗肝纤维化的一种手段[15-17]。采用Gd-EOB-DTPA DCE-MRI评估肝内血管形成和肝纤维化分期的相关性及肝胆期肝细胞的损伤程度,关于肝胆期肝细胞的损伤程度与肝纤维化的相关关系将在后续研究中论述。
目前研究多应用基于时间-信号强度曲线的DCE-MRI半定量分析,多数研究采用Gd-DTPA进行DCE-MRI成像;本研究采用Gd-EOB-DTPA DCE-MRI进行定量研究肝纤维化,提取定量灌注参数Ktrans、Kep、Ve、Vp评估LF分期。Ktrans主要反映LF对比剂从血浆渗透至EES,反映内皮细胞的激活增加血管渗透性增加使发生大量ECM沉积于细胞外间隙与窦周间隙,肝窦毛细血管化,与EES间物质交换阻力增加[1-3],理论上Ktrans随LF进展而降低。而本研究结果显示Ktrans与LF分期呈高度正相关(r=0.7 30,P<0.0 001),肝窦内皮细胞不连续,Gd-EOB-DTPA可穿透肝窦内皮细胞膜进行转运,肝纤维化后肝窦毛细血管化后造成肝窦压力增高,门静脉压力增高、血流减缓,局部肝动脉血流灌注分数代偿性增高或可加速Ktrans转运,并且EOB基团能转运至肝细胞内等因素使Ktrans升高,而Liu等[18]、Li等[19]、Zhang等[20]、Ji等[21]研究兔CC14LF模型结果也显示Ktrans与LF分期呈正相关。ROC分析显示Ktrans能诊断早期LF(AUC=0.8 63),诊断晚期LF(AUC=0.9 42),能较好鉴别早期(F1~F2)LF与晚期LF。
Kep反映对比剂从EES返流至血浆的速率,肝窦毛细血管化、肝窦、门静脉高压,血流速度减缓,Kep理论上应该下降(r=-0.6 17,P<0.0 001);Kep在诊断早期LF(AUC=0.7 87)、诊断晚期LF(AUC=0.8 64)、鉴别早期LF与晚期LF方面稍次于Ktrans;但是DeLong法结果显示两者差异并不显著(Z<1.9 6,P>0.0 5)。
Ve指血管外细胞外间隙容积分数,Vp反映细胞外血浆容积,本实验结果显示与LF分期间的无明显相关性(P>0.0 5),LF病理EES可因胶原纤维沉积、局部炎症、水肿等而增宽,随LF进展Ve先稍下降,晚期Ve升高;ECM早期沉积于EES或许不能造成Ve明显上升,而肝窦毛细血管化、促纤维化细胞增殖、纤维增生破坏肝组织等原因也可能让流入EES的对比剂减少,导致Ve下降。LF发生肝内小血管阻塞,肝窦毛细血管化,门静脉高压,血管短路、肝动脉血流代偿性增加,肝脏整体血流灌注下降等一系列血流动力学异常,或许是造成Vp无法准确评估LF的重要因素[22]。
本研究的局限性:(1)兔CC14LF模型不同于人类慢性肝病,病理、血流动力学改变仍有区别;(2)肝脏铁沉积、炎症、脂肪沉积等对定量参数的影响未能完全除外;(3)Gd-EOB-DTPA DCE-MRI诊断LF的研究较少,药物代谢动力学模型匹配性与各定量参数准确性仍待考究。
总之,Gd-EOB-DTPA DCE-MRI通过获得定量参数,尤其是Ktrans为无创性评估肝纤维化分期提供重要的诊断手段。
作者利益冲突声明:全体作者均声明无利益冲突。