张松航,张守仁,唐书恒,信 迪,刘 冰
(1.中国地质大学(北京) 能源学院,北京 100083; 2.非常规天然气地质评价与开发工程北京市重点实验室,北京 100083; 3.中联煤层气有限责任公司,北京 100015)
向煤层中注入CO2,实现CO2封存和煤层气增产(CO2-ECBM),具有减少温室气体排放的环境效应和增加煤层气井经济收益的双重意义[1]。当前中国在鄂尔多斯盆地东缘和沁水盆地南部开展了多次CO2封存增产煤层气的小型先导性试验[2-6]。特别是在沁水盆地南部,针对高煤阶煤分别开展了单井吞吐、井组注入驱替、深煤层水平井注入等系列试验,取得了一系列的成果、认识,工艺、技术和方法。然而由于高煤阶煤吸附能力强,小型先导试验注入的千吨级的CO2可能仅分布在注入井附近。在2~3 a项目周期内很难在邻井,甚至监测井观测到CO2驱煤层气的效果。为了优化注入设计,准确评价CO2驱煤层气的作用范围和驱替效果,需要深入研究煤中CH4和CO2在吸附解吸过程中的动力学过程,更好的完成CO2-ECBM数值模拟[7]。
CO2-ECBM项目在实施时,CH4和CO2在煤储层孔隙和裂隙系统双向运移,既包括裂隙系统的渗流过程,也包括煤基质中的扩散过程。由于受到有效应力、基质收缩/膨胀效应和克林伯格效应的影响,生产中煤储层渗透性会发生1~2个数量级破坏或改变,由此渗流过程研究吸引了大量的关注[8-13]。然而对于高煤阶煤来说,煤基质中小、微孔占绝对多数,扩散作用可能是限制煤储层中气体运移作用的主因[14-15]。由此,沁水盆地南部施工的CO2-ECBM项目往往采取间歇式注入的方式以缓解井底压力的升高[4]。当前针对沁水盆地南部高煤阶中气体扩散的研究还较少,特别是还未见多组分混合气体的扩散速率研究。
笔者主要基于3种不同组分的CH4和CO2混合气体的吸附试验,探讨了沁水盆地南部无烟煤对CH4和CO2在吸附过程中的竞争吸附和气体扩散运移规律,希望对沁盆地南部正在开展的CO2-ECBM项目起到一定的指导作用。
3块样品分别取自沁南的长平煤矿(CP)、赵庄煤矿(ZZ)及师庄煤矿(SZ)。样品从煤矿采集送回实验室后制作成平行样品,分组进行试验分析。
按照国标GB/T 212—2008开展了煤岩工业分析测试,获取了煤样的灰分,水分,挥发分,固定碳含量。分别遵循国标GB/T 6948—2013和GB/T 8899—2008,使用Leitz MPV-3光度计显微镜对煤样品的同一抛光段进行平均镜质体反射率(Ro,%)和显微组分分析(测试500个点,取均值)。
根据中国石油天然气工业标准SY/T 6154—1995,用ASAP 2020比表面分析仪进行77 K时的N2吸附和273 K时的CO2吸附,以确定煤的孔隙结构。在测试之前,将粒径为0.18~0.25 mm(即60~80目)的样品在105 ℃下干燥24 h。根据低温氮吸附结果,获取了样品BET比表面积(SBET),BJH孔体积和孔径在1.70~300.00 nm的孔径分布。同时通过低温氮吸附分支和脱附分支,计算了FHH分形维数。CO2吸附分析测试了孔径0.489~1.083 nm的孔结构并通过Dubinin-Astakhov方法计算了孔的比表面积和体积。
1.3.1实验设计
吸附实验使用TerraTek ISO-300等温吸附仪根据国标GB/T 19560—2008开展。吸附介质包括CH4,CO2和他们的混合气体(体积分数75%CH4+25%CO2,50%CH4+50%CO2和25%CH4+75%CO2)。样品为60~80目的平衡水样,实验温度为30 ℃。每种气体吸附设置6个平衡压力点,在每个平衡压力点吸附12 h。对于CH4吸附,最大平衡压力设置为10 MPa。为了避免CO2的超临界作用,CO2和混合气的吸附最大平衡压力设定为6 MPa。在每个吸附平衡点,从采样品仓采集约10 mL气体,并通过Agilent 6890气相色谱仪确定气体成分。完成一种气体的测试后,将气体回路系统抽真空12 h,然后再更换另一种气体。混和气吸附实验前,从气瓶中采集样品并确定气体成分,以确保原始混合气体比率与设定值一致。
1.3.2吸附量计算
ISO-300等温吸附仪器可以每秒记录1次实验压力和温度数据。根据气体状态方程,通过从参考仓转移到样品仓的气体量减去每个压力平衡点样品仓中游离气的变化量计算过剩(或吉布斯)吸附量(nGibbs):
(1)
(2)
(3)
其中,nabs为绝对吸附量,cm3/g;ρgas和ρads分别为自由相气体密度和吸附气体密度。由于真实的吸附相密度难以实验获得,通常假设气体吸附相密度不随温度和压力变化,并采用范德瓦尔斯方法计算范德瓦尔体积的倒数作为ρads的近似值,对于CH4和CO2吸附分别取值372 kg/m3和1 028 kg/m3[16-18]。对于混合气吸附,通过SUDIBANDRIYO等[19]提出的方法计算混合物的吸附相密度。该方法基于理想的吸附相混合假设,简要介绍如下:
(4)
(5)
(6)
在获得每个平衡压力点的绝对吸附量后,使用Langmuir模型分析煤吸附不同气体对吸附常数:
(7)
其中,VL为兰氏体积,cm3/g;P为压力,MPa;PL为兰氏压力,MPa。
煤储层具有复杂的双孔隙系统,大多数研究者使用双孔扩散模型计算气体在煤中的扩散速率。双扩散模型基于单孔扩散模型提出。单孔模型表示为
(8)
其中,Mt为时间为t时进入介质的总的扩散量;M∞为时间趋于无穷大时,被吸附的总的扩散量;n为正整数,1,2,3,…;D为颗粒内扩散系数;rp为扩散通道的长度。有报道表明单孔模型对一些亮煤可能适用[20],但是双孔扩散模型对大部分煤可以更好的描述CH4或CO2的吸附/解吸速率问题[20-22]。简化的双孔模型可表示为一个快速的大孔扩散和一个慢得多的微孔扩散的结合[23],可表示为
(9)
(10)
(11)
从结果上看(表1),CP煤样和ZZ煤样的物质组成差别不大。CP煤样的固定碳含量、镜质组含量、镜质体反射率略高于ZZ煤样,而灰分产率、惰质组含量略低于ZZ煤样。总体上CP和ZZ煤样属于中低灰产率无烟煤。SZ煤样在物质组成上与CP煤样和ZZ煤样差别明显,主要表现在灰分产率明显偏高,达到40.06%。此外,SZ煤样的固定碳含量也明显较另外2个煤样低。3个煤样的主要矿物成分均为黏土矿物。与高灰分产率相应,SZ煤样的显微矿物组分含量达9.3%,也是3个样品中最高的。
表1 煤岩工业分析和显微组分Table 1 Proximate,maceral and mineral analysis results of the CP coal sample %
煤岩孔隙结构分类多样,较常用的有霍多特分类和IUCPA的分类,为了论述方便,笔者结合2类方案,定义中孔在100~1 000 nm,小孔在10 ~100 nm,微孔在2~10 nm,超微孔<2 nm[24]。
2.2.1微、小孔(2~100 nm)
从低温氮吸附解吸曲线(图1(a))中可以看出3个煤样吸附曲线形态基本一致,在0~0.8相对压力下曲线比较平缓,相对压力大于0.8后曲线快速上升。根据IUCPA曲线形态分类,3个煤样均属于IV型吸附曲线。0.5~1.0相对压力下,3个煤样均存在解吸滞后环。同时,ZZ和CP煤样的解吸曲线基本重合,与它们在物质组成方面的相近性一致。在0~0.5相对压力下,ZZ和CP煤样吸附解吸曲线基本重合,SZ样品曲线吸附解吸曲线不重合(图1(a))。根据滞后环的形态推断,3个样品多发育楔形板状孔。低温液氮吸附实验显示CP,ZZ,SZ三个煤样的BET比表面积分别为1.36,1.50,1.71 m2/g。从煤样的孔径分布曲线上看,3个煤样孔径分布基本一致,在1.7~300.0 nm,2~10 nm(微孔),10~100 nm(小孔)3个孔径段上CP,ZZ,SZ煤样的BJH孔隙体积依次增高(图1(b)中,V为孔容,cm3;W为孔径, nm。表2)。
图1 低温液氮吸附/解吸实验孔隙结构分析结果Fig.1 Results of pore structure analysis by Low-temperature nitrogen adsorption/desorption experiment
2.2.2超微孔(<2 nm)
3个煤样的CO2吸附曲线显示(图2),ZZ煤样和CP煤样的吸附能力相近,且明显大于SZ煤样的吸附能力。CO2吸附测定3个煤样在0.4~0.9 nm的孔径分布呈双峰形态,CP样品和ZZ样品孔径分布基本一致,SZ样品在各个孔径段的体积分数明显低于CP和ZZ煤样。使用D-A方法解释的CP,ZZ,SZ煤样的比表面积分别为201.27,193.28,148.58 m2/g,孔体积分别为0.082 30,0.078 83,0.062 30 cm3/g。
2.3.1纯气体吸附
CP,ZZ,SZ三个煤样等温吸附CO2的兰氏体积分别为68.494,64.944,57.140 m3/t,兰氏压力分别为2.28,1.66和1.79 MPa;吸附CH4的兰氏体积分别为35.214,33.224,27.930 m3/t,兰氏压力分别为3.27,2.88,3.33 MPa(表3,图3(a))。总体上3个煤样吸附CO2的兰氏体积基本为吸附CH4兰氏体积的2倍左右,同时煤样吸附CH4的兰氏压力明显高于吸附CO2的兰氏压力,表明煤样对CO2的吸附能力明显强于CH4,与前人研究结果一致[25]。
表3 纯气体和混合气体兰氏方程拟合参数Table 3 Langmuir parameters of the pure and mixed gas adsorption
图3 3个煤样吸附CH4,CO2和其混合气的等温吸附曲线(标准状况下)Fig.3 Pure methane and carbon dioxide and their mixtures adsorptions of the three coal samples(under standard condition)
2.3.2混合气的吸附
从吸附曲线上(图3(b)~(d))看,随着混合气体中CO2体积分数的增高,煤样对混合气的总的吸附能力明显增高,但总体上介于纯CH4和纯CO2气体吸附之间。混合气体吸附的兰氏压力明显小于纯气体吸附的兰氏压力。吸附过程随CO2体积分数增加兰氏压力变化规律不明显。总体上,以上认识也与前人研究结果一致[26-28]。
2.3.3气体分离系数
众多研究表明,与CH4相比,煤对CO2有更强的吸附能力,并从煤体表面自由能、吸附势、吸附热,乃至煤岩大分子官能团吸附位等角度进行了理论解释,这也是CO2-ECBM项目的理论基础[29-32]。分离因子可有效地评价煤样对混合气体中各组分吸附选择性的强弱[33-35]。煤中CH4和CO2混合气竞争吸附的分离因子(S(CO2/CH4)定义为
(12)
其中,x(CH4)和x(CO2),y(CH4)和y(CO2)分别为吸附相和游离相中CH4和CO2的体积分数。煤对CO2或CH4的相对吸附能力受各自相互作用能(热力)、分子大小和每种气体分子对煤基质微孔网络的可达性控制。S(CO2/CH4)>1表明煤吸附的CH4可以被CO2置换,数值越大,表明CO2对CH4的置换能力越强。
本次煤样吸附75%CH4+25%CO2,50%CH4+50%CO2和25%CH4+75%CO2三种混合气的分离因子S(CO2/CH4)在2.60~17.57(表4和图4),符合MERKEL等[36]“煤样中S(CO2/CH4)的选择性值通常在3~20”的认识。当气体介质为75%CH4+25%CO2和25%CH4+75%CO2时,随压力增高分离因子呈下降趋势。一般来说,随着压力的增加,气体分子动能增强,煤中CO2优势吸附位减少,气体分离因子降低,这与前人的认识一致[36-38]。而当混合气为50%CH4+50%CO2时,S(CO2/CH4)呈现先增加后稳定并略显下降的趋势,但总体较小在2.60~7.63且在较高压力下的值与混合气为75%CH4+25%CO2和25%CH4+75%CO2时的值基本相近。当混合气为50%CH4+50%CO2时,S(CO2/CH4)在低压下值较低与常规认识不符,其原因尚需其他研究验证。从3个煤样来看,无论气体组分如何,相同压力下SZ煤样的分离因子均大于CP和ZZ煤样,而CP和ZZ煤样的分离因子差别不大。对单个煤样来说,在较低压力下(前1或2个压力点),75%CH4+25%CO2,75%CH4+25%CO2和50%CH4+50%CO2三种混合气中的分离因子依次降低,在较高压力下,不同组分的分离因子差别不大。
由于等温吸附实验记录了每秒样品仓/参考仓中气体压力的变化,而在2个平衡压力点间,由于压力差较小,吸附量和压力变化基本呈线性关系,因此可以根据每个吸附间隔内压力随时间的变化关系,根据双孔扩散模型拟合每个压力段气体在煤样中的等效扩散速率,拟合结果见表4。煤样的大孔等效扩散速率基本在1.07×10-3~14.86×10-3s-1,且随孔隙压力增加呈幂函数形式下降。这主要与吸附过程中,气体从大孔向微孔迁移,大孔首先发生基质膨胀,运移通道变窄有关。在相对高压下各煤样的大孔等效扩散系数总体差别不大,而在相对低压下差别明显(表4,图5)。相同条件下,SZ煤样的等效扩散系数最大,ZZ煤样的扩散系数居中。CP煤样的扩散系数最小。混合气中气体组分对煤样等效气体扩散系数有一定影响。特别在低压下,随着混合气中CO2含量的增高,等效扩散系数呈增大趋势。
表4 CH4和CO2吸附扩散试验结果Table 4 Summary of adsorption/desorption experiments,excess Langmuir equation theoretical calculation and gas diffusivities fitting results
续 表
图4 3个煤样气体分离因子随压力变化Fig.4 Variation of gas separation factors of three coal samples with pressure
图5 大孔等效扩散系数随压力变化Fig.5 Variation of macropores equivalent diffusivity with pressure
总体上小孔的等效扩散系数差别不大,基本在3×10-4~4×10-4s-1(表4,图6)。混合气为75%CH4+25%CO2时,各个样品的值均在3×10-4s-1左右。混合气中CO2含量较高时,小孔等效扩散系数离散性增强,随孔隙压力的升高略显降低趋势。但在相对高压下,也基本在3×10-4s-1左右。总体上,大孔等效扩散系数是小孔扩散系数的3~40倍,随着压力升高倍数下降。微孔等效扩散系数在吸附过程中比较稳定,说明微孔的扩散受煤基质吸附膨胀的影响较小。在吸附过程中,微孔既因为自身的基质膨胀和气体分子吸附/填充而减少,又因为大孔基质膨胀而补充,总体上,微孔含量处于动态平衡状态,因此微孔的等效扩散系数变化不大。
图6 小孔等效扩散系数随压力变化Fig.6 Variation of micropores equivalent diffusivity with pressure
大孔扩散占比(β)值小于0.5说明微孔扩散占优,β值大于0.5说明大孔扩散占优。在吸附过程中,β具有先降低再升高的趋势,且变化趋势与混合气组分关系明显(图7)。低压下,混合气为时75%CH4+25%CO2时,大孔扩散接近或略小于小孔扩散,混合气为50%CH4+50%CO2和25%CH4+75%CO2时,大孔扩散略多于小孔扩散。各个样品不论气体组分如何,中低压下大孔扩散普遍小于小孔扩散,相对高压下大孔扩散普遍大于小孔扩散。随着混合气中CO2比例升高,大孔占比极低值对应的平衡压力明显升高。大孔和微孔之间的扩散是一个连续的过程。在吸附过程中,由于基质膨胀,大孔首先减少,β值降低;随后大孔和微孔的扩散逐渐恢复平衡,β值上升并接近0.5;最后超微孔接近饱和吸附,大孔扩散恢复占优。从不同样品看,SZ煤样的大孔占比在不同条件下,始终高于CP和ZZ煤样。
图7 大孔扩散占比随压力变化Fig.7 Variation of macropores uptake proportion with pressure
根据2.3和2.4节分析,不同CH4和CO2混合气在煤中扩散规律总体相似。由于吸附实验的每个压力点都计算了吸附运移数据,数据量较大,分析不便;同时吸附实验第1个压力点(约0.5 MPa)的数据,既能反映混合气体在各煤样上的扩散运移特性,又能最好的反映不同煤样吸附不同混合气的差异,因此选取每个吸附实验第1个平衡压力点扩散运移数据,以75%CH4+25%CO2混合气的吸附运移为例,根据Excel中CORREL函数计算了煤岩物质组成、孔隙结构和气体扩散运移性能参数间的相关系数(表5),分析煤岩吸附扩散的影响因素。
兰氏体积反映煤样对气体的最大吸附能力。兰氏体积与煤样的灰分产率及矿物含量成反比,与固定碳含量,镜质组含量和镜质体反射率成正比,与前人的研究成果基本一致。兰氏体积与低温液氮实验获取的小、微孔的含量呈一定的反比关系,这明显与常识相违背,显示小、微孔不是决定煤岩吸附能力的主要因素。兰氏体积与CO2吸附测试的超微孔表面积和体积呈明显的正比关系。从比表面积的数值看煤样2 nm以下超微孔的表面积比BET比表面积的高出1个数量级,显示小于2 nm的超微孔的含量是控制煤样吸附能力的主要因素。
Dae反映气体在煤样大孔中的扩散能力。煤中矿物,特别是脆性矿物的存在增加了矿物周缘及其内部的孔隙含量(主要为大、中孔,特别是SZ煤样)。挥发分与煤中凝胶化物质密切相关,而后者中微裂隙更加发育。因此,这2者与Dae呈正相关关系。水分一方面会堵塞孔道,另一方面与气体竞争吸附,煤中水分较高影响气体在大孔的扩散。由于镜质组中的大、中孔主要为气孔,连通性差。因此,Dae与煤中水分、固定碳和镜质组含量呈负相关关系。此外,Dae与低温液氮测试的大、中、小、微孔均呈明显正相关关系,但与超微孔含量呈负相关关系。显示扩散作用普遍发育在大中小微孔中,超微孔主要为吸附场所,与扩散作用关系不大。理论上,Dse反映煤岩双孔隙系统中微孔的扩散能力,与煤岩的微孔体积具有一定的正相关关系。由于气体在煤中扩散的整体性和连续性,Dse,Dae与煤岩物质组成和孔隙结构的关系基本一致。但是Dse与他们的相关性关系明显变弱了,特别是Dse与水分、镜质组含量、小孔等参数的关系基本不明显了。Dse与超微孔的负相关关系,同样显示超微孔是主要发生吸附作用的出场所。β参数本质上与煤岩双孔隙系统中发挥扩散作用的大、中、小、微孔的比例相关。因此,也与连通性大孔发育有关的灰分产率、渗透率、大、中孔、小孔含量等正相关,而与微孔发育程度关系密切的Ro负相关。
表5 煤岩物质组成、孔隙结构和吸附运移参数相关系数Table 5 Correlation coefficient of coal sample adsorption and transportation parameters,material composition and pore structure parameters
(1)煤岩中小于2 nm的超微孔的比表面积较微孔、过渡孔、中孔和大孔高1~2个数量级,是煤中CH4和CO2的主要赋存场所,其发育程度本质上决定了不同煤岩吸附能力的差异。
(2)与CH4相比,煤岩更偏好吸附CO2,CO2-CH4分离因子一般在3~20,随平衡压力增高而降低,分离因子大小与煤岩微、小孔发育明显正相关。
(3)双孔扩散模型能够表征混合气在煤基质中的扩散。受基质膨胀作用影响,煤的等效大孔扩散系数随着平衡压力的增高呈幂函数下降趋势;且随着气体组分中CO2含量的增加,初始大孔等效扩散系数增大。煤的等效大孔扩散系数与煤样的大、中、小和微孔的含量均成正相关关系。吸附过程中气体由大孔向小孔运移,受煤岩吸附膨胀次序及微孔含量动态平衡影响,不同CH4和CO2混合气体在不同煤样中的等效小孔扩散系数总体上变化不大,大孔扩散占比呈“V”型变化。