乔亚振 王大凤 卢树昌 李夏雯 谭婷婷 陈霖 林子欣 郭蓉
摘 要:集約化设施土壤氮素积累日益严重,导致土壤氮素环境风险增大。试验不同用量水平生物炭,即0%,0.5%,2%,4%,8%等5个处理,研究生物炭施用对夏填闲甜高粱氮素吸收及土壤氮素变化的影响。结果表明,随着生物炭用量增加,饲用甜高粱总生物量和总吸氮量呈现先增加后减少的趋势,2%生物炭处理吸收设施土壤氮素效果最好,吸氮量为194.95 kg·hm-2,0.5%生物炭处理次之,吸氮量为158.54 kg·hm-2。甜高粱种植前后,土壤全氮含量和土壤硝态氮含量均显著降低,减少幅度也是先增大后减小,其中2%和0.5%生物炭处理对土壤氮层间运移有良好阻控效果。5个生物炭处理中,全氮含量在2%生物炭处理降幅最大为35.49%,土壤表层硝态氮含量亦以2%生物炭处理降幅最大为69.7%,0.5%生物炭处理次之,为65.4%。综上,在本试验条件下,0.5%~2%生物炭施用水平对降低设施土壤氮素环境风险有显著效果。
关键词:生物炭;设施土壤;氮素吸收;运移
中图分类号:S514;S156.2 文献标识码:A DOI 编码:10.3969/j.issn.1006-6500.2021.03.011
Effects of Biochar Application on Nitrogen Absorption of Summer Catch Sweet Sorghum and Nitrogen Transport Between Soil Layers
QIAO Yazhen, WANG Dafeng, LU Shuchang, LI Xiawen, TAN Tingting, CHEN Lin, LIN Zixin, GUO Rong
(College of Agronomy and Resource Environment, Tianjin Agricultural University, Tianjin 300384, China)
Abstract:Soil nitrogen accumulation in intensive facilities is becoming more and more serious, which leads to the increase of soil nitrogen environmental risk. The experiment was conducted with biochar and sweet sorghum, five different biochar levels including 0%, 0.5%, 2%, 4%, and 8% were set, and the effects of biochar application on nitrogen absorption of sweet sorghum and soil nitrogen change were studied. The results showed that with the increase of biochar dosage, the total biomass and nitrogen uptake of forage sweet sorghum showed a trend of first increase and then decrease, 2% biochar treatment had the best effect of absorbing soil nitrogen, and the nitrogen uptake was 194.95 kg·hm-2, followed by 0.5% biochar treatment, which was 158.54 kg·hm-2.Before and after planting sweet sorghum, soil total nitrogen content and soil nitrate nitrogen content decreased significantly, and the reduction range also showed a trend of increased first and then decreased, in which 2% and 0.5% biochar treatment had a good control effect on soil nitrogen interlayer transport.Among the five biochar treatments,the total nitrogen content of 2% biochar treatment decreased by 35.49%,the surface nitrate nitrogen content in 2% and 0.5% biochar treatment decreased by 69.7%, 65.4%, respectively.In comprehensively, 0.5%-2% biochar application level werethe optimal level, which had a significant effect on reducing the environmental risk of nitrogen in greenhouse soil.
Key words: biochar; greenhouse soil; nitrogen absorption; transport
2.3.3 饲用甜高粱种植前后设施土壤硝态氮层间运移状况 如图4所示,种植饲用甜高粱后不同土层中硝态氮含量与种植前相比大多都有所降低。其中,0~30 cm硝态氮含量降低幅度最大的为C3处理,30~60 cm和60~90 cm降低幅度最大的为C4处理,90~120 cm土层中硝态氮降幅最大的处理是C1;除C4处理90~120 cm土层硝态氮含量较种植前有所增加以及C1在30~60 cm土层硝态氮有部分上升外,其他处理较种植前均有所降低。4个土层硝态氮降幅的总值及平均值变化趋势均为C3>C2>C4>C5>C1,其中最佳处理为C3,即2%生物炭施用水平下硝态氮含量降低最为明显。
3 结论与讨论
本研究发现,随着土壤中生物炭含量的增加,作物的生物量和吸氮量均呈现先增加后减少的趋势,即在一定范围内施加生物炭可以促进饲用甜高粱的生长,这与余端等[14]的研究结论一致;从设施土壤氮素含量变化情况来看,2%生物炭施用水平下种植饲用甜高粱可以更好地降低设施土壤全氮含量以及表層硝态氮含量,而0.5%生物炭施用水平下效果仅次之。同时,饲用甜高粱硝态氮其他土层含量种植后较种植前相比均有所降低,说明施用生物炭均能显著降低设施土壤硝态氮含量,降低设施土壤氮素环境风险;李建荣等[15]研究土壤中8 t·hm-2生物炭促进植株生长发育、提高作物产量较为合适的选择,与本实验最佳用量不同,考虑其原因可能是由于其研究是与氮肥共同施用,且种植作物为玉米,所以产生用量的不同;种植甜高粱前后C4(4%)处理90~120 cm土层硝态氮含量较种植前有所增加,可能是在作物生长过程硝态氮出现了向下淋洗的问题,C1(0%)在30~60 cm土层硝态氮有部分上升,可能是由于在作物生长过程中出现了硝态氮的积累。
从饲用甜高粱生物量、吸氮量来看,C3处理较好,即2%生物炭施用水平下能更好的促进饲用甜高粱生长,在土壤氮运移方面,C3(2%)处理较好,C2(0.5%)处理次之,能够很好的阻控土壤氮素层间运移,有效降低设施土壤氮素环境风险。综合来看,0.5%~2%生物炭水平为适宜水平。
参考文献:
[1] 卢树昌. 新楠,王小波.天津市农田土壤肥力质量现状及演变分析[J]. 湖北农业科学, 2013, 52(7): 1546-1548.
[2] 康凌云, 黄诗坤, 陈硕, 等. 轮作不同高粱品种阻控设施菜田氮素损失潜力研究[J]. 农业资源与环境学报, 2015, 32(3): 215-221.
[3] 李建军, 李玉庆. 农田面源污染现状及研究进展[J]. 中国科技信息, 2017(19): 65-67.
[4] GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008-1010.
[5] 梁浩, 胡克林, 侯森, 等. 填闲玉米对京郊设施菜地土壤氮素淋洗影响的模拟分析[J]. 农业机械学报, 2016, 47(8): 125-136.
[6] VOS J, PUTTEN P E L, HUSEIN M H, et al. Field observations on Nitrogen catch crops. 2. Root length and root length distribution in relation to species and Nitrogen supply[J]. Plant and Soil, 1998, 201(1): 149-155.
[7] 张千丰,王光华.生物炭理化性质及对土壤改良效果的研究进展[J].土壤与作物,2012,1(4):219-226.
[8] POEPLAU C, ARONSSON H, MYRBECK ?, et al. Effect of perennial ryegrass catch crop on soil organic carbon stocks in southern Sweden[J]. Geoderma Regional, 2015, 4: 126-133.
[9] 王东凯, 杨威, 吴凤芝. 不同栽培模式对设施黄瓜生长发育及土壤微生物数量的影响[J]. 东北农业大学学报, 2012, 43(7): 95-99.
[10] LIU J, KHALAF R,UL?N B, et al. Potential Phosphorus release from catch crop shoots and roots after freezing-thawing[J]. Plant and Soil, 2013, 371(1-2): 543-557.
[11] 陈温福, 张伟明, 孟军. 生物炭与农业环境研究回顾与展望[J]. 农业环境科学学报, 2014, 33(5): 821-828.
[12] 郭帅, 杨梢娜, 黄芳晨, 等. 不同生物炭配比对小青菜生长及土壤改良效果的影响[J]. 浙江农业科学, 2020, 61(7): 1295-1297.
[13] 何绪生, 张树清, 佘雕, 等. 生物炭对土壤肥料的作用及未来研究[J]. 中国农学通报, 2011, 27(15): 16-25.
[14] 余端, 冯牧野, 李燕, 等. 秸秆生物炭对小白菜生长发育及土壤性质的影响[J]. 南方农业, 2019, 13(34): 45-47.
[15] 李建荣, 孙继颖, 高聚林, 等. 春玉米田土壤特性对生物炭调控的响应机制[J/OL]. 内蒙古农业大学学报(自然科学版): 1-16.(2021-02-03)[2021-02-07]. http://kns.cnki.net/kcms/detail/15.1209.S.20210202.1504.006.html.