萝卜硫代葡萄糖苷的研究进展

2021-06-30 02:37邱正明黄燕矫振彪朱凤娟严承欢
中国瓜菜 2021年2期
关键词:萝卜

邱正明 黄燕 矫振彪 朱凤娟 严承欢

摘 要:硫代葡萄糖苷是一种广泛存在于十字花科植物中含硫和氮的次生代谢产物。萝卜中硫代葡萄糖苷含量较高且种类丰富,其中4-甲硫基-3-丁烯基硫苷(glucoraphasatin,GRH)含量最高。硫代葡萄糖苷经黑芥子酶降解可产生高生物活性的降解产物,如硫氰酸酯,异硫氰酸酯和腈等。上述硫代葡萄糖苷及其降解产物在植物病虫害防御、食品风味形成以及人体癌症治疗等方面均有重要作用。近年来,萝卜中硫代葡萄糖苷的生物合成途径及调控等方面的研究取得了较大进展。笔者综述了萝卜硫代葡萄糖苷的结构与种类、生物合成与降解以及影响因素等内容,旨在为萝卜硫苷的生物合成调控研究及其药食同源产品开发提供参考。

关键词:萝卜;硫代葡萄糖苷;生物合成;药食同源

中图分类号:S631.1 文献标志码:A 文章编号:1673-2871(2021)02-001-07

Research progress of glucosinolates in radish

QIU Zhengming1, HUANG Yan1, 2, JIAO Zhenbiao1, ZHU Fengjuan1, YAN Chenghuan1

(1. Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement/Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China; 2. College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei, China)

Abstract: Glucosinolates (GSLs) are sulfur- and nitrogen-rich  secondary metabolites, which distribute in cruciferous plants widely. In radish, the concentration and variety of glucosinolates is relatively high. Additionally, the concentration of glucoraphasatin (GRH) is the highest among the all GSLs of radish. Glucosinolates can be hydrolyzed by myrosinase to release highly biologically active products, such as thiocyanates, isothiocyanates and nitriles. Glucosinolates and their degraded products play important roles in deterring herbivores and pathogens of plant, food flavor formation and anticancer in the diet. Recently, researches on the biosynthetic pathway and regulation of glucosinolates in radish have been made great progress. In this paper, we reviewed the structures and types, the biosynthesis and degradation pathways, and influence factors of GSLs in radish, which would provide references for deciphering the biosynthesis and regulation of GSLs and developing the medicine and food homologous products of radish in future.

Key words: Radish; Glucosinolates; Biosynthesis; Medicine and food homologous

蘿卜(Raphanus sativus L.,2n=18)为十字花科萝卜属蔬菜,主要食用器官为肉质根,可菜用,也可入药,为传统药食同源植物。在我国,萝卜的常年种植面积约120万hm2,总产量约4 000万t,是我国重要的大宗蔬菜作物[1]。根据表型与使用目的,可将栽培萝卜分为5种类型:亚洲大萝卜(R. sativus var. hortensis)、欧洲樱桃萝卜(R. sativus var. sativus)、黑萝卜(R. sativus var. niger)、油用萝卜(R. sativus var. chinensis)以及鼠尾萝卜(R. sativus var. caudatus)[2]。

硫代葡萄糖苷(glucosinolates,GSLs)简称硫苷,又称芥子油苷,在十字花科植物中广泛存在。目前,国外对硫苷的研究比较深入,主要关注硫苷与其降解产物的吸收以及抗癌机制的解析,已取得重要突破。2019年,Lee等[3]报道了在青花菜中吲哚-3甲醇(硫苷降解产物)通过恢复抑癌因子PTEN蛋白的活性从而抑制癌症,为未来的临床研究提供了新策略。一般而言,硫苷在人体中需要经过肠道菌的作用才能将其转化为异硫氰酸酯等具有生物活性的硫苷代谢产物[4]。我国萝卜硫苷的相关研究起步较晚,主要集中在萝卜硫苷检测方法的建立以及不同萝卜资源中硫苷组分与含量的鉴定等基础性工作[5-6]。萝卜中硫苷的成分主要为脂肪族硫苷和吲哚族硫苷,且在不同的萝卜材料及组织中变异显著[6-8]。4-甲硫基-3-丁烯基硫苷(glucoraphasatin,GRH)是萝卜肉质根中含量最丰富的硫苷组分,占总硫苷含量的90%以上[9]。此外,硫苷经过黑芥子酶(myrosinase)水解后可以产生萝卜硫素(sulforaphane,SF),是一种具有强抗癌功能的天然活性物质[10]。对植物本身而言,硫苷及其降解产物是植物抗病、抗虫以及抗逆的重要物质,对植物的生长发育具有重要意义[11-12]。笔者拟通过论述萝卜硫苷生物合成与代谢领域的重要发现,探讨未来萝卜硫苷研究及其育种方向,为开发药食同源的萝卜产品提供参考。

1 萝卜硫苷的结构和种类

硫苷为含硫的次级代谢产物,其核心结构分为3个部分:β-D-硫葡萄糖基、磺酸肟基团和R侧链。根据R侧链的不同,可以将硫苷分为3类:脂肪族硫苷,侧链主要来源于甲硫氨酸;吲哚族硫苷,侧链主要来源于色氨酸;芳香族硫苷,侧链主要来源于苯丙氨酸[13]。迄今为止,已鉴定的硫苷种类超过200种,主要分布于十字花科作物[14]。在萝卜中,已鉴定出硫苷组分14种(表1),以脂肪族硫苷和吲哚族硫苷为主[8]。张丽等[5]在萝卜幼苗中检测到芳香族硫苷——2-苯基乙基硫苷(gluconasturtiin,GNT),但含量极低。GRH是萝卜中主要的硫苷物质[15],质量摩尔浓度在43.8~475.5 ?mol?g-1(DW)之间,是影响萝卜硫苷含量和组分差异的关键组分[16]。除GRH外,大多数萝卜种质均含有4-甲基亚磺酰基-3-丁烯基硫苷(glucoraphenin,GRE)和4-甲氧基-3-吲哚甲基硫苷(4-methoxyglucobrassicin,4MGBS),但含量较低[8]。

2 萝卜硫苷的生物合成

萝卜硫苷合成部位为叶片,然后通过远距离运输至根与花器官中[17]。硫苷的生物合成过程比较复杂,主要可分为3个步骤(图1):①侧链延伸;②核心结构的合成,包括β-D-硫葡萄糖基和磺酸肟基团;③侧链修饰。以脂肪族硫苷为例,多个基因家族参与硫苷的生物合成,如甲硫氨酸在支链氨基酸转氨酶(Branched-chain amino acid amino-transferases,BCATs)、细胞色素P450s(CYP79s与CYP83s)和2-氧戊二酸与亚铁依赖双加氧酶(2-oxoglutarate and Fe(II)-dependent dioxygenases,2OGDs)等[18]。在模式植物拟南芥中,采用突变体、同位素饲喂等试验方法已鉴定出植物硫苷的主要生物合成途径[19]。萝卜硫苷的主要生物合成途径与拟南芥类似,其主要差异位于侧链修饰阶段。

2.1 侧链延伸

甲硫氨酸为脂肪族硫苷侧链延伸的源头。从甲硫氨酸开始,侧链延伸主要分为3个阶段:第一个阶段为脱氨基阶段,在BCAT4作用下脱氨基产生2-氧代酸(2-oxo acid)[20],之后在胆汁酸转运蛋白5(bile acid transporter 5,BAT5)和胆汁酸钠离子共转运蛋白5(bile acid: sodium symporter family protein 5,BASS5)的作用下将2-氧代酸转运至叶绿体中[21-22];第二个阶段为延伸循环阶段,分别由甲硫烷基化苹果酸合成酶(methylthioalkylmalate synthases,MAMs)催化2-氧代酸与乙酰辅酶A(acetyl-CoA)进行缩合反应、异丙基苹果酸异构酶(Isopropylmalate isomerase,IPMIs)进行异构化以及异丙基苹果酸脱氢酶(Isopropylmalate dehydrogenase,IPMDHs)进行氧化脱羧反应,以此循环往复完成亚甲基(-CH2-)的添加和延伸;第三个阶段为转氨基阶段,在支链氨基酸转氨酶3(Branched-chain amino acid amino-transferase 3,BCAT3)的作用下,催化延伸底物完成转氨基过程,最终形成侧链延伸物[23]。由于萝卜中GRH为硫苷的主要组分,因此甲硫氨酸需要延伸添加(-CH2-CH2-)基团形成长链甲硫氨酸。

2.2 核心结构的合成

硫苷的核心结构由β-D-硫葡萄糖基和磺酸肟基团组成,其合成主要包括5个步骤[25]:(1)氧化,长链甲硫氨基酸由CYP79家族(主要包括CYP79F1和CYP79F2)氧化为乙醛肟,其中CYP79F1可催化所有延伸后的甲硫氨酸[26];随后CYP83家族CYP83A1将乙醛肟继续氧化为酸式硝基化合物[27]。(2)共轭,酸式硝基化合物与谷胱甘肽(glutathione,GSH)通过共轭反应形成S-烷基肟。(3)C-S剪切,在C-S裂解酶(C-S lyase,SUR1)作用下S-烷基肟转化为硫代肟基酸[28]。(4)葡糖基化,硫氢肟继而由UGT74家族(脂肪族由UGT74C1催化)将其转化为脱硫硫苷[29]。(5)硫化,在多个磺基转移酶(sulfotransferases,SOTs)的作用下形成甲硫烷基硫苷结构[30]。

吲哚族硫苷核心结构的形成与脂肪族类似,主要不同在于底物及其对应的催化酶。吲哚族硫苷的生物合成底物为吲哚,在色氨酸合成酶(tryptophan synthase gene 1,TSB1)的作用下生成色氨酸[31]。色氨酸由CYP79家族成员CYP79B2与CYP79B3氧化产生对应的吲哚乙醛肟[32-33]。因为底物的特异性,吲哚乙醛肟在CYP83B1的作用下产生对应的酸式硝基化合物[34]。类似地,葡糖基转移酶UGT74B1作用对应的吲哚硫代肟基酸产物形成吲哚脱硫硫苷[35]。最后,在SOT16和SOT18的作用下,吲哚脱硫硫苷与3′-磷酸腺苷-5′-磷酰硫酸(3′-phosphoadenosine-5′-phosphosulfate,PAPS)产生3-吲哚甲基硫苷[24,30]。值得注意的是,PAPS是硫苷合成过程中重要的供硫体,由腺苷-5′-磷酰硫酸(adenosine-5′-phosphosulfate,APS)在腺苷-5′-磷酰硫酸激酶(adenosine-5′- phosphosulfate kinase,APK)的催化作用下產生。同时,APS可在γ-谷氨酰半胱氨酸合成酶(γ-glu-cys synthetase,γ-GCS)的作用下产生GSH[36],参与合成中的共轭反应。可见,APS是整个硫苷生物合成的重要支点,是硫苷生物合成的限速步骤之一[37]。

2.3 侧链修饰

硫苷的多样性体现在侧链修饰的不同,同时侧链的差异直接影响硫苷及其降解产物的活性。对于脂肪族硫苷而言,侧链修饰主要包括氧化、去饱和化和羟基化等步骤。S-氧化是硫苷后续修饰的重要过程,在黄素单加氧酶(flavin-containing monooxygenase,FMOGS-OXs)作用下甲硫烷基硫苷侧链S位点加氧形成甲基亚磺酰基硫苷[38]。相较于拟南芥或者其他芸薹属作物,萝卜硫苷组分中含有特异的GRH,且占总硫苷含量的90%以上,可见形成GRH分支为萝卜硫苷的主要分支。因此,通过侧链延伸和核心结构生物合成4-甲硫基丁基硫苷(Glucoerucin,GER)后,通过GRH合成酶(glucoraphasatin synthase1,GRS1)去饱和化形成GRH是萝卜硫苷生物合成的主要路线[17]。在拟南芥中,GRS1的直系同源基因AtGS-OH的主要功能为使3-丁烯基硫苷(gluconapin,GNP)羟基化形成2-羟基-3-丁烯基硫苷(Progoitrin,PRO)[39],但萝卜中GRS1的功能为去饱和产生烯基,这可能是萝卜特异产生GRH的原因。在萝卜中,存在同样可以进行羟基化的RsGS-OH基因,其功能为催化烯基硫苷进行羟基化。根据底物的不同,GER和GRH可分别氧化形成GRE和4-甲基亚磺酰丁基硫苷(glucoraphanin,RAA)。在拟南芥中,RAA在2-氧戊二酸依赖的双加氧酶2(2-oxoglutarate-dependent dioxygenase 2,AOP2)和AOP3的作用下分别形成GNP和羟烷基硫苷[40]。在萝卜中,已鉴定到GNP的硫苷组分[5-9],但尚未鉴定到羟烷基硫苷。Mitsui等[24]在萝卜基因组中同样未鉴定到AOP3,因此在萝卜中AOP3基因可能已经丢失。

在萝卜中,吲哚族硫苷的修饰主要包括羟基化和氧化过程。与拟南芥类似,目前萝卜中共鉴定到4种吲哚族硫苷(表1),包括3-吲哚甲基硫苷(glucobrassicin,GBC)、1-甲氧基-3-吲哚甲基硫苷(Neoglcobrassincin,NEO)、4-羟基-3-吲哚甲基硫苷(4-hydroxyglucobrassicin,4HGBS)以及4-甲氧基-3-吲哚甲基硫苷(4-methoxyglucobrassicin,4MGBS)。羟基化修饰主要受CYP81家族基因控制,其中CYP81F2和CYP81F3控制碳4号位的羟基化,而CYP81F4特异催化碳1号位的羟基形成[41-42]。最后,2种羟基化的吲哚甲基硫苷在O-甲基转移酶(O-methyltransferases,IGMT)的作用下产生对应的甲氧基-3-吲哚甲基硫苷[42]。萝卜的吲哚族硫苷含量占总硫苷比例较少,因此吲哚族硫苷的生物合成分支为萝卜硫苷的次要分支。

2.4 硫苷生物合成相关基因

与拟南芥相比,萝卜硫苷生物合成的特异性主要处于侧链修饰阶段。Wang等[43]对萝卜根不同发育阶段的转录组数据进行从头组装,鉴定到了多个参与硫苷代谢的基因,包括RsBCAT4,RsCYP79F1,RsCYP83A1,RsSURI,RsUGT74C1,RsGS-OX1等。同年,Zou等[44]利用QTL分析的方法鉴定出RsBCAT4、RsIPMDH1和RsMAM3等3个基因,可能控制萝ト中GRH的生物合成。2015年,Mitsui等[24]在新组装的亚洲大萝卜基因组中,对6个发育阶段的萝卜根、根尖、皮层和木质部中的转录组数据进行比较,在萝卜中鉴定到硫苷生物合成所需的大多数基因,但有9个基因尚未确定,包括RsMAM3、RsIPMI-SSU3、RsIPMDH3、RsCYP79F2、RsCYP81F1、RsFMO GS-OX3、RsFMO GS-OX4、RsAOP2和RsAOP3。可见,萝卜硫苷的生物合成有其特异性,进而产生特异的萝卜硫苷产物,如GRH等。除以上结构基因外,转录因子也参与调控硫苷的生物合成与环境应答,如MYBs和MYCs转录因子[45-47]。与拟南芥MYB29基因类似,RsMYB29同样参与萝卜硫苷生物合成的调控[48],这说明萝卜硫苷的核心调控机制相对保守。

3 萝卜硫苷的降解

硫苷化学性质较稳定,但在黑芥子酶或者高温高压条件下会降解。硫苷储存于液泡中,正常情况下黑芥子酶与硫苷之间存在空间隔离,但当植物遭受啃食或者机械损伤时,黑芥子酶与硫苷接触,进而使其降解[49]。根据底物的侧链、pH值和Fe2+等因素,硫苷降解可产生异硫氰酸盐、硫氰酸酯、腈类以及噁唑烷-2-硫酮等[50]。在萝卜中主要硫苷物质为GRH,因此其主要降解產物为4-甲硫基-3-丁烯异硫氰酸盐(4-Methylthio-3-butenyl isothiocyanate,MTB-ITC),即萝卜硫素(sulforaphane,SF)。此外,SF是萝卜辣味的来源[51],也是目前鉴定出的抗癌功能最强的天然活性物质[10]。PRO的降解产物为噁唑烷-2-硫酮,会使家畜的甲状腺肿大,这将会限制含有该物质作物的推广应用,如油菜等[39]。

4 影响硫苷的因素

影响硫苷含量与组分的因素较多,主要有遗传因素、植物激素、温度和光照等。对萝卜而言,遗传因素是影响硫苷生物合成最主要的因素。

4.1 遗传因素

硫苷的含量和组分与萝卜种质的遗传背景高度相关。Ishida等[16]采用高效液相色谱法对632份萝卜种质资源的幼苗进行分析,筛选到1个缺乏GRH的萝卜种质。在该种质中,GER成为主要的硫苷组分,代替GRH占总硫苷含量的90%以上。随后,通过图位克隆的方法鉴定出GRS1基因失去功能导致不能产生GRH[17]。不同组织中硫苷含量和组分差异较大,一般而言,生殖器官中硫苷含量较高,如种子和花[52-53]。在以上组织中,硫苷并不能从头开始合成,而是由叶片合成硫苷后长距离运输到种子和肉质根等部位。拟南芥中,2个硫苷转运蛋白(glucosinolate transporters,GTRs)将硫苷从叶片运输到种子,其双突变体种子中几乎不能检测到硫苷[54],这说明硫苷的转运对萝卜硫苷的形成与分布有重要影响。同样地,嫁接试验证明萝卜硫苷也是以远距离运输的形式进行再分配。此外,植物在不同生育期的硫苷含量也存在较大差异,主要与硫苷的合成代谢相关[55]。

4.2 植物激素

植物激素是影响萝卜硫苷的重要因素。施用一定浓度的茉莉酸甲酯(MeJA)可显著提高萝卜肉质根中硫苷含量[56],但会抑制硫苷降解产物SF的产生,这可能与MeJA抑制黑芥子酶的活性有关[57]。在芥蓝中,喷施MeJA和水杨酸(SA)均可增加硫苷含量[58]。然而,施用10 mg?L-1的脱落酸(ABA)可显著降低小白菜叶片中硫苷含量[59]。蔡丛希等[60]发现,施加20 nmol?L-1的2,4-表油菜素内酯(EBR)可显著降低萝卜芽中硫苷含量,但使用EBR与氯化钠共处理可增加硫苷含量,说明在不同的环境中EBR对硫苷含量的影响不同。当采用诱发技术后,施用5 mmol?L-1的甲硫氨酸(MET)也可显著促进硫苷的生物合成和积累[61]。

4.3 其他

环境条件对萝卜中硫苷含量有一定影响,但一般不会改变硫苷的种类。光照有无(7 d以内)将不会显著改变萝卜幼苗中的硫苷含量[62],但不同光质可影响其硫苷含量。使用蓝光照射萝卜下胚轴,可以增加黑芥子酶的活性,减少GRH含量[63]。一定的高温和缺水条件可显著增加萝卜肉质根中硫苷的含量[64],同时也可使萝卜风味更辣。此外,温度对硫苷含量的影响具有一定的偏好性,更易影响吲哚族和芳香族硫苷,对脂肪族硫苷影响不大[65]。使用低浓度的氯化钠(10 mmol?L-1和50 mmol?L-1)可降低萝卜芽中的硫苷含量,但采用100 mmol?L-1的氯化钠处理可显著增加硫苷含量,可为高营养萝卜产品的生产提供参考[66]。

5 展 望

萝卜富含硫苷、维生素C、矿质元素和植物蛋白,是生活中常见的药食同源蔬菜[67]。随着人们生活质量的提高,科学工作者越来越重视食物的营养品质和功能成分的研究,致力于开发各种功能性食品。2015年与2016年公布了2个组装质量较好的萝卜基因组草图[68-69],这为从遗传和代谢角度解析萝卜硫苷代谢的分子机制奠定了坚实的基础。目前,虽然萝卜硫苷的生物合成与降解研究取得了长足的进步,但未来仍有多个问题值得关注:(1)鉴定萝卜硫苷遗传变异的新机制;(2)萝卜硫苷转录调控的分子机制以及鉴定新的转录因子;(3)萝卜中硫苷及其水解产物进入生物体后的作用机制;(4)如何快速选择并培育高硫苷含量的萝卜新品种;(5)如何使用代谢工程方法产生高纯度的萝卜硫苷产物。了解萝卜硫苷的遗传和代谢机制,未来一方面可以对目标性状进行分子标记辅助选择,通过聚合以及分子设计等育种方式培育高硫苷含量的萝卜新品种,另一方面可通过基因编辑(CRISPR/Cas9)等方法对控制硫苷生物合成及代谢的关键基因及转录因子进行编辑以培育萝卜新种质。此外,还可以采用定向诱变技术阻断硫苷产生有害代谢物的基因通路,为萝卜功能性产品的开发提供宝贵的材料资源。

参考文献

[1] 《中国蔬菜》编辑部.萝卜市场及种植技术分析:聚焦第4期“种得好”视频直播节目[J].中国蔬菜,2017(8):1-7.

[2] L? N,YAMANE K,OHNISHI O.Genetic diversity of cultivated and wild radish and phylogenetic relationships among Raphanus and Brassica species revealed by the analysis of trnK/matK sequence[J].Breeding Science,2008,58(1):15-22.

[3] LEE Y R,CHEN M, LEE J D,et al.Reactivation of PTEN tumor suppressor for cancer treatment through inhibition of a MYC-WWP1 inhibitory pathway[J].Science,2019,364(6441):eaau0159.

[4] LIOU C S,SIRK S J,DIAZ C A,et al.A metabolic pathway for activation of dietary glucosinolates by a human gut symbiont[J].Cell,2020,180(4):717-728.

[5] 張丽,何洪巨,赵学志,等.不同萝卜品种幼苗中硫代葡萄糖苷含量与组分分析[J].华北农学报,2012,27(4):107-111.

[6] 公茂勇,王燕,徐良,等.不同种质萝卜肉质根硫苷组分及含量分析[J].南京农业大学学报,2019,42(3):413-420.

[7] ISHIDA M,KAKIZAKI T,OHARA T,et al.Development of a simple and rapid extraction method of glucosinolates from radish roots[J].Breeding Science, 2011, 61(2):208-211.

[8] YI G,LIM S,CHAE W B,et al.Root glucosinolate profiles for screening of radish (Raphanus sativus L.) genetic resources[J]. Journal of Agricultural and Food Chemistry,2016,64(1):61-70.

[9] ISHIDA M,NAGATA M,OHARA T,et al.Small variation of glucosinolate composition in Japanese cultivars of radish (Raphanus sativus L.) requires simple quantitative analysis for breeding of glucosinolate component[J].Breeding Science,2012,62(1):63-70.

[10] TORTORELLA S M,ROYCE S G,LICCIARDI P V,et al.Dietary sulforaphane in cancer chemoprevention: the role of epigenetic regulation and HDAC inhibition[J].Antioxidants & Redox Signaling, 2015, 22(16):1382-1424.

[11] CLAY N K,ADIO A M,DENOUX C,et al.Glucosinolate metabolites required for an Arabidopsis innate immune response[J].Science,2009,323(5910):95-101.

[12] KAKIZAKI T,ISHIDA M.Genetic profile of glucosinolate biosynthesis [M]// NISHIO T,KITASHIBA H. The radish genome.Springer,2017:137-150.

[13] FAHEY J W,ZALCMANN A T,TALALAY P.The chemical diversity and distribution of glucosinolates and isothiocyanates among plants[J].Phytochemistry,2001,56:5-51.

[14] CLARKE D B.Glucosinolates, structures and analysis in food[J].Analytical Methods,2010,2(4):310-325.

[15] CARLSON D G,DAXENBICHLER M E,VANETTEN C H,et al.Glucosinolates in radish cultivars[J].Journal of the American Society for Horticultural Science,1985,110(5):634-638.

[16] ISHIDA M,KAKIZAKI T,MORIMITSU Y,et al.Novel glucosinolate composition lacking 4-methylthio-3-butenyl glucosinolate in Japanese white radish (Raphanus sativus L.)[J].Theoretical and Applied Genetics,2015,128(10):2037-2046.

[17] KAKIZAKI T, KITASHIBA H,ZOU Z,et al.A 2-oxoglutarate-dependent dioxygenase mediates the biosynthesis of glucoraphasatin in radish[J].Plant Physiology,2017,173(3):1583-1593.

[18] SONDERBY I E,GEUFLORES F, HALKIER B A.Biosynthesis of glucosinolates – gene discovery and beyond[J].Trends in Plant Science,2010,15(5):283-290.

[19] GRASER G,OLDHAM N J,BROWN P D,et al.The biosynthesis of benzoic acid glucosinolate esters in Arabidopsis thaliana[J].Phytochemistry, 2001,57(1):23-32.

[20] SCHUSTER J,KNILL T,REICHELT M,et al.BRANCH- ED-CHAIN AMINOTRANSFERASE4 is part of the chain elongation pathway in the biosynthesis of methionine-derived glucosinolates in Arabidopsis[J].The Plant Cell,2006,18(10):2664-2679.

[21] GIGOLASHVILI T,YATUSEVICH R,ROLLWITZ I,et al.The plastidic bile acid transporter 5 is required for the biosynthesis of methionine-derived glucosinolates in Arabidopsis thaliana[J].The Plant Cell,2009,21(6):1813-1829.

[22] SAWADA Y,TOYOOKA K,KUWAHARA A,et al.Arabidopsis Bile Acid: Sodium symporter family protein 5 is involved in methionine-derived glucosinolate biosynthesis[J].Plant and Cell Physiology,2009,50(9) :1579-1586.

[23] KNILL T,SCHUSTER J,REICHELT M,et al.Arabidopsis branched-chain aminotransferase 3 Functions in both amino acid and glucosinolate biosynthesis[J].Plant Physiology, 2008,146(3):1028-1039.

[24] MITSUI Y, SHIMOMURA M,KOMATSU K,et al.The radish genome and comprehensive gene expression profile of tuberous root formation and development[J].Scientific Reports,2015, 5(1):10835.

[25] GRUBB C D,ABEL S.Glucosinolate metabolism and its control[J].Trends in Plant Science,2006,11(2):89-100.

[26] HANSEN C,WITTSTOCK U,OLSEN C,et al.Cytochrome P450 CYP79F1 from Arabidopsis catalyzes the conversion of dihomomethionine and trihomomethionine to the corresponding aldoximes in the biosynthesis of aliphatic glucosinolates[J].Journal of Biological Chemistry,2001,276(14):11078-11085.

[27] HEMM M R,RUEGGER M O,CHAPPLE C.The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes[J].The Plant Cell,2003,15(1) :179-194.

[28] MIKKELSEN M D,NAUR P,HALKIER B A.Arabidopsis mutants in the C–S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis[J].Plant Journal,2004,37(5):770-777.

[29] GRUBB C,ZIPP B, KOPYCKI J,et al.Comparative analysis of A rabidopsis UGT 74 glucosyltransferases reveals a special role of UGT 74C1 in glucosinolate biosynthesis[J].The Plant Journal,2014,79(1):92-105.

[30] PIOTROWSKI M,SCHEMENEWITZ A,LOPUKHINA A,et al.Desulfoglucosinolate sulfotransferases from Arabidopsis thaliana catalyze the final step in the biosynthesis of the glucosinolate core structure[J].Journal of Biological Chemistry,2004,279(49):50717-50725.

[31] RADWANSKI E R.Tryptophan biosynthesis and metabolism:biochemical and molecular genetics[J].The Plant Cell,1995,7(7):921-934.

[32] HULL A K,VIJ R,CELENZA J L.Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis[J].Proceedings of the National Academy of Sciences of the United States of America,2000,97(5):2379-2384.

[33] MIKKELSEN M D,HANSEN C H,WITTSTOCK U,et al.Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid[J].Journal of Biological Chemistry,2000,275(43):33712-33717.

[34] NAUR P,PETERSEN B L,MIKKELSEN M D,et al.CYP83A1 and CYP83B1,two nonredundant cytochrome P450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in Arabidopsis[J].Plant Physiology,2003,133(1):63-72.

[35] GRUBB C D,ZIPP B J,LUDWIGMULLER J,et al.Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis[J].Plant Journal,2004,40(6):893-908.

[36] COBBETT C,MAY M J,HOWDEN R,et al.The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in γ-glutamylcysteine synthetase[J].The Plant Journal,1998,16(1):73-78.

[37] KOPRIVA S.Regulation of sulfate assimilation in Arabidopsis and beyond[J].Annals of Botany,2006,97(4):479-495.

[38] HANSEN B G,KLIEBENSTEIN D J,HALKIER B A.Identification of a flavin-monooxygenase as the S-oxygenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis[J].Plant Journal,2007,50(5):902-910.

[39] HANSEN B,KERWIN R,OBER J,et al.A novel 2-oxoacid-dependent dioxygenase involved in the formation of the goiterogenic 2-hydroxybut-3-enyl glucosinolate and generalist insect resistance in Arabidopsis[J].Plant Physiology,2008,148(4):2096-2108.

[40] KLIEBENSTEIN D J,LAMBRIX V M,REICHELT M,et al.Gene duplication in the diversification of secondary metabolism:tandem 2-oxoglutarate–dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis[J].The Plant Cell,2001,13(3):681-693.

[41] PFALZ M,VOGEL H,KROYMANN J.The gene controlling the indole glucosinolate modifier1 quantitative trait locus alters indole glucosinolate structures and aphid resistance in Arabidopsis[J].The Plant Cell,2009,21(3):985-999.

[42] PFALZ M,MIKKELSEN M D,BEDNAREK P,et al.Metabolic engineering in Nicotiana benthamiana reveals key enzyme functions in Arabidopsis indole glucosinolate modification[J].The Plant Cell,2011,23(2):716-729.

[43] WANG Y,PAN Y,LIU Z,et al.De novo transcriptome sequencing of radish (Raphanus sativus L.) and analysis of major genes involved in glucosinolate metabolism[J].BMC Genomics, 2013,14(1):836-836.

[44] ZOU Z,ISHIDA M,LI F,et al.QTL analysis using SNP markers developed by next-generation sequencing for identification of candidate genes controlling 4-methylthio-3-butenyl glucosinolate contents in roots of radish, Raphanus sativus L. [J].PLoS One,2013,8(1):e53541.

[45] HIRAI M Y,SUGIYAMA K,SAWADA Y,et al.Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis[J].Proceedings of the National Academy of Sciences of the United States of America,2007,104(15):6478-6483.

[46] GIGOLASHVILI T,ENGQVIST M K M,YATUSEVICH R,et al.HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana[J].New Phytologist,2008,177(3):627-642.

[47] SCHWEIZER F,FERNANDEZCALVO P,ZANDER M,et al.Arabidopsis basic helix-loop-helix transcription factors MYC2,MYC3,and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior[J].The Plant Cell,2013,25(8):3117-3132.

[48] LUO X B,LIU Z,XU L,et al.Characterization of RsMYB28 and RsMYB29 transcription factor genes in radish (Raphanus sativus L.)[J]. Genetics and Molecular Research,2016,15(3):gmr.15038381.

[49] KOROLEVA O A,GIBSON T,CRAMER R,et al.Glucosinolate-accumulating S-cells in Arabidopsis leaves and flower stalks undergo programmed cell death at early stages of differentiation[J].Plant Journal,2010,64(3):456-469.

[50] KISSEN R,POPE T W,GRANT M,et al.Modifying the alkylglucosinolate profile in Arabidopsis thaliana alters the tritrophic interaction with the herbivore Brevicoryne brassicae and parasitoid Diaeretiella rapae[J].Journal of Chemical Ecology,2009,35(8):958-969.

[51] FRIIS P,KJAER A,NEVALD R,et al.4-Methylthio-3-butenyl isothiocyanate,the pungent principle of radish root[J].Acta Chemica Scandinavica,1966,20:698-705.

[52] SANG J P,MINCHINTON I R,JOHNSTONE P K,et al.Glucosinolate profiles in the seed root and leaf tissue of cabbage mustard rapeseed radish and swede[J].Canadian Journal of Plant Science,1984,64(1):77-93.

[53] BROWN P D,TOKUHISA J G,REICHELT M,et al.Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana[J].Phytochemistry,2003,62(3):471-481.

[54] NOURELDIN H H,ANDERSEN T G,BUROW M,et al.RT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds[J].Nature,2012,488(7412):531-534.

[55] YAN X,CHEN S.Regulation of plant glucosinolate metabolism[J].Planta,2007,226(6):1343-1352.

[56] 陳微.外源激素对萝卜肉质根硫苷和萝卜硫素含量的影响[D].南京:南京农业大学, 2017.

[57] KIM H,CHEN F,WANG X,et al.Effect of methyl jasmonate on phenolics isothiocyanate and metabolic enzymes in radish sprout (Raphanus sativus L.). [J].Journal of Agricultural and Food Chemistry,2006,54(19):7263-7269.

[58] SUN B,YAN H,ZHANG F,et al.Effects of plant hormones on main health-promoting compounds and antioxidant capacity of Chinese kale[J]. Food Research International,2012,48(2):359-366.

[59] 胡克玲,朱祝军.不同质量浓度脱落酸对小白菜硫代葡萄糖苷含量的影响[J].华南农业大学学报,2013,34(3):366-371.

[60] 蔡丛希,侯秋梅,汪炳良,等.油菜素甾醇对萝卜芽菜生物活性物质的影响[J].核农学报,2017,31(7):1419-1425.

[61] BAENAS N,VILLANO D,GARCIAVIGUERA C,et al.Optimizing elicitation and seed priming to enrich broccoli and radish sprouts in glucosinolates[J].Food Chemistry,2016,204:314-319.

[62] CISKA E,HONKE J,KOZLOWSKA H.Effect of light conditions on the contents of glucosinolates in germinating seeds of white mustard red radish white radish and rapeseed[J].Journal of Agricultural and Food Chemistry,2008,56(19):9087-9093.

[63] HASEGAWA T,YAMADA K,KOSEMURA S,et al.Phototropic stimulation induces the conversion of glucosinolate to phototropism-regulating substances of radish hypocotyls[J].Phytochemistry,2000,54(3):275-279.

[64] CISKA E,MARTYNIAKPRZYBYSZEWSKA B,KOZLOWSKA H,et al.Content of glucosinolates in cruciferous vegetables grown at the same site for two years under different climatic conditions[J].Journal of Agricultural and Food Chemistry,2000,48(7):2862-2867.

[65] BOHINC T,TRDAN S.Environmental factors affecting the glucosinolate content in Brassicaceae[J].Journal of Food Agriculture and Environment,2012,10(2):357-360.

[66] YUAN G,WANG X,GUO R,et al.Effect of salt stress on phenolic compounds glucosinolates myrosinase and antioxidant activity in radish sprouts[J].Food Chemistry,2010,121(4):1014-1019.

[67] 包崇來,汪精磊,胡天华,等.我国萝卜产业发展现状与育种方向探讨[J].浙江农业科学, 2019,60(5):707-710.

[68] ZHANG X,YUE Z,MEI S,et al.A de novo genome of a Chinese radish cultivar[J].Horticultural Plant Journal,2015,1(2):155-164.

[69] JEONG Y M,KIM N,AHN B O,et al.Elucidating the triplicated ancestral genome structure of radish based on chromosome-level comparison with the Brassica genomes[J].Theoretical and Applied Genetics,2016,129(7):1357-1372.

猜你喜欢
萝卜
萝卜蹲
买萝卜
拿萝卜
萝卜园
腌萝卜
大根的幸福生活
《萝卜红了》等
拔“萝卜”
种萝卜