邓 妍 王娟玲 王创云 赵 丽 张丽光 郭虹霞 郭红霞 秦丽霞 王美霞
研究简报
生物菌肥与无机肥配施对藜麦农艺性状、产量性状及品质的影响
邓 妍1王娟玲2,*王创云1赵 丽1张丽光1郭虹霞1郭红霞3秦丽霞2王美霞1
1山西农业大学农学院, 山西太原 030031;2山西农业大学, 山西太原 030031;3山西大学, 山西太原 030031
为探索适宜晋北地区推广应用的藜麦栽培管理模式, 实现藜麦产量和品质提升, 本试验选用当地自有品种华青1号, 采用单因素完全随机设计, 以有机肥和无机肥配施比例为变量, 设常规施肥CK (有机肥0 kg hm-2, 尿素和磷酸二胺各450 kg hm-2)、有机肥和无机肥配施比例T1 (有机肥1500 kg hm-2, 尿素和磷酸二胺各225 kg hm-2)、T2 (有机肥2250 kg hm-2, 尿素和磷酸二胺各225 kg hm-2)、T3 (有机肥3000 kg hm-2, 尿素和磷酸二胺各225 kg hm-2) 4个处理, 分析藜麦生育进程、农艺性状的差异, 揭示藜麦产量和品质同步提升的农学性状, 探求藜麦高产优质适宜的有机无机配施比例。结果表明, 生物菌肥与无机肥配施可增加土壤表层有机质含量, 降低碱解氮和有效磷含量及土壤pH, 显著增加速效钾含量, 且随生物菌肥施用量的增加, 土壤中有机质、碱解氮、有效磷和速效钾含量提高, pH降低; 与常规施肥CK相比, 配施生物菌肥能够缩短藜麦生育期, 提高成熟期藜麦株高、茎秆直径和茎秆强度, 从而降低倒伏率; 增加藜麦分枝数、千粒重, 提高了产量; 可增加蛋白质和脂肪含量, T2处理表现明显; 降低淀粉含量, 以T2处理最低, 但与其他两处理间差异不显著; 生物菌肥与无机肥配施可提高植株对肥料的利用, 随生物菌肥施用量的增加, 氮肥利用效率、磷肥利用效率及氮磷肥偏生产力先升后降, 均以T2处理最高。相关分析结果表明, 藜麦籽粒产量与千粒重的关系最密切, 籽粒蛋白质含量与产量、千粒重、分枝数和茎秆强度也呈正相关, 籽粒淀粉含量与千粒重呈负相关。因此, 本试验条件下, 晋北地区有机无机配施量为氮磷肥各225 kg hm-2配施生物有机菌肥2250 kg hm-2时利于藜麦实现产量品质同步提升。
藜麦; 生物菌肥; 农艺性状; 产量; 品质
藜麦(Willd.)属双子叶一年生藜科植物, 具有耐寒耐旱、耐瘠薄等特性, 环境适应性强, 种植范围广, 是唯一一种含有完全蛋白且可满足人体基本营养需求的单体植物, 被联合国粮农组织(FAO)称为“超级食物”[1-4]。目前, 河北、甘肃、山西、青海、宁夏等省区已有大面积种植[5-7], 平均产量为800 kg hm-2, 明显低于主粮作物(玉米、小麦)[8]。虽然, 藜麦的全营养价值被人们认可, 但是藜麦的种植条件适宜在海拔高、温度低的高寒地区, 该区的降雨量少且分布不均(集中于7月至9月, 正是藜麦开花、结实籽粒的关键时期)、土壤贫瘠、倒伏严重(后期极易受到风雨天气影响), 是目前藜麦产量低而不稳、品质不高或不稳定的主要限制因素。农户虽了解有机质对改良土壤结构有益处, 但还是忽视有机肥的投入, 大多选择见效快的化肥来培肥土壤, 由于盲目施肥从而造成了土壤养分不平衡、降低产量、化肥利用效率低、环境污染等问题[9-11]。针对藜麦生产上存在的产量和品质问题, 栽培工作者采用合理施肥调控藜麦生长、保证藜麦产量和品质做了初步的研究[12]。
施氮量影响藜麦生长的研究表明, 施氮肥较不施氮肥可显著提高藜麦产量, 且以施氮量60 kg hm-2基追肥比1∶2时效果更好, 但施氮量超过60 kg hm-2导致营养生长提高, 生殖生长降低, 产量降低[13]。而有机肥和无机肥配施较单施有机肥的提质增效明显, 已成为我国持续农业发展的重要农业技术措施[14-16]。有研究表明, 有机肥与化肥配合施用不仅能保蓄养分, 改善土壤环境从而提高土壤供肥能力, 还能全面供应作物生长所需养分, 从而提高作物产量及养分利用效率[17-18]; 黄土高原冬小麦在连续18年施氮120 kg hm-2的基础上配施有机肥, 较单施化肥增加产量18.4%[19]。此外, 有机肥因包含不同养分有多种类型, 生物菌剂有机肥是其中一种类型, 其含有丰富的有机质、氨基酸、蛋白质等有机养分, 同时也是氮、磷、钾等无机养分的重要来源[20], 可补充有益菌群, 激发土壤活力而抑制有害病菌, 长期施用可修复改良土壤, 促进土壤生态平衡。董立胜等[21]在甘肃天祝县的研究表明, 减少化肥、增施生物有机肥可提高土壤有机质含量、缩短藜麦生育期, 提高产量和效益。
山西静乐被称为中国“藜麦之乡”, 于2008年开始在山西省规模化种植, 在品种选育、栽培技术、需肥规律和病虫害防治等方面尚未形成完整的技术体系[22-23], 且前人针对藜麦在有机无机肥配施方面的研究主要集中于甘肃等地, 对黄土高原东南部晋北地区的研究甚少。因此, 本试验采用生物菌剂有机肥与无机肥配施, 通过在晋北地区持续2年的田间定位试验, 对华青1号藜麦品种在生物菌肥和无机肥不同配施处理下的土壤改良、作物生长发育、茎秆性状、产量和品质性状方面进行深入分析, 旨在阐明藜麦肥料高效利用、产量提升的农学理论机制, 明确黄土高原东南部晋北地区藜麦适宜的有机无机配施施肥模式, 为藜麦高效优质栽培技术提供理论依据和技术支撑。
试验于2018—2019年连续2年在山西省忻州市静乐县(38°3′N, 111°9′E)试验示范基地进行。该地区海拔1140~2421 m, 属温带季风气候, 四季分明, 夏季暖热且昼夜温差大, 年降雨量380~500 mm, 年平均气温7.2℃, 年日照时数在2500 h以上, 年平均无霜期120~135 d。2018、2019年度降水量分别为517.9 mm和444.8 mm, 增加该区的作物种植模式。2018年试验基地0~20 cm土层土壤含有机质7.50 g kg-1、全氮89 mg kg-1、速效钾132 mg kg-1、有效磷20.10 mg kg-1, pH 8.18; 2019年土壤含有机质7.82 g kg-1、全氮95 mg kg-1、速效钾138 mg kg-1、有效磷21.28 mg kg-1, pH 7.92。该区域土壤为黄黏土, 土壤呈弱碱性, 有机质含量较低。
本试验选用华青1号藜麦品种为供试材料, 采用单因素完全随机设计, 连续2年以有机肥和无机肥配施量为变量, 设常规施肥CK和3种有机无机肥配施比例共4个水平, 小区面积40 m2。其中, 常规施肥CK处理为尿素和磷酸二胺各施450 kg hm-2, 不施有机肥; T1~T3为有机肥和无机肥不同配施比例处理, 有机肥施用量分别为1500 (T1)、2250 (T2)、3000 kg hm-2(T3), 无机肥施用量均为尿素和磷酸二胺各225 kg hm-2, 其中尿素中总氮含量≥46.4%, 磷酸二胺中N、P、K有效含量为18%、46%和0, 有机肥为生物菌剂有机肥, 其有效活菌数≥2.0亿g-1, 有机质≥40.0%, 播种前将肥料以基肥形式施入。2018年于5月22日进行点播, 9月中旬收获; 2019年于6月20日进行点播, 9月底收获。开沟点播, 每穴点3粒种子, 播种深度2 cm, 行距50 cm, 株距30 cm, 播种量为9 kg hm-2, 四至六叶期间苗, 每穴留苗1株。其他田间管理按当地高产田进行, 及时除草、防治病虫害等。
1.3.1 生育期观测 记录藜麦主要生育时期的具体日期, 包括播种期、出苗期、分枝期、开花期、成熟期等, 以50%植株达到此时期生育进程为依据。
1.3.2 农艺性状 株高: 成熟期每小区中取生长均匀且具有代表性的植株20株, 测定其根茎部至主茎顶部的垂直距离。茎秆直径: 成熟期每小区取5株代表性植株, 用游标卡尺量取主茎秆底部直径。茎秆强度: 成熟期用浙江托普仪器有限公司生产的YYD-1型茎秆强度测定仪, 将测头垂直于茎秆方向匀速缓慢插入节间中部至破裂, 读取其最大值, 3次重复。倒伏调查: 成熟期调查各处理小区植株倒伏情况, 记录茎秆折断的株数、根部倒伏株数(与地面夹角<30°), 并计算倒伏率, 倒伏率=折断株数/小区总株数×100%。
1.3.3 植株干物质量和含氮率 藜麦成熟期进行植株取样, 于105℃杀青30 min, 85℃烘至恒重后称量, 记录干物质量, 用联合测定法测定植株含氮率和含磷率, 用H2SO4-H2O2-靛酚蓝比色法测定含氮率, 用磷钼酸铵比色法测定含磷率, 用于计算氮素积累量、磷素积累量及利用效率。
1.3.4 产量性状 在藜麦叶片80%枯黄并有部分开始脱落时进行收获测产, 每小区取5株分别测定分枝数、千粒重, 并计算产量。
1.3.5 品质 采用农业行业标准NY/T 3, 蛋白质-氮的换算系数为6.25, 使用FOSS2300型全自动定氮仪(丹麦福斯特卡托公司)测定蛋白含量。采用农业行业标准NY/T11, 使用WZZ-1S数字式旋光分析仪(上海物理光学仪器厂)测定淀粉含量。采用国家标准GB/T 5512中索氏抽提法测定脂肪含量。
1.3.6 土壤养分 藜麦收获后各小区取土测定耕层土壤的有机质、碱解氮、有效磷、速效钾、pH。
具体参数及计算方法如下[9]:
植株氮素积累量(kg hm-2) = 植株干物质量(kg hm-2)×含氮率(%)
氮肥利用效率(kg kg-1) = 籽粒产量(kg hm-2)/氮素积累量(kg hm-2)
氮肥偏生产力(kg kg-1) = 籽粒产量(kg hm-2)/施氮量(kg hm-2)
植株磷素积累量(kg hm-2) = 植株干物质量(kg hm-2)×含氮率(%)
磷肥利用效率(kg kg-1) = 籽粒产量(kg hm-2)/磷素积累量(kg hm-2)
磷肥偏生产力(kg kg-1) = 籽粒产量(kg hm-2)/施磷量(kg hm-2)
采用Microsoft Excel 2016软件处理数据并作图; 采用SPSS 25.0软件进行统计分析, 用LSD法进行差异显著性检验, 显著性水平设定为=0.05和0.01。
由表1可知, 与常规施肥CK相比, 生物菌肥与无机肥配施增加土壤中有机质的含量, 降低碱解氮和有效磷的含量及pH, 显著增加速效钾含量。T1~T3处理下有机质平均含量较不施生物菌肥分别提高了8.8%、21.0%和29.3%。2018年, 随着配施生物菌肥量的增多, 有机质含量显著增加, 碱解氮含量增加, 但T1和T2未达显著水平, 有效磷、速效钾和pH均增加, 但处理间差异不显著。可见, 增加生物菌肥的施用量能够有效提高土壤肥力, 进而促进藜麦生长。
表1 生物菌肥与无机肥配施对土壤肥力的影响
CK: 有机肥0 kg hm-2、尿素和磷酸二胺各450 kg hm-2; T1: 有机肥1500 kg hm-2、尿素和磷酸二胺各225 kg hm-2; T2: 有机肥2250 kg hm-2、尿素和磷酸二胺各225 kg hm-2; T3: 有机肥3000 kg hm-2、尿素和磷酸二胺各225 kg hm-2。同列标以不同小写字母表示在0.05水平差异显著。
CK : 0 kg hm-2organic fertilizer, 450 kg hm-2each for urea and diamine phosphate; T1: 1500 kg hm-2organic fertilizer, 225 kg hm-2each for urea and diamine phosphate; T2: 2250 kg hm-2organic fertilizer, 225 kg hm-2each for urea and diamine phosphate; T3: 3000 kg hm-2organic fertilizer, 225 kg hm-2each for urea and diamine phosphate. Values within a column followed by different lowercase letters mean significant differences at the 0.05 probability level.
不同生物菌肥和无机肥配施比例对藜麦生育期的影响不同(表2), 与CK相比, 生物菌肥与无机肥配施能够缩短藜麦的生育期。2018年, T2处理下出苗期持续时间最短, T1处理下开花期持续时间最短, 分枝期和成熟期以T2和T3少于T1; 2019年, T2处理下出苗期持续时间最短, T3处理下分枝期持续时间最短, T1处理下开花期和成熟期持续时间最短。
表2 生物菌肥与无机肥配施对藜麦生育期的影响
处理同表1。Treatments are the same as those given in Table 1.
2.3.1 成熟期农艺性状 与常规施肥CK相比, 生物菌肥与无机肥配施可降低藜麦的株高和倒伏率, 增大茎秆直径和茎秆强度(图1)。随着配施生物菌肥量的增多, 株高和倒伏率呈现先降低后增加的趋势, 在T2处理下达到最低, 且在2019年显著低于T3处理; 茎秆直径和茎秆强度呈现先增加后降低的趋势, 在T2处理下达到最大值, 且T2处理下茎秆直径显著大于T3处理, T2处理下茎秆强度显著大于T1处理。
2.3.2 产量性状 与常规施肥CK相比, 生物菌肥与无机肥配施有利于分枝数、千粒重和产量的提高(图2)。随着配施生物菌肥量的增多, 产量性状呈现先增加后降低的趋势, 以T2表现最好, T1表现最差。2018—2019年, T2和T3处理下分枝数显著大于T1, 两处理间无显著差异; T2处理下千粒重大于T3和T1; T2处理下产量显著高于T3和T1。与T1和T3相比, T2处理下分枝数增加了4.8%~13.4%, 千粒重增加了2.3%~8.2%, 产量增加了2.7%~7.2%, 且差异达到显著水平。可见, 生物菌肥2250 kg hm-2+ 尿素和磷酸二胺各225 kg hm-2有利于产量性状的增加。
与常规施肥CK相比, 生物菌肥与无机肥配施有利于蛋白质和脂肪含量的提高, 同时可导致淀粉含量下降(表3)。随着配施无机肥量的增多, 蛋白质和脂肪含量呈现先增加后降低的趋势, 以T2表现最好, T1表现最差, 但2018年差异不显著, 2019年TI与T2、T3差异显著; 淀粉含量呈先降低后增加的趋势, 以T2含量最低, 但与T1、T3差异不显著。可见, 生物菌肥2250 kg hm-2+ 尿素和磷酸二胺各225 kg hm-2增加了蛋白质和脂肪, 同时降低了淀粉的含量。
藜麦产量和农艺性状、品质性状之间存在一定相关性(图3)。藜麦产量与其他农艺性状的相关程度依次为千粒重>分枝数>茎秆强度>茎秆直径; 茎秆直径与茎秆强度、分枝数、千粒重和产量呈极显著正相关, 并与植株倒伏率呈极显著负相关; 藜麦千粒重与产量和蛋白质呈极显著正相关, 而与籽粒淀粉含量呈负相关; 籽粒中蛋白质含量与产量、千粒重、分枝数和茎秆强度呈正相关, 与倒伏率呈负相关。
与常规施肥CK相比, 生物菌肥与无机肥配施可提高藜麦的氮素利用效率、磷素利用效率及氮磷肥的偏生产力(表4)。2018年, 随着配施生物菌肥量的增多, 氮素利用效率和磷素利用效率先增加后降低, 以T2处理表现最好, 氮磷肥的肥料偏生产力提高, 以T2最高, 但T2和T3两处理间未达显著水平; 2019年, 氮素利用效率、磷素利用效率及氮磷肥偏生产力均先增加后降低, 以T2处理显著最高, T1和T3未达显著水平。可见, 增加生物菌肥的施用量能够有效提高藜麦植株对肥料的利用, 实现氮肥和磷肥的高效利用, 以生物菌肥2250 kg hm-2+ 尿素和磷酸二胺各225 kg hm-2效果最佳。
处理同表1。柱上标以不同小写字母表示在0.05水平差异显著。
Treatments are the same as those given in Table 1. Different lowercase letters above the bars mean significant differences at the 0.05 probability level.
处理同表1。柱上标以不同小写字母表示在0.05水平差异显著。
Treatments are the same as those given in Table 1. Different lowercase letters above the bars mean significant differences at the 0.05 probability level.
生物有机肥投入可以改善土壤, 对于蓄保土壤养分有明显作用。有研究表明, 合理施用有机肥可增加土壤中有机质、全氮等的含量, 降低土壤矿化程度, 使土壤中有机物残留更多, 从而能够培肥地力, 促进作物生长, 且有机肥料中的氮养分释放速率比无机肥料中的氮养分释放速率迟缓, 可以更好的在植物生育后期为植物提供养分, 改善土壤的化学养分, 增加肥料利用效率, 改良土壤, 提高农作物产量[24-27]。本试验条件下, 生物菌肥与无机肥配施增加了土壤中有机质的含量, 降低碱解氮和有效磷的含量及pH, 显著增加速效钾含量, 且随着生物菌肥施用量的增加, 土壤中有机质、碱解氮、有效磷和速效钾的含量提高, 土壤pH降低。常规施肥没有外源钾肥, 所以土壤中钾含量最低, 本试验表明, 随着生物菌肥施量的增加, 钾含量提高, pH降低。此外, 配施生物菌肥有利于提高植株对肥料的利用, 在一定程度上减少氮肥和磷肥的使用, 降低生产成本, 有利于实现高效绿色生产。
表3 有机无机肥配施对藜麦品质的影响(2018-2019)
处理同表1。同列标以不同小写字母表示在0.05水平差异显著。
Treatments are the same as those given in Table 1. Values within a column followed by different lowercase letters mean significant differences at the 0.05 probability level.
图中气泡与数字对称,*表示在< 0.05水平显著,**表示在< 0.01水平显著。1: 株高;2: 茎秆直径;3: 茎秆强度;4: 倒伏率;5: 分枝数;6: 千粒重;7: 产量;8: 蛋白质含量;9: 脂肪含量;10: 淀粉含量。
Bubble and number symmetry in figures,*: significant differences at< 0.05,**: significant differences at< 0.01.1: plant height;2: stem diameter;3: stalk strength;4: lodging rate;5: branch number;6: thousand grain weight;7: yield;8: protein content;9: fat content;10: amylum content.
有机肥含有较全面的矿质营养, 能够改善土壤的理化性质、团粒结构和微生物数量, 提高土壤转化酶、磷酸酶、过氧化氢酶和脲酶活性[28-29], 且作用是潜在和持久的,因此可持续提高作物的产量。为维持耕地的可持续生产能力, 提高藜麦产量和品质, 减少化肥用量的同时增施有机肥。董立胜等[21]在甘肃天祝县研究发现, 减少化肥用量和增施生物有机肥可提高藜麦产量和效益, 以尿素300 kg hm-2+ 磷酸二铵300 kg hm-2+ 有机肥2400 kg hm-2的增产增收效果最佳, 与本试验结果相似。木合塔尔·扎热等[30]研究发现, 有机肥与化肥配施对骏枣果实可溶性糖、糖酸比及Vc含量影响不尽相同。河北张家口市的引种试验表明, 参试品种LM-4产量达3637.32 kg hm-2, 籽粒饱满, 千粒重较高, 蛋白质和淀粉含量适中, 脂肪含量偏高[6]。本试验中配施生物有机菌肥能够有效增加蛋白质和脂肪含量, 分别达5.3%~16.7%和0.5%~3.8%, 均以有机肥2250 kg hm-2+ 尿素和磷酸二胺各225 kg hm-2表现最好, 对淀粉含量无显著影响。
表4 生物菌肥与无机肥配施对藜麦肥料利用的影响
处理同表1。同列标以不同小写字母表示在0.05水平差异显著。
Treatments are the same as those given in Table 1. Values within a column followed by different lowercase letters mean significant differences at the 0.05 probability level.
因此, 一定量的生物菌肥和化肥配合使用可改善土壤理化性质, 长效提高地力, 改善藜麦的生长状态, 降低倒伏。同时可提高藜麦植株对氮、磷的利用率, 提高籽粒品质, 减少对氮磷的需求, 降低因过量化肥的使用而造成的环境污染及生产成本。本试验区最适配施比例为有机肥2250 kg hm-2+ 尿素和磷酸二胺各225 kg hm-2, 该配比可以在实现产量增加的基础上保证品质。
[1] Pasko P, Barton H, Zagrodzki P, Izewska A, Krosniak M, Gawlik M, Gorinstein S. Effect of diet supplemented with quinoa seeds on oxidative status in plasma and selected tissues of high fructose-fed rats., 2010, 65: 146–151.
[2] Repo-Carrasco R, Espinoza C, Jacobsen S E. Nutritional value and use of the Andean crops quinoa () and kaniwa ()., 2003, 19: 179–189.
[3] White P L, Alvistur E, Diaz C, Visas E, White H S, Collazos C. Nutrient content and protein quality of quinoa and cafiihua, edible seed products of the Andes mountains., 1955, 3: 351–355.
[4] Jacobsen S E, Mujica A, Jensen C R. The resistance of quinoa (Willd.) to adverse abiotic factors., 2003, 19: 99–109.
[5] 李娜娜, 丁汉凤, 郝俊杰, 宮永超, 蒲艳艳, 裴艳婷, 刘保民, 田茜, 郭秀秀. 藜麦在中国的适应性种植及发展展望. 中国农学通报, 2017, 33(10): 31–36. Li N N, Ding H F, Hao J J, Gong Y C, Pu Y Y, Pei Y T, Liu B M, Tian Q, Guo X X. The adaptive planting and development prospect of quinoa in China., 2017, 33(10): 31–36 (in Chinese with English abstract).
[6] 周海涛, 刘浩, 么杨, 杨修仕, 高文杰, 杨才, 任贵兴. 藜麦在张家口地区试种的表现与评价. 植物遗传资源学报, 2014, 15: 222–227. Zhou H T, Liu H, Yao Y, Yang X S, Gao W J, Yang C, Ren G X. Evaluation of agronomic and quality characters of Quinoa cultivated in Zhangjiakou., 2014, 15: 222–227 (in Chinese with English abstract).
[7] 马文彪. 吕梁山北段高寒山区藜麦高产栽培技术. 中国农业信息, 2015, (8): 76–77. Ma W B. High yield cultivation ofin Alpine mountainous area of northern Luliang Mountain., 2015, (8): 76–77 (in Chinese).
[8] 张体付, 戚维聪, 顾闽峰, 张晓林, 李坦, 赵涵. 藜麦EST-SSR的开发及通用性分析. 作物学报, 2016, 42: 492–500. Zhang T F, Qi W C, Gu M F, Zhang X L, Li T, Zhao H. Exploration and transferability evaluation of EST-SSRs in quinoa., 2016, 42: 492–500 (in Chinese with English abstract).
[9] 娄庭, 龙怀玉, 杨丽娟, 陈宝鸿, 周水亮, 穆真. 在过量施氮农田中减氮和有机无机配施对土壤质量及作物产量的影响. 中国土壤与肥料, 2010, (2): 11–15. Lou T, Long H Y, Yang L J, Chen B H, Zhou Y L, Mu Z. The effect of fertilizer ratio and rate on soil quality and crop yields in the farmland of excessive use of nitrogenous fertilizers., 2010, (2): 11–15 (in Chinese with English abstract).
[10] 张淑香, 张文菊, 沈仁芳, 徐明岗. 我国典型农田长期施肥土壤肥力变化与研究展望. 植物营养与肥料学报, 2015, 21: 1389–1393. Zhang S X, Zhang W J, Shen R F, Xu M G. Variation of soil quality in typical farmlands in China under long-term fertilization and research expedition., 2015, 21: 1389–1393 (in Chinese with English abstract).
[11] Gu B J, Ju X T, Chang J, Ge Y, Vitousek P M. Integrated reactive nitrogen budgets and future trends in China., 2015, 112: 8792–8797.
[12] 任永峰. 内蒙古阴山北麓藜麦生长发育、水肥利用和产量形成特性研究. 中国农业大学博士学位论文, 北京, 2018. Ren Y F. Characterization of the Growth and Development, Water and Fertilizer Utilization and Yield Formation of Quinoa in the Northern Yunshan Mountain of Inner Mongolia. PhD Dissertation of China Agricultural University, Beijing, China, 2018 (in Chinese with English abstract).
[13] 康小华, 沈宝云, 王海龙, 张俊莲, 胡静, 郭谋子, 李志龙, 陈霞珍, 马绍丽, 袁海丽. 不同氮肥施用量及基追比对藜麦产量及经济性状的影响. 农学学报, 2017, 7(12): 34–37. Kang X H, Shen B Y, Wang H L, Zhang J L, Hu J, Guo M Z, Li Z L, Chen X Z, Ma S L, Yuan H L. Effects of nitrogen fertilizer application rate and ratio of base to topdressing on yield and economic characters of quinoa., 2017, 7(12): 34–37 (in Chinese with English abstract).
[14] 谢军, 赵亚南, 陈轩敬, 李丹萍, 徐春丽, 王珂, 张跃强, 石孝均. 有机肥氮替代化肥氮提高玉米产量和氮素吸收利用效率. 中国农业科学, 2016, 49: 3934–3943. Xie J, Zhao Y N, Chen X J, Li D P, Xu C L, Wang K, Zhang Y Q, Shi X J. Nitrogen of organic manure replacing chemical nitrogenous fertilizer improve maize yield and nitrogen uptake and utilization efficiency.,2016, 49: 3934–3943 (in Chinese with English abstract).
[15] 张婧, 王平, 刘淑英, 康慧玲, 王瑞. 有机无机肥配施对甘肃省秦王川灌区蚕豆产量、养分吸收量及肥料利用率的影响. 干旱区资源与环境, 2017, 31(1): 154–159. Zhang J, Wang P, Liu S Y, Kang H L, Wang R. Effects of organic and chemical fertilization on dry biomass, grain yield, nutrient uptake and fertilizer utilization efficiency of faba bean in northwest hemi-dry-land., 2017, 31(1): 154–159 (in Chinese with English abstract).
[16] 张绪成, 于显枫, 王红丽, 侯慧芝, 方彦杰, 马一凡. 半干旱区减氮增钾、有机肥替代对全膜覆盖垄沟种植马铃薯水肥利用和生物量积累的调控. 中国农业科学, 2016, 49: 852–864. Zhang X C, Yu X F, Wang H L, Hou H Z, Fang Y J, Ma Y F. Regulations of reduced chemical nitrogen, potassium fertilizer application and organic manure substitution on potato water fertilizer utilization and biomass assimilation under whole field plastics mulching and ridge-furrow planting system on semi-arid area., 2016, 49: 852–864 (in Chinese with English abstract).
[17] 赵隽, 董树亭, 刘鹏, 张吉旺, 赵斌. 有机无机肥长期定位配施对冬小麦群体光合特性及籽粒产量的影响. 应用生态学报, 2015, 26: 2362–2370. Zhao J, Dong S T, Liu P, Zhang J W, Zhao B. Effects of long-term mixed application of organic and inorganic fertilizers on canopy apparent photosynthesis and yield of winter wheat., 2015, 26: 2362–2370 (in Chinese with English abstract).
[18] Liang B, Zhao W, Yang X Y, Zhou J B. Fate of nitrogen-15 as influenced by soil and nutrient management history in a 19-year wheat–maize experiment., 2013, 144: 126–134.
[19] 郝明德, 来璐, 王改玲, 党廷辉. 黄土高原塬区旱地长期施肥对小麦产量的影响. 应用生态学报, 2003, 14: 1893–1896. Hao M D, Lai L, Wang G L, Dang T H. Effects of long-term fertilization on wheat yield on Loess Plateau., 2003, 14: 1893–1896 (in Chinese with English abstract).
[20] 莫淑勋, 钱菊芳, 钱承梁. 猪粪等有机肥料中磷素养分循环再利用的研究. 土壤学报, 1991, 28: 309–316. Mo S X, Qian J F, Qian C L. Study on the recycling and reuse of phosphorus in pig manure and other organic fertilizers., 1991, 28: 309–316 (in Chinese with English abstract).
[21] 董立盛, 孙小娟, 赵生香. 有机无机肥料配施对藜麦产量及土壤肥力的影响. 中国农技推广, 2019, (2): 52–54. Dong L S, Sun X J, Zhao S X. Effects of combined application of organic and inorganic fertilizers on yield of quinoa and soil fertility., 2019, (2): 52–54 (in Chinese).
[22] 任贵兴, 杨修仕, 么杨. 中国藜麦产业现状. 作物杂志, 2015, (5): 1–5. Ren G X, Yang X S, Yao Y. Current situation of quinoa industry in China., 2015, (5): 1–5 (in Chinese with English abstract).
[23] 郭建芳, 武小平, 丁健. 山西藜麦产业现状及发展对策. 农业科技通讯, 2018, (11): 4–6. Guo J F, Wu X P, Ding J. Current situation and development countermeasures of quinoa industry in Shanxi province., 2018, (11): 4–6 (in Chinese).
[24] Zhao J, Ni T, Li J, Lu Q, Fang Z Y, Huang Q W, Zhang R F, Li R, Shen B, Shen Q R. Effects of organic–inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice–wheat cropping system., 2016, 99: 1–12.
[25] Liu E K, Yan C R, Mei X R, He W Q, So Hwat B, Ding L P, Liu Q, Lin S, Fan T L. Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China., 2010, 158: 173–180.
[26] 宇万太, 姜子绍, 马强, 周桦. 施用有机肥对土壤肥力的影响. 植物营养与肥料学报, 2009, 15: 1057–1064. Yu W T, Jiang Z S, Ma Q, Zhou H. Effects of application manure on soil fertility., 2009, 15: 1057–1064 (in Chinese with English abstract).
[27] 王玉红, 王长松, 陈莉萍, 胡姚凯, 金尤雅. 不同有机肥与无机肥配施对小麦产量、效益及土壤养分的影响. 作物研究, 2016, 30: 527–530. Wang Y H, Wang C S, Chen L P, Hu Y K, Jin Y Y. Effects of the combined application of different organic and inorganic fertilizers on wheat yield, benefit and soil nutrient., 2016, 30: 527–530 (in Chinese with English abstract).
[28] 孙瑞莲, 赵秉强, 朱鲁生, 徐晶, 张夫道. 长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用. 植物营养与肥料学报, 2003, 9: 406–410. Sun R L, Zhao B Q, Zhu L S, Xu J, Zhang F D. Effects of long-term fertilization on soil enzyme activities and its role in adjusting-controlling soil fertility., 2003, 9: 406–410 (in Chinese with English abstract).
[29] Isidora M, Teresa H, Carlos G, Alfredo P. Influence of one or two successive annual applications of organic fertilizers on the enzyme activity of a soil under barley cultivation., 2001,79: 147–154.
[30] 木合塔尔·扎热, 哈地尔·依沙克, 赵蕾, 陶秀冬, 史彦江, 吴正保. 有机肥与化肥配施对土壤微生物、土质及骏枣果实品质的影响. 干旱地区农业研究, 2017, 35(5): 182–188. Muhtar Z, Abdukadir I, Zhao L, Tao X D, Shi Y J, Wu Z B. Effects of different application proportion of organic manure and chemical fertilizer on fruit quality of Jun jujube, soil microorganism and properties., 2017, 35(5): 182–188 (in Chinese with English abstract).
Effects of combined application of bio-bacterial fertilizer and inorganic fertilizer on agronomic characters, yield, and quality in quinoa
DENG Yan1, WANG Juan-Ling2,*, WANG Chuang-Yun1, ZHAO Li1, ZHANG Li-Guang1, GUO Hong-Xia1, GUO Hong-Xia3, QIN Li-Xia2, and WANG Mei-Xia1
1Agricultural College, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China;2Shanxi Agricultural University, Taiyuan 030031, Shanxi, China;3Shanxi University, Taiyuan 030031, Shanxi, China
To explore the suitable cultivation and management model of quinoa in northern Shanxi province, and therefore improve the yield and quality of quinoa, an experiment was conducted with cultivar Huaqing 1 as plant material. The effects of varied proportion of organic and inorganic fertilizer on the growth process of quinoa, agronomic traits, yield, and quality were studied using single factor completely random design. There were three treatments including T1 (1500 kg hm-2organic fertilizer, 225 kg hm-2each for urea and diamine phosphate), T2 (2250 kg hm-2organic fertilizer, 225 kg hm-2each for urea and diamine phosphate), and T3 (3000 kg hm-2organic fertilizer, 225 kg hm-2each for urea and diamine phosphate), conventional fertilization (0 kg hm-2organic fertilizer, 450 kg hm-2each for urea and diamine phosphate) was the control. The results showed that the combined biological bacterial fertilizer and inorganic fertilizer could increase the content of organic matter, available nitrogen, phosphorus, and potassium in soil, and decrease the pH of soil. Compared with CK, the combined biological fertilizer could effectively shorten the growth period, and increase plant height, stem diameter and stem strength at mature stage, thus reduce lodging rate. Also, combined biological fertilizer treatment promoted the branches and 1000-grain weight of quinoa, and improved quinoa yield, protein content and fat content, and the above favorite effects were obviously showed in T2 treatment. Starch content was the lowest in T2 treatment, but there was no significant differences among the three treatments. With the increase application of bacterial fertilizer, nitrogen use efficiency, phosphorus fertilizer use efficiency and partial productivity of nitrogen and phosphorus fertilizer was firstly increased and then decreased. Among three groups, the above index was the highest in T2 treatment. Correlation analysis showed that the relationship between the yield and 1000-grain weight was the most correlated, and protein content in grains was positively correlated with yield, 1000-grain weight, branch number, and stem strength, but negatively correlated with lodging rate. In conclusion, under the condition of current experiment, the suitable nitrogen application rate for quinoa was the combination of urea (225 kg hm-2), diamine phosphate (225 kg hm-2) and inorganic fertilizer (2250 kg hm-2).
quinoa (Willd.); bio-bacterial fertilizer; agronomic characters; yield; quality
10.3724/SP.J.1006.2021.04171
本研究由山西省农业科学院博士后专项(YCX2018D2BH2), 山西省深度贫困县科技精准扶贫专项(2020FP-05), 中国农业科学院科技创新工程协同创新项目(CAAS-XTCX20190025)和山西农谷建设科研专项(SXNGJSKYZX201704)资助。
This study was supported by the Post-Doctoral Research Project of Shanxi Academy of Agricultural Sciences (YCX2018D2BH2), the Science and Technology Precision Poverty Alleviation in Deep Poverty-stricken County of Shanxi Province (2020FP-05), the Science and Technology Innovation Project Collaborative Innovation Project of Chinese Academy of Agricultural Sciences (CAAS-XTCX20190025), and the Special Research Project of Shanxi Agricultural Valley Construction (SXNGJSKYZX201704).
王娟玲, E-mail: 13994267508@163.com
E-mail: dengyan-666@163.com
2020-07-27;
2020-12-01;
2021-01-10.
URL: https://kns.cnki.net/kcms/detail/11.1809.S.20210108.1423.006.html