刘 芳, 李 孟, 李雨薇, 齐学进, 李 炜, 赵朝成, 韩丰磊
(1.中国石油大学(华东)化学工程学院,山东青岛 266580; 2.石油石化污染物控制与处理国家重点实验室,北京 102206)
挥发性有机污染物(VOCs)来源广泛,可增强温室效应、参与光化学反应[1]、破坏臭氧层[2]、绿植、损害材料;此外产生的烟雾具有恶臭,可引起呼吸道疾病[3]、损害神经系统、致癌、致死。即使在低浓度下,对环境和人体亦有威胁[4]。现有VOCs处理法主要为传统的吸附法、光催化法、催化燃烧法以及新型的生物膜法、低温等离子体技术等[5-7]。在众多方法中,吸附法被认为是一种成熟、有效的VOCs去除方法。目前活性炭、分子筛、活性炭纤维、石墨烯、氧化石墨烯(GO)、碳纳米管(CNT)以及金属有机骨架(MOF)等多孔材料被用作VOCs吸附剂,其中活性炭因其丰富的孔隙结构、高比表面积被广泛应用,但具有易燃、适用范围小等缺点。此外,其他材料亦存在诸多限制,如分子筛孔隙率低、吸附性能有限;MOF水稳定性能差[8]、选择吸附性低,均会造成二次污染。石墨烯(GE)具有高比表面积、孔隙结构丰富、表面富含官能团、高吸附性能、稳定性好等特点,王洪喜等[9]以氧化石墨还原法制备的石墨烯吸附甲苯,在25 ℃、甲苯气速200 mL/min、床层高达10 mm条件下,甲苯饱和吸附率为100×10-3,且吸附过程符合假二级动力学模型和Freundlich模型。Kim等[10]通过实验证明改性石墨烯比表面积增加,可归因于KOH活化、微波辐射协同热处理,使得石墨烯表面氢键断裂;且发现高吸附性主要因甲苯中苯环和石墨烯之间的π-π键作用。Guo等[11]以独立式多孔碳纳米纤维为基体,通过静电纺丝和蒸汽活化法制备了GO/C复合纳米纤维,发现GO的嵌入增加了材料的介孔含量和高表面氧含量,且在20 ℃下GO/C对苯、丁酮具有高吸附容量,GO的引入提高了纳米纤维对极性VOC的吸附能力。Zhou等[12]以甲醇为溶剂制备ZIF-8/GO材料吸附二氯甲烷,发现二氯甲烷的吸附率与GO质量分数呈正相关关系,当GO质量分数为15%时,最高吸附率为240×10-3;分析表明,高吸附性能除受孔道吸附外,还归因于ZIF-8和GO的协同作用、GO与二氯甲烷之间的强相互作用。碱处理能增加石墨烯比表面积,产生更多的孔道结构,并减少—OH自由基的含量,提供更多的吸附活性位点。这可能是由于碱性基团促进吸附、酸性基团抑制吸附相似[13-14]。笔者以改进Hummers法制备石墨烯,再经超声辅助KOH浸渍法制备改性石墨烯,进一步考察不同KOH浓度、温度、超声时间等因素对甲苯的吸附性能,考察其吸附动力学和吸附机制。
所有试剂均为分析纯(AR)。甲苯、盐酸、浓硫酸,购于西陇化工有限公司;石墨粉、无水乙醇、氢氧化钾、氢氧化钠、硝酸钠、双氧水等,购于国药集团化学试剂有限公司;甲脒亚磺酸,购于上海阿拉丁生化科技股份有限公司;高锰酸钾,购于烟台三和化学试剂有限公司。
图1为甲苯吸附实验装置。整个实验在通风橱中进行。气态甲苯由空气鼓泡法产生,并经两个转子流量计分流控制甲苯、空气流量来改变甲苯浓度。所有连接口均采用硅胶管连接以保证气密性;设置缓冲瓶用以均匀混合甲苯和空气并进行干燥。为防止甲苯进入空气污染环境,设置尾气处理装置,用无水乙醇吸附废气。
图1 甲苯气体吸附装置Fig.1 Toluene gas adsorption equipment
首先,制备氧化石墨烯GO。低温氧化:取2 g石墨粉和1 g NaNO3于1 000 mL烧杯中混匀,然后缓慢加入100 mL浓H2SO4,将烧杯放入4 ℃冰浴的恒温磁力搅拌器搅拌30 min,再均匀且缓慢地加入10 g KMnO4,继续搅拌2 h,使其混合均匀。为保证4 ℃的低温冰浴,整个过程需不断加冰。中温氧化:将上步反应结束的1 000 mL烧杯,移入至提前预热到35 ℃的恒温水浴中,继续搅拌1.5 h。高温氧化:将35 ℃的100 mL蒸馏水连续缓慢加入大烧杯中,移入提前预热至98 ℃的高温水浴中,搅拌10 min;搅拌结束后,缓慢连续加入50 ℃的500 mL蒸馏水再加入适量30% H2O2,以去除过量KMnO4;冷却静置过夜,先后用的5% HCl、蒸馏水清洗至中性、冷冻干燥3~4 d,即可得GO滤饼。
其次,还原制备石墨烯(GE)。取0.5 g GO溶于300 mL蒸馏水,超声分散2 h,得到GO悬浮液;再依次加入6 g NaOH与2.5 g甲脒亚磺酸,95 ℃水浴搅拌6 h;抽滤后,先后用乙醇与水洗涤滤饼;经冷冻干燥,研磨可得石墨烯粉末。
采用KOH溶液来制备改性石墨烯(MGE)。称取16.83 g KOH于100 mL小烧杯中,加入50 mL蒸馏水,搅拌至完全溶解。再加入0.3 g石墨烯粉末,搅拌均匀后,超声分散3 h;过滤溶液并洗涤至中性,将滤饼于100 ℃下真空干燥12 h,充分研磨得KOH改性石墨烯材料。
为考察KOH单因素改性石墨烯影响因素,设置4个影响条件分别考察:①控制温度为25 ℃,超声时间为3 h,KOH浓度分别为2、4、6、8、10 mol/L;②控制温度为25 ℃,KOH浓度为6 mol/L,超声时间分别为1、1.5、2、2.5、3 h;③控制超声时间为3 h,KOH浓度为6 mol/L,改性温度分别为25、50、75 ℃。
上述制备石墨烯、KOH改性石墨烯流程如图2所示。
图2 KOH改性石墨烯制备过程Fig.2 Preparation of KOH modified graphene
采用图1装置进行实验。实验前,仪器先空运行1.5~2 h,待装置稳定后开始进行实验。每次采样100 mL,将100 mL玻璃注射器管口处连接活性炭采样管接于采样口处取样;频率为30 min时内每隔10 min采一次样品,之后每隔20 min采样;空白样品在空白采样口处取样。
通过CS2解析法和气相色谱法测定甲苯浓度:采样管内活性炭先用1 mL CS2解吸1 h,再取2 μL注入气相色谱仪的检测。气相色谱操作条件为:载气、燃烧气、助燃气分别为N2(纯度为99.999%)、H2(纯度为99.99%)和净化后空气;氢火焰离子化检测器(FID)作检测器:吸附柱、进样口、检测器温度分别为120、150、200 ℃。
使用JEM-2100UHR 型TEM在200 kV的加速电压下观察GO、石墨烯、MGE的内部结构。
采用美国Thermo Nicolet公司的NEXUS FT-IR对GO、石墨烯、MGE表面基团进行表征。
采用帕纳科锐影XRD仪对石墨、GO、石墨烯及MGE的内部成分进行表征。
采用ASAP2020-M比表面分析仪测定GO、石墨烯、MGE的比表面积及孔径分布。样品测试前应先于523 K条件下真空脱气至少12 h,再进行测定;比表面积、孔径和孔容分别根据BET法-BJH模型进行计算。
图3为GO、GE、MGE的TEM照片。由图3(a)可知,GO被H2SO4氧化致使表面不平整,有较多沟壑,且GO内厚外薄,透明度不同表明GO层数并非单层;此外,GO中存在褶皱形貌能降低GO表面能。由图3(b)可知,GE成片状结构,表面褶皱较GO少,无团聚现象,表明还原过程较为成功。由图3(c)可知,MGE仍为片状结构、表面明显光滑,但因KOH刻蚀效果,在表面出现较多沟壑;此外,其边缘处明显比改性前变薄,层数也有所降低。沟壑和褶皱的存在,表明其上存在更多的潜在吸附位点,且MGE表明更为平坦,说明其分散性优于石墨烯,会有较高的吸附性能[15]。
图3 氧化石墨烯、石墨烯、改性石墨烯的TEM图Fig.3 TEM images of GO, GE and MGE
图4 氧化石墨烯、石墨烯和改性石墨烯的红外光谱图Fig.4 FT-IR patterns of GO, GE and MGE
图5为石墨、GO、石墨烯、MGE的XRD图谱。由图5(a)可知,石墨(002)面衍射特征峰出现在约2θ=26°处,该衍射峰强且尖锐;而图5(b)中GO的较强衍射峰出现在2θ=11°,此衍射峰属石墨的(001)面衍射峰,该衍射峰的出现表明因氧化作用产生的“插层效应”,增大了石墨层间距,破坏了石墨原有晶型,生成GO晶体结构[9]。图5(c)所示的石墨烯特征峰出现在2θ=25°处,与图5(a)所示的衍射峰位置相近,但该峰强变宽、变弱,表明还原作用可缩小石墨层间距,在破坏其原有晶体结构的同时增加无序性。此外,由图5(d)可知,MGE的衍射峰与石墨烯基本一致,峰强、峰型无明显变化,表明KOH未破坏石墨烯的晶体结构;这与文献中所描述相似,KOH起刻蚀、扩孔作用[19]。
图5 石墨、氧化石墨烯、石墨烯和改性石墨烯的XRD图Fig.5 XRD patterns of Graphite, GO, GE and MGE
图6 石墨烯和改性石墨烯的N2吸附-脱附等温线及孔径分布Fig.6 N2 adsorption-desorption isotherms and pore size distribution of GE and MGE
表1 石墨烯和改性石墨烯的BET数据Table 1 BET data for GE and MGE
为考察KOH浓度对MGE吸附甲苯性能的影响,以不同浓度的KOH溶液对石墨烯进行改性处理。图7为在实验温度为25 ℃、吸附剂质量为0.3 g、甲苯初始质量浓度为1 300 mg/m3下测得的5个不同KOH浓度梯度(2、4、6、8、10 mol/L)对MGE吸附甲苯性能曲线。表2列出了该条件下的MGE吸附甲苯的穿透时间、饱和吸附率及平衡时间。
图7 不同KOH浓度甲苯吸附曲线Fig.7 Toluene adsorption curve of different KOH concentration
由图7可知,5条甲苯吸附曲线趋势相似,均从平稳状态达到某点后吸附速率骤增,接着缓慢升高直至平缓到达了饱和吸附状态。从表2可以看出,随着KOH浓度的增加,MGE吸附甲苯的穿透时间、饱和时间及饱和吸附率均呈先增后减趋势,可归因于KOH浓度偏低时,氧化作用为主导,去除了残存H2O分子,在增强疏水相互作用的同时提高了吸附性能,而在较高浓度的KOH处理下,刻蚀占主导作用,提高了石墨烯的介孔含量,但大孔孔径和孔容亦随KOH浓度的增大而增加,甚至出现孔壁坍塌现象,抑制吸附过程。
表2 不同KOH浓度甲苯吸附性能参数Table 2 Toluene adsorption properties of different KOH concentration
为考察超声时间对MGE吸附性能的影响,以不同的超声时间(KOH浓度为6 mol/L,超声温度为25 ℃)处理石墨烯。图8是在实验温度为25 ℃、吸附剂质量为0.3 g、甲苯初始质量浓度为1 300 mg/m3条件下测得的5个不同超声时间(1、1.5、2、2.5、3 h)对MGE吸附甲苯性能曲线。表3列出了该条件下的MGE吸附甲苯的穿透时间、饱和吸附率及平衡时间。
图8 不同超声时间甲苯吸附曲线Fig.8 Toluene adsorption curve of different ultrasonic times
表3 不同超声时间甲苯吸附性能参数Table 3 Toluene adsorption properties of different ultrasonic times
从图8可知,5条吸附曲线的上升趋势相似。吸附初期,先平缓上升,到某点后吸附速度加快,最终缓慢吸附至饱和。从表3看出,随着超声时间的增加,改性石墨烯吸附甲苯的穿透时间、饱和时间以及平衡吸附率都是呈增加的趋势。主要原因可能是KOH与石墨烯接触与碰撞机率随超声时间的增加而增大,在石墨烯表面新增加了微孔、介孔含量,有利于吸附进行。
为考察改性温度对MGE吸附性能的影响,以不同改性温度(KOH浓度为6 mol/L,改性时间为3 h)处理石墨烯。图9是在实验温度为25 ℃、吸附剂质量为0.3 g、甲苯初始质量浓度为1 300 mg/m3条件下测得的3个不同改性温度(25、50、75 ℃)对MGE吸附甲苯性能曲线。表4列出了在此条件下的穿透时间、饱和时间及平衡吸附率。
由图9可知,随着改性温度增加,3条吸附曲线趋势相似,吸附速度均先加快,后趋于饱和。从表4可知,穿透时间、饱和时间及平衡吸附率随着改性温度的提高而增加,是因随温度的增加,分子运动加剧,KOH与石墨烯接触机率增加,氧化、刻蚀效果增强,除可减少残存H2O分子外,还能增加石墨烯的介孔含量。
图9 不同改性温度甲苯吸附曲线Fig.9 Toluene adsorption curve of different modification temperatures
表4 不同改性温度甲苯吸附性能参数Table 4 Toluene adsorption properties of different modification temperature
采用准一级动力学、准二级动力学模型和颗粒内扩散模型对动力学数据进行拟合分析,以更好地解释MGE对甲苯的吸附过程。其实验条件:甲苯初始浓度为1 300 mg/m3,实验温度为25 ℃、吸附剂质量为0.3 g。
准一级模型多用来描述物理吸附过程,其动力学方程形式[9,24]为
综上所述,优化基于B/S架构的高校人力资源管理系统设计与实现方案,必须设计完善的管理平台,细化人力资源培训工作,不断健全数据库管理系统。
ln(qe-qt)=lnqe-k1t;
准二级模型主要用于描述物理和复杂的化学吸附过程,其动力学方程形式[24]为
式中,qe和qt分别为平衡时和t时刻下的吸附率,10-3;k1为准一级吸附速率常数,min-1;k2为准二级吸附动力学速率常数,g/(mg·min)。拟合参数见表5。
颗粒内扩散模型的动力学方程式[25-26]为
qt=ki·t1/2+C.
式中,qt为吸附t时刻吸附剂对吸附质的吸附率,10-3;ki表示颗粒内扩散速率系数,mg/(g·min-0.5);C表示截距,1。具体拟合参数见表6。
表5 不同温度条件下吸附甲苯的动力学拟合参数Table 5 Kinetics fitting parameters of toluene adsorption at different temperature
图10为MGE吸附甲苯的动力学模型拟合结果。从图10(a)、(b)可以看出,准一级和准二级动力学模型所拟合的曲线均为一条平滑的直线,故MGE吸附甲苯过程可由这2个模型所描述。但由表5可知,准一级吸附动力学的R2较低,而准二级吸附动力学R2要更接近于1,说明准二级吸附动力学模型能更真实反应出MGE吸附甲苯的吸附机制,也即吸附过程包含复杂的物理吸附和化学吸附。
由表6和图10(c)分析可知,颗粒内扩散各阶段拟合曲线均不经过原点,且R2值较低、非完全线性关系,表明除颗粒内扩散作用外,存在如π-π键作用、孔道填充吸附等因素影响吸附过程。由图10(c)可知,MGE吸附甲苯由3个阶段构成:首先是比表面积影响的表面扩散阶段;其次为快速吸附阶段,因MGE表面官能团丰富,提供了更多吸附点位、提高了疏水性作用、π-π键作用、氢键作用[15];最后,缓慢吸附至饱和阶段,甲苯分子进入MGE的间隙,且吸附力的作用开始减弱至消失,之后缓慢吸附至饱和,这一阶段的主要影响因素是MGE的介孔含量、孔径孔容。
表6 不同温度条件下吸附甲苯的颗粒内扩散模型拟合参数Table 6 Fitting parameters of particle diffusion model for toluene adsorption at different temperatures
图10 改性石墨烯吸附甲苯的动力学模型拟合结果Fig.10 Fitting results of adsorption kinetics of toluene adsorption on MGE
图11为KOH改性石墨烯吸附甲苯的机制示意图。MGE吸附甲苯分子主要受孔道填充吸附、疏水性作用、π-π键相互作用和H键作用的控制。
孔道填充吸附作用是吸附剂的基本吸附作用。所制备的石墨烯经KOH刻蚀、氧化作用后,微介孔含量和平均孔径增加、比表面积高达439.24 m2/g。根据BJH法计算得,MGE平均孔径为3.91 nm,表明其孔径主要分布在0~2 nm,而甲苯的分子直径为0.65~0.68 nm,可进入微-介孔中;其次,碳基材料对憎水性有机污染物的吸附机制之一是疏水性作用[27]。由FT-IR表征可知,石墨烯经KOH刻蚀氧化后水分子含量减少,提高了材料疏水性能,而甲苯分子为憎水性物质,增强了甲苯分子在MGE中与水蒸气的竞争吸附力。
FT-IR表征发现,KOH氧化刻蚀作用能降低羟基(—OH)含量,并引入新的官能团羧基,而羟基和羧基可与甲苯分子所含甲基形成H键[28](图11)。研究[30]表明,吸附剂表面电荷和甲苯分子的甲基之间还可经电荷作用形成电荷辅助氢键(CAHB)。同样,MGE也存在此类氢键作用,从而增大了对甲苯的吸附性能,这与之前报道[31]相吻合。
图11 改性活性炭吸附甲苯机制示意图Fig.11 Mechanism of toluene adsorption on MGE composites
孔道填充吸附作用是吸附剂的吸附过程的基本作用,而疏水性作用、π-π键相互作用、H键作用等各类吸附作用力不一,在整个过程中不能确定各类吸附作用的贡献率。故推测MGE吸附甲苯分子的过程可能分为3个阶段:首先为表面扩散及孔道填充吸附,甲苯分子在MGE材料上扩散进入微介孔中;其次,憎水性甲苯分子与MGE材料及其所含官能团间的疏水性作用、π-π键相互作用、H键作用等共同作用,促使大量甲苯分子快速吸附于材料上;最后当吸附点位饱和,各吸附作用力减弱后,MGE材料缓慢吸附至饱和。
以活性炭纤维(ACF)、石墨烯作对比,考察制备的MGE对甲苯的吸附性能。在实验温度25 ℃、吸附剂质量为0.3 g、甲苯质量浓度为1 300 mg/m3下进行甲苯吸附实验。图12为不同吸附剂的甲苯吸附性能曲线。对比文献中其他材料对甲苯的吸附性能,结果见表7。
颗粒活性炭及活性炭纤维等传统吸附剂在VOCs吸附领域应用广泛,但其易燃性、易吸水、循环利用率低等特点限制了其在VOCs吸附领域的未来工业应用;石墨烯作为一种新型纳米多孔材料,比表面积、化学稳定性均优于活性炭。根据表7中数据可得,MGE对甲苯的吸附性能高于ZSM-5、ACF、AC及其改性材料,本研究中MGE的平衡吸附率高达212.75×10-3,分别是活性炭纤维、石墨烯的3.35和2.27倍。在高质量浓度下ACF对甲苯的吸附率高于MGE,表明MGE对甲苯的吸附性能优于表中所报道的材料。在未来石墨烯及其复合材料非常有望进一步应用于实际工业或室内环境条件下除去VOCs。
图12 不同吸附剂的甲苯吸附性能曲线Fig.12 Adsorption performance curve of different adsorbents on toluene
表7 不同多孔材料对甲苯的吸附能力比较Table 7 Comparison of toluene adsorption capacitiy of different porous materials
(2)在一定条件下,甲苯饱和吸附率与超声时间、温度成正相关;但随KOH浓度的增加,MGE的吸附穿透点、饱和点、甲苯饱和吸附容量均呈先增后减趋势;不同材料吸附性能为MGE>石墨烯>ACF。表明MGE具有优良的吸附性能。
(3)MGE吸附甲苯的吸附动力学过程可由准二级动力学模型更好地描述。吸附过程主要受孔道填充吸附、疏水性作用、π-π键相互作用、H键作用的控制。