基于浸入与不变理论的交流异步电机自适应位置跟踪控制

2021-07-01 06:03:04强嘉萍丁素艳
电工技术学报 2021年12期
关键词:异步电机观测器扰动

刘 乐 高 杰 强嘉萍 丁素艳

基于浸入与不变理论的交流异步电机自适应位置跟踪控制

刘 乐1,2高 杰1,2强嘉萍1,2丁素艳1,2

(1. 燕山大学智能控制系统与智能装备教育部工程研究中心 秦皇岛 066004 2. 燕山大学工业计算机控制工程河北省重点实验室 秦皇岛 066004)

为了提高交流异步电机在参数摄动和负载扰动下的位置跟踪控制性能,该文提出一种基于浸入与不变(I&I)理论的自适应控制方法。首先,通过构造非线性扩张状态观测器(NLESO)对系统的负载扰动进行动态观测,提高系统的跟踪控制精度;其次,基于I&I理论对系统的摄动参数设计自适应估计器,实现参数估计值渐近收敛到真实值;再次,基于I&I理论分别完成交流异步电机位置和磁链跟踪控制器的设计,实现对系统给定值的精确跟踪控制;最后,将该文所提方法与动态面控制(DSC)方法和I&I控制方法进行仿真及实验对比研究,结果验证了该文所提方法的有效性和可行性。

交流异步电机 自适应位置跟踪控制 浸入与不变理论 非线性扩张状态观测器

0 引言

交流异步电机具有结构简单、体积小、运行成本低、可靠性高、维护方便等优点,在化工、纺织、冶金、建筑、农机、矿山等行业有着广泛应用,对我国的国民经济和人民生活有着密切联系和重要影响[1-3]。然而,交流异步电机具有多变量、非线性、强耦合等特征[4],且易受负载扰动和参数摄动等不确定因素的影响,给交流异步电机的分析和控制带来了一定的挑战。

为了实现交流异步电机在参数摄动和负载扰动下的位置跟踪控制,国内外许多学者进行了广泛而深入的研究。文献[5]通过对转子电阻等电机参数进行自适应估计,设计的复合自适应无源控制器有效提高了系统对参数摄动和负载扰动的鲁棒性;文献[6]基于严格正实理论设计的自适应控制器,实现了系统在未知电机参数和负载转矩下的位置跟踪控制;文献[7]基于广义预测理论设计的控制器,有效抑制了交流异步电机的稳态波动,提高了系统的抗干扰能力;文献[8]结合滑模增益自适应律和负载转矩观测器,设计的自适应滑模控制器有效增强了系统在负载扰动下的跟踪控制性能;文献[9]采用神经网络逼近系统的未知非线性函数,设计的自适应神经网络控制器有效提高了系统的跟踪控制精度;文献[10]利用模糊逻辑系统逼近系统的非线性项,设计的自适应模糊控制器有效抑制了参数摄动和负载扰动对系统性能的影响。

需要说明的是,文献[5-10]提出的控制方法虽然实现了交流异步电机在参数摄动和负载扰动下的位置跟踪控制,但也存在一些不足:一是控制器设计过程较复杂,如文献[6]中的坐标变换增加了控制器推导过程的复杂度;文献[7]中预测控制方法的在线计算量较大,可调参数较多;文献[9]综合了反步控制、神经网络和指令滤波器等方法,增加了控制器结构的复杂性,且不易验证其在实际系统中应用的可行性。二是自适应设计方法基于常规的确定等价原则,且无法与控制器设计分开进行,不便于系统控制参数的整定,如文献[5]将自适应与无源理论相结合;文献[6]将自适应与严格正实方法相结合;文献[8]将自适应与滑模控制相结合。由此,控制器设计过程的复杂性,以及自适应律设计对控制器的依赖,均在一定程度上限制了上述控制方法在实际系统中的应用。

与上述方法不同,A. Astolfi和R. Ortega于2003年提出的浸入与不变(Immersion and Invariance, I&I)理论[11]不但可以处理非线性系统的镇定问题,还可以解决非线性系统摄动参数的自适应估计问题,并且系统控制器设计和自适应估计器设计可以分开进行,这在一定程度上弥补了文献[5-10]的不足。针对非线性系统的镇定问题,基于I&I理论的控制器设计方法原则上不需要构造Lyapunov函数,而是选择稳定的低阶目标系统和浸入映射,通过设计控制律将被控对象浸入到目标系统中,使得被控系统的任何轨迹都是目标系统在该浸入映射下的像,从而确保了被控系统的全局渐近稳定性。另外,针对非线性系统摄动参数的自适应估计问题,基于I&I理论的自适应估计器设计方法将调节函数引入到参数估计误差流形面中,通过使流形面具有不变性和吸引性,来保证参数估计值渐近收敛到真实值。自I&I理论提出以来,国内外许多学者对其进行了深入研究,并将其应用到四旋翼飞行器[12-13]、小型无人直升机[14]、航天发动机[15]和高超声速飞行器[16]等系统中。此外,扩张状态观测器因其结构简单、参数易于整定等优点而被广泛应用,然而常规的线性扩张状态观测器(Linear Extended State Observer, LESO)易出现“初始尖峰”现象[17],而引入了类饱和非线性误差函数的非线性扩张状态观测器(Nonlinear Extended State Observer, NLESO),不仅可以削弱LESO存在的“初始尖峰”现象,还能够保证观测误差在有限时间内收敛。

基于上述分析,针对存在参数摄动和负载扰动的交流异步电机位置跟踪控制问题,本文提出一种基于I&I理论的自适应控制方法。相比于现有控制方法,本文所提方法具有结构简单、可调参数少、易于实现等优点。设计NLESO实现对系统负载扰动的动态观测,该方法不仅能加快扰动估计的收敛速度,而且能有效削弱LESO存在的“初始尖峰”现象。基于I&I理论分别设计定子电阻的自适应估计器以及位置、磁链控制器,以实现自适应估计器和控制器的分开设计,有利于各自控制参数的调整。将本文所提方法与动态面控制(Dynamic Surface Control, DSC)方法和I&I控制方法进行仿真及实验对比研究,以验证本文所提方法能够实现交流异步电机有效的位置跟踪控制,并具有较好的动、静态性能和抗干扰能力。

1 系统描述与控制问题提出

1.1 系统描述

1.2 控制问题提出

(1)设计干扰观测器,实现对系统模型中负载扰动的动态观测。

2 负载扰动的NLESO设计

定义1[20]:若为状态空间中包含原点的一个区域,如果在某一特定时间后,保持在该区域内的系统的任何轨迹都最终收敛至原点,则称为该系统的自稳定域(Self-Stable Region, SSR)。

则原点是该系统的有限时间稳定平衡点,有

NLESO的构造形式具体为

进而将NLESO式(5)转化为误差形式,有

其中

其中

为便于所设计NLESO式(5)的稳定性分析,将式(9)进一步转化为

选择Lyapunov函数为

对式(11)求导,并将式(10)代入可得

由LaSalle不变集原理可知,NLESO误差模型式(7)是全局渐近稳定的。

进一步地,基于SSR理论[20]证明NLESO式(5)的有限时间收敛性,具体如下:

选择Lyapunov函数为

进一步地,将式(13)中的第二行代入式(15)可得

综合NLESO误差模型式(7)的全局渐近稳定性和有限时间收敛性,可知,NLESO误差模型式(7)是有限时间稳定的;进一步地,NLESO式(5)也是有限时间稳定的。

3 基于I&I理论的自适应估计器设计

首先,给出参数估计误差为

其次,构造参数估计误差流形面,有

选择调节函数为

将式(26)代入式(25)可得

4 基于I&I理论的控制器设计

引理2[11]:考虑如下系统

使得下列条件成立:

(1)目标系统

(3)隐式流形。以下等式恒成立

(4)流形吸引与轨迹有界。系统所有轨迹

是有界的并且满足

的一个全局渐近稳定的平衡点。

4.1 系统模型转换

为便于基于I&I理论设计交流异步电机位置和磁链跟踪控制器,需将交流异步电机模型式(1)转换为误差模型形式。首先,定义系统误差变量,有

其中

4.2 基于I&I理论的交流异步电机位置跟踪控制器设计

由式(40)中的第一行可得

(3)隐式流形。流形面的隐式描述为

其中

(4)流形吸引与轨迹有界。

4.3 基于I&I理论的交流异步电机磁链跟踪控制器设计

由式(48)中的第一行可得

(3)隐式流形。流形面的隐式描述为

其中

(4)流形吸引与轨迹有界。

5 仿真及实验研究

5.1 仿真研究

为了验证本文所提方法的有效性,在本节将本文所提方法与DSC方法和I&I控制方法进行仿真对比研究。交流异步电机参数见表1。

表1 交流异步电机参数

Tab.1 The parameters of AC asynchronous motor

由于I&I控制方法与本文所提方法的区别在于,前者没有使用NLESO和I&I自适应估计器,因此,为便于对比分析,这里将I&I控制方法的控制参数与本文所提方法的相应参数选择一致。

DSC方法控制器具体设计[23]为

图1为交流异步电机跟踪控制仿真曲线。

图1 交流异步电机跟踪控制仿真曲线

图2 NLESO的观测值及其观测误差曲线

图3 定子电阻Rs的估计值及其估计误差曲线

5.2 实验研究

基于如图4所示的dSPACE电机实验平台,将本文所提方法与DSC方法和I&I控制方法进行实验对比研究。

图4 dSPACE电机实验平台

该实验平台硬件主要由DS1104板卡、I/O接口面板、功率驱动板、交流异步电机、增量编码器、负载驱动器、磁粉制动器、PC(装有ControlDesk实时监控软件)组成。其中,DS1104板卡是该实验平台的控制核心,其安装在PC的PCI槽口,并与I/O接口面板通过PHS总线相连;I/O接口面板提供了DS1104板卡与主电路间信号的输入输出接口;功率驱动板采用“交-直-交”变压变频方式驱动交流异步电机,开关频率为5 000Hz;交流异步电机(各项参数详见表1)两端通过联轴器分别与增量编码器和磁粉制动器联接;增量编码器(2 000线)的零位置信号,可通过将DS1104实时接口模块库中增量编码器接口模块子库下“DS1104ENC_POS_Cx”模块的初始位置选项设置为0得到;通过负载驱动器驱动磁粉制动器可以模拟电机不同的负载转矩;通过PC中的ControlDesk软件实时监测电机运行过程中的各项反馈数据。

图5 交流异步电机位置跟踪控制框图

图6 交流异步电机位置跟踪控制实验曲线

图7 参数失配下交流异步电机位置跟踪控制实验曲线

6 结论

针对存在参数摄动和负载扰动的交流异步电机位置跟踪控制问题,本文提出了一种基于I&I理论的自适应控制方法。通过将类饱和非线性误差函数引入到NLESO中,削弱了常规LESO存在的“初始尖峰”现象,同时理论分析表明,扰动估计的收敛速度也得到了进一步提升;考虑I&I理论能够同时处理系统镇定问题和摄动参数估计问题,基于I&I理论,首先将参数更新律和调节函数相结合,在保证参数估计误差流形面具有不变和吸引性的基础上,设计的定子电阻自适应估计器有效地提高了估计参数动态调节过程的自由度和估计结果的准确性,且理论分析表明,参数估计值能够以指数规律的形式收敛到真实值;进一步地,通过选择稳定的低阶目标系统和浸入映射,设计的位置和磁链控制器分别将被控对象渐近地浸入到目标系统中,保证了系统的全局渐近稳定性。最后的仿真和实验结果表明,本文所提控制方法具有动态响应速度快、稳态精度高、鲁棒性强的优点。

[1] Reddy S, Loganathan U. Robust and high-dynamic- performance control of induction motor drive using transient vector estimator[J]. IEEE Transactions on Industrial Electronics, 2019, 66(10): 7529-7538.

[2] 陈闯, 王勃, 于泳, 等. 基于改进指数趋近律的感应电机滑模转速观测器研究[J]. 电工技术学报, 2020, 35(增刊1): 155-163.

Chen Chuang, Wang Bo, Yu Yong, et al. An improved exponential reaching law based-sliding mode observer for speed-sensorless induction motor drives[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 155-163.

[3] 刘和平, 刘庆, 张威, 等. 电动汽车用感应电机削弱振动和噪声的随机PWM控制策略[J]. 电工技术学报, 2019, 34(7): 1488-1495.

Liu Heping, Liu Qing, Zhang Wei, et al. Random PWM technique for acoustic noise and vibration reduction in induction motors used by electric vehicles[J]. Transactions of China Electrotechnical Society, 2019, 34(7): 1488-1495.

[4] 李杰, 詹榕, 宋文祥. 感应电机低采样频率的磁链观测器离散化模型研究[J]. 电工技术学报, 2019, 34(15): 3136-3146.

Li Jie, Zhan Rong, Song Wenxiang. Improved discrete observer model of induction motor at low sampling frequency[J]. Transactions of China Elec- trotechnical Society, 2019, 34(15): 3136-3146.

[5] Chen J. Passivity-based parameter estimation and composite adaptive position control of induction motors[J]. Transactions of the Canadian Society for Mechanical Engineering, 2013, 37(3): 559-569.

[6] Lee H T. Adaptive speed/position control of indu- ction motor based on SPR approach[J]. International Journal of Control, 2014, 87(11): 2209-2222.

[7] Silva W A, Junior A B, Torrico B C S, et al. Generalized predictive control robust for position control of induction motor using field-oriented con- trol[J]. Electrical Engineering, 2015, 97(3): 195-204.

[8] Barambones O, Alkorta P. Position control of the induction motor using an adaptive sliding-mode controller and observers[J]. IEEE Transactions on Industrial Electronics, 2014, 61(12): 6556-6565.

[9] Zhou Zhencheng, Yu Jinpeng, Yu Haisheng, et al. Neural network-based discrete-time command filtered adaptive position tracking control for induction motors via backstepping[J]. Neurocomputing, 2017, 260: 203-210.

[10] Han Yao, Yu Jinpeng, Zhao Lin, et al. Finite-time adaptive fuzzy control for induction motors with input saturation based on command filtering[J]. IET Control Theory and Applications, 2018, 12(15): 2148-2155.

[11] Astolfi A, Ortega R. Immersion and invariance: a new tool for stabilization and adaptive control of nonlinear systems[J]. IEEE Transactions on Auto- matic Control, 2003, 48(4): 590-606.

[12] 李晓静, 吴爱国, 张兆龙. 基于浸入和不变技术的非线性跟踪控制[J]. 控制理论与应用, 2019, 36(1): 73-78.

Li Xiaojing, Wu Aiguo, Zhang Zhaolong. Immersion and invariance modular nonlinear tracking control for an underactuated quadrotor[J]. Control Theory & Applications, 2019, 36(1): 73-78.

[13] Zou Yao, Meng Ziyang. Immersion and invariance- based adaptive controller for quadrotor systems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(11): 2288-2297.

[14] 姜鑫燃, 鲜斌. 小型无人直升机浸入-不变集自适应控制[J]. 控制理论与应用, 2015, 32(10): 1378- 1383.

Jiang Xinran, Xian Bin. Immersion and invariance adaptive control for a miniature unmanned helico- pter[J]. Control Theory & Applications, 2015, 32(10): 1378-1383.

[15] Lou Z, Zhao Jun. Viable immersion and invariance control for a class of nonlinear systems and its application to aero-engines[J]. Journal of the Franklin Institute, 2019, 356(1): 42-57.

[16] Liu Zhen, Tan Xiangmin, Yuan Ruyi, et al. Immersion and invariance-based output feedback control of air- breathing hypersonic vehicles[J]. IEEE Transactions on Automation Science and Engineering, 2016, 13(1): 394-402.

[17] 孙佃升, 章跃进. 一种抑制初始微分峰值现象的改进型三阶时变参数扩张状态观测器[J]. 电机与控制学报, 2017, 21(9): 55-62.

Sun Diansheng, Zhang Yuejin. Improved third-order time-varying parameters nonlinear ESO restraining the derivative peaking phenomenon[J]. Electric Machines and Control, 2017, 21(9): 55-62.

[18] 王治国, 郑泽东, 李永东, 等. 三相异步电机电流多步预测控制方法[J]. 电工技术学报, 2018, 33(9): 1975-1984.

Wang Zhiguo, Zheng Zedong, Li Yongdong, et al. Predictive current control for three phase induction machine using multi-steps prediction horizon[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 1975-1984.

[19] 杨淑英, 孙瑞, 曹朋朋, 等. 一种基于双复合滑模面滑模观测器的异步电机转子电阻辨识方案[J]. 电工技术学报, 2018, 33(15): 3596-3606.

Yang Shuying, Sun Rui, Cao Pengpeng, et al. Double compound manifold sliding mode observer based rotor resistance online updating scheme for induction motor[J]. Transactions of China Electrotechnical Society, 2018, 33(15): 3596-3606.

[20] Huang Yi, Han Jingqing. Analysis and design for the second order nonlinear continuous extended states observer[J]. Chinese Science Bulletin, 2000, 45(21): 1938-1944.

[21] Bhat S P, Bernstein D S. Finite-time stability of continuous autonomous systems[J]. SIAM Journal on Control and Optimization, 2000, 38(3): 751-766.

[22] 苟立峰, 王琛琛, 游小杰, 等. 基于积分滑模的感应电机无速度传感器带速重投控制策略[J]. 电工技术学报, 2018, 33(24): 5700-5710.

Gou Lifeng, Wang Chenchen, You Xiaojie, et al. A restart method based on integral sliding mode for speed sensorless controlled induction motor[J]. Transactions of China Electrotechnical Society, 2018, 33(24): 5700-5710.

[23] 刘乐, 蔺明浩, 李晓刚, 等. 基于模糊干扰观测器的电液伺服位置系统自适应反步控制[J]. 电机与控制学报, 2019, 23(12): 143-150, 158.

Liu Le, Lin Minghao, Li Xiaogang, et al. Adaptive backstepping control for the electro-hydraulic servo position system based on fuzzy disturbance obser- vers[J]. Electric Machines and Control, 2019, 23(12): 143-150, 158.

Immersion and Invariance Theory-Based Adaptive Position Tracking Control for Alternating Current Asynchronous Motor

1,21,21,21,2

(1. Engineering Research Center of the Ministry of Education for Intelligent Control System and Intelligent Equipment Yanshan University Qinhuangdao 066004 China 2. Key Laboratory of Industrial Computer Control Engineering of Hebei Province Yanshan University Qinhuangdao 066004 China)

In order to improve the position tracking control performance of alternating current (AC) asynchronous motor under parameter perturbation and load disturbance, an immersion and invariance (I&I) theory-based adaptive control method was proposed in this paper. Firstly, a nonlinear extended state observer (NLESO) was constructed to dynamically observe the load disturbance, which improved the tracking control accuracy of the system. Secondly, the I&I theory-based adaptive estimator was designed for the system perturbation parameter, and the parameter estimate was converged to the true value asymptotically. Thirdly, the position and flux tracking controllers of the AC asynchronous motor were designed respectively based on the I&I theory, which realized precise tracking control for the system given values. Finally, the proposed control method was compared with the dynamic surface control (DSC) method and the I&I control method by simulation and experiment. The results verify the effectiveness and feasibility of the proposed control method.

Alternating current asynchronous motor, adaptive position tracking control, immersion and invariance theory, nonlinear extended state observer

TM343+.2

10.19595/j.cnki.1000-6753.tces.200384

国家自然科学基金(61803327, 61873226)和河北省自然科学基金(F2020203018,F2019203090)资助项目。

2020-04-18

2020-07-24

刘 乐 男,1985年生,博士,副教授,研究方向为复杂动态系统建模、分析与控制。E-mail: leliu@ysu.edu.cn(通信作者)

高 杰 男,1995年生,硕士研究生,研究方向为交流异步电机高性能位置/速度控制。E-mail: gj951012@163.com

(编辑 崔文静)

猜你喜欢
异步电机观测器扰动
Bernoulli泛函上典则酉对合的扰动
户外防腐蚀型防爆三相异步电机设计
防爆电机(2020年5期)2020-12-14 07:03:58
大型变频调速异步电机的设计
防爆电机(2020年4期)2020-12-14 03:11:16
(h)性质及其扰动
小噪声扰动的二维扩散的极大似然估计
基于观测器的列车网络控制
基于非线性未知输入观测器的航天器故障诊断
用于光伏MPPT中的模糊控制占空比扰动法
电源技术(2015年11期)2015-08-22 08:50:38
基于干扰观测器的PI控制单相逆变器
采用干扰观测器PI控制的单相SPWM逆变电源