田 仓,虞轶俊,吴龙龙,张 露,黄 晶,朱练峰,张均华,朱春权,孔亚丽,武美燕,曹小闯※,金千瑜
不同灌溉和施肥模式对稻田磷形态转化和有效性的影响
田 仓1,2,虞轶俊3,吴龙龙1,张 露1,黄 晶1,朱练峰1,张均华1,朱春权1,孔亚丽1,武美燕2,曹小闯1※,金千瑜1
(1. 中国水稻研究所水稻生物学国家重点实验室,杭州 311400;2. 长江大学农学院湿地生态与农业利用教育部工程中心,荆州 434025;3. 浙江省耕地质量与肥料管理总站,杭州 310020)
为阐明不同灌溉和施肥模式对水稻磷吸收和利用效率、稻田土壤磷形态转化特征的影响及其对土壤磷素有效性的贡献,该研究以杂交籼稻中浙优1号为供试材料,设常规淹灌(Conventional Flooding,CF)、干湿交替(Alternate Wet and Dry irrigation,AWD)2种灌溉模式,以及不施肥(CK)、常规尿素(Ureal,100%PU)、常规尿素减氮20%(80% of Urea,80%PU)、缓控释复合肥减氮20%+生物炭(80% of Control-Released Fertilizer+Biochar,80%CRF+BC)和稳定性复合肥减氮20%+生物碳(80% of Stable Fertilizer+Biochar,80%SF+BC)5种施肥模式,对比分析了不同灌溉和施肥模式下水稻产量、磷吸收效率、稻田土壤磷有效性及土壤磷形态变化特征。结果表明:1)与CF相比,AWD灌溉模式下80%CRF+BC和80%SF+BC处理水稻产量显著高于100%PU和80%PU处理(<0.05);2)AWD灌溉显著增加了成熟期80%SF+BC处理水稻穗部磷累积量,且80%CRF+BC与80%SF+BC处理水稻各器官磷累积量、磷吸收效率与磷肥偏生产力均显著高于80%PU处理;3)AWD灌溉显著提高80%CRF+BC和80%SF+BC处理土壤有效磷、无机磷、有机磷含量与磷活化系数,以及土壤各形态无机磷和0~15 cm 土壤中活性有机磷(Moderately Labile Organic Phosphorus,MLOP)、活性有机磷(Labile Organic Phosphorus,LOP)含量,且其含量均显著高于两组尿素处理;4)相关分析表明,土壤中稳态有机磷(Moderately Resistant Organic Phosphorus,MROP)、LOP、MLOP和Al-P是土壤有效磷的主要决策因子,O-P(闭蓄态磷)和Ca-P是有效磷的主要限制因子。通过适宜的水肥管理提高MROP、LOP、MLOP含量可能是提高土壤有效磷的潜在有效途径。AWD灌溉模式下,生物炭配施稳定性复合肥/缓控释肥能通过调控土壤磷形态转化和磷素活化提高稻田磷有效性,进而提高水稻磷吸收累积和磷素利用效率。研究结果可为通过不同水肥管理模式提高水稻磷利用效率提供理论依据。
灌溉;施肥;土壤;干湿交替;有机磷;无机磷;磷有效性;水稻
磷是水稻生长所必须的营养元素之一,在能量传递、物质代谢和抗逆调控中有着重要的作用[1]。由于在土壤中移动性差、易固定,土壤中可溶性磷肥绝大部分以无效态形式积累,导致磷肥当季利用利率较低,仅为5%~15%[2]。另一方面,水稻生产过程磷肥大量施用,未被吸收利用的磷素大多数滞留在表层土壤中,经径流、渗漏等途径进入生态环境,导致农业面源污染和严重的资源环境压力[3]。因此,探索适宜养分资源管理模式提高水稻磷素利用效率对降低农业面源污染、水稻绿色高质量发展具有至关重要的意义。
土壤中磷形态分为无机磷和有机磷,无机磷是作物有效磷素的主要来源。土壤无机磷可分为Ca-P、Al-P、Fe-P和O-P(闭蓄态磷)[4],其中Ca-P、Al-P和Fe-P是植物的有效磷源。当土壤无机磷含量较低时,有机磷矿化成为植物磷素的重要来源。有机磷按其活性可分为活性有机磷(Labile Organic Phosphorus,LOP)、中活性有机磷(Moderately Labile Organic Phosphorus,MLOP)、中稳性有机磷(Moderately Resistant Organic Phosphorus,MROP)和高稳性有机磷(Highly Resistant Organic Phosphorus,HROP)[4]。土壤磷有效性与土壤的理化性质(如含水率)密切相关,江孟孟等[5]研究发现,与淹灌对照相比,轻干湿交替灌溉提高了土壤有效磷含量。这可能因为频繁干湿交替能加速刺激植物残体的破碎分解,产生的有机酸促进土壤磷溶解和活化[6],干湿交替灌溉还能诱导土壤团聚体破坏、有机质分解,加速有机质中富里酸聚等阴离子释放,其可与磷酸盐阴离子竞争吸附位点,进而促进土壤吸附态磷的释放[7]。也有研究指出,有机肥部分替代化肥可增大磷素积累增长持续期和最大增长速率,促进花前磷素的转运,进而提高磷素利用效率[8];施用生物炭可降低磷养分在土壤中的释放速率,降低其淋滤损失。冯轲等[9]进一步研究发现,生物炭对降低田面水的全磷流失量具有明显的效果,且生物炭能通过促进不同无机磷形态间的转化提高土壤磷有效性[10]。叶玉适等[11]研究指出,干湿交替灌溉结合树脂包膜尿素施用能有效降低稻田磷素径流和渗漏损失,减少农业面源污染,提高磷素利用效率。但是,不同灌溉模式下缓控释与生物炭配施对稻田磷素有效性、磷形态转化特征及其与水稻磷素利用效率的关系仍鲜有研究。
前期研究发现,适宜水氮耦合模式可通过调控稻田氮形态转化提高氮素有效性,协调同化物和氮素吸收转运,提高水稻产量和氮素利用[12]。目前,农田磷养分资源管理的研究多集中于不同施磷条件下田间磷素的动态变化及其径流和淋溶损失等方面[11,13-14]。因此,本文在连续2 a定位试验基础上,研究不同施肥和灌溉模式对水稻磷利用效率、土壤磷形态转化特征及其有效性关键限制因子的影响,以期为通过不同水氮管理模式提高水稻磷肥利用效率提供理论依据。
试验于2019—2020年在中国水稻研究所富阳试验基地进行。供试土壤类型为青紫泥型黏土,基础土壤理化性质:pH值6.3、有机质36.8 g/kg,全氮 2.6 g/kg,有效磷17.0 mg/kg,速效钾54.1 mg/kg,碱解氮142.0 mg/kg。供试水稻品种为杂交稻中浙优1号,采用裂区设计,以灌溉模式为主区、施肥模式为裂区,小区面积8.3 m2左右,各处理重复3次。2种灌概模式:干湿交替灌溉(Alternate Wet and Dry irrigation,AWD)和常规淹灌(Conventional Flooding,CF)。CF灌溉,水稻返青后田面保持水层,整个生育期不晒田,收获前自然落干;AWD灌溉,水稻移栽后保持浅水层5~7 d确保秧苗返青成活,至孕穗前田面不保持水层,土壤含水量为饱和含水量的70%~80%,分蘖期“够苗”晒田,孕穗期保持1~3 cm水层,抽穗至成熟期,灌透水、自然落干至土壤饱和含水量的60%时灌水,干湿交替灌溉。5种氮肥管理模式分别为:不施肥(CK)、常规尿素(Ureal,100%PU)、常规尿素减氮20%(80% of Urea,80%PU)、缓控释复合肥减氮20%+生物炭(80% of Control-Released Fertilizer+Biochar,80%CRF+BC)和稳定性复合肥减氮20%+生物炭(80% of Stable Fertilizer+Biochar,80%SF+BC)。所有处理均为等磷、等钾处理,P2O5施用量为90 kg/hm2,K2O为150 kg/hm2,钾肥按照基肥∶穗肥=6∶4分两次施入。100%PU和80%PU处理中施氮量分别为180kg/hm2和144 kg/hm2(氮肥以尿素计),按基肥∶分蘖肥∶穗肥=4∶3∶3分3次施用;80%CRF+BC和80%SF+BC处理中施氮量为144kg/hm2,按照基肥∶穗肥=7∶3分2次施用(一基一追,基施缓控/稳定性复合肥,追施尿素)。
缓控释复合肥(Control-Released Fertilizer,CRF)中N-P2O5-K2O含量为 22%-8%-12%,稳定性复合肥(Stable Fertilizer,SF)中N-P2O5-K2O含量为 21%-8%-18%,且含有1.5% 的2-氯-6-三氯甲基吡啶(CP)作为硝化抑制剂。生物炭施用量为1 800 kg/hm2,在插秧前与20 cm表层土壤均匀混拌,插秧前1 d同基肥一起施于稻田。
1.2.1 产量与水稻各器官磷累积量
成熟后采集3穴水稻样品,分成茎鞘、叶片和穗3个部分,于105 ℃杀青30 min,80 ℃烘干至质量不变,植株样品粉碎后采用H2SO4-H2O2消煮-钼锑钪比色法测定各器官磷含量。成熟期小区内剩余水稻植株全部收获计产。
1.2.2 稻田土壤各形态磷含量
成熟后采集土壤样品。采用“S”型采集各小区0~15 cm和>15~30 cm土层土壤,风干,过筛备用。土壤有效磷含量采用0.5 mol/L NaHCO3(pH值 8.5,土水体积比1∶2.5)浸提-钼锑抗比色法测定;全磷含量采用H2SO4-HClO4消煮[15],称取0.5 g土加入3 mL浓硫酸、10滴HClO4消煮2 h,冷却定容后采用钼锑抗比色法进行测定。
土壤无机磷各组分含量测定参考文献[16]。具体如下:铝磷酸盐(Al-P):称取1.00 g风干土样加入50 mL 0.1 mol/L NH4Cl,振荡30 min,弃去上清液,再次加入50 mL 0.1 mol/L NH4F振荡1 h,取上清液进行测定;铁磷酸盐(Fe-P):浸提过Al-P的土壤用饱和NaCl洗两次,之后加入0.1 mol/L NaOH,振荡2 h,取上清液进行测定;闭蓄态磷(O-P):浸提过Fe-P的土壤用饱和NaCl溶液洗两次,之后加入40 mL 0.3 mol/L柠檬酸钠溶液、1.0 g 连二亚硫酸钠,水浴15 min后加入0.5 mol/L NaOH振荡,冷却离心后土样用饱和NaCl润洗两次,离心后将上清液定容,取上清液进行测定;钙磷酸盐(Ca-P):浸提过O-P的土样加入0.5 mol/L 1/2 H2SO450 mL,振荡离心后取上清液进行测定。总无机磷含量为各无机磷组分之和。
土壤有机磷采用Bowman-Cole分级方法[17],活性有机磷(LOP)采用pH值8.5,0.5 mol/L NaHCO3浸提,全磷与无机磷之差即为活性有机磷含量;中等活性有机磷(MLOP)采用1 mol/L H2SO4溶解加上0.5 mol/L NaOH 浸提;中等稳定性有机磷(MROP,在 pH值1~1.5的条件下不发生沉淀的部分富里酸磷)和高稳定性有机磷(HROP,pH值1~1.5的条件下发生沉淀的部分胡敏酸磷)采用0.5 mol/L NaOH 浸提;总有机磷(Total OP)为各有机磷组分之和。
1.2.3 计算方法
作物磷素累积量=地上部生物量×磷浓度 (1)
磷肥偏生产力=籽粒产量/施磷量 (2)
磷吸收效率=植株地上部磷积累量×2.29/施磷量 (3)
土壤磷活化系数=有效磷/[全磷×1 000]×100% (4)
前期连续2 a试验结果显示不同灌溉和施肥处理水稻产量、土壤理化变化趋势已趋于稳定,经方差分析,2018 —2020年的试验结果中,重复的水肥处理下,水稻产量与土壤理化性质各指标间差异不显著(表1),因此本文只进行1 a试验结果进行分析探讨。所有数据均采用Microsoft excel 2010和SPSS数据分析软件进行数据整理和方差分析,不同处理间显著性检验采用LSD0.05(Least Significant Difference test)进行比较,各指标间的相关分析采用Pearson相关系数法进行分析。采用Origin 8.0进行绘图。
表1 2019—2020年相同试验处理下产量及土壤养分指标的方差分析(F值)
注:ns表示在0.05水平上差异不显著。
Note: ns indicates that there is no significant difference at the level of 0.05.
由表2可知,与CF灌溉模式相比,AWD显著提高各施肥处理水稻产量、磷肥偏生产力和磷吸收效率(除80%CRF+BC),且显著增加了80%PU与80%SF+BC处理水稻穗部、100%PU处理水稻茎鞘和80%CRF+BC处理水稻叶片磷累积量(<0.05)。不论是CF还是AWD灌溉模式,80%CRF+BC和80%SF+BC处理水稻产量、各器官磷累积量、磷肥偏生产力以及磷吸收效率均显著高于80%PU处理。80%CRF+BC和80%SF+BC处理水稻产量分别达9 656.2和10 032.4 kg/hm2。
由表3可知,各处理0~15 cm土壤全磷、有效磷、无机磷和有机磷含量均高于15~30 cm土壤。与CF相比,AWD显著提高了各施肥处理0~15 cm土壤全磷(除80%SF+BC)、有效磷、无机磷以及80%PU和80%SF+BC处理有机磷含量(<0.05)。不论是CF还是AWD灌溉模式,80%SF+BC处理土壤有效磷、无机磷、有机磷含量和磷活化系数均显著高于其他各施肥处理。类似地,AWD也显著增加了15~30 cm剖面80%CRF+BC和80%SF+BC处理的土壤全磷、有效磷、无机磷、有机磷含量以及磷活化系数,且80%SF+BC处理全磷、有效磷和无机磷含量最高。
由表4 可知,与CF相比,AWD灌溉显著提高了80%PU、80%CRF+BC和80%SF+BC处理0~15 cm土壤Al-P、Fe-P、O-P、Ca-P(除80%PU)含量,以及100%PU处理Fe-P和O-P含量(<0.05);同时,显著提高了100%PU(除Al-P)、80%CRF+BC和80%SF+BC处理15~30 cm土壤Al-P、Fe-P、O-P、Ca-P以及80%PU处理O-P含量。不论CF还是AWD,80%SF+BC处理土壤Al-P、Fe-P和O-P含量显著高于其他各施肥处理,AWD灌溉模式下80%SF+BC处理Ca-P含量显著高于其他处理。
表2 不同灌溉和施肥模式对水稻产量、磷素累积和磷肥吸收效率的影响
注:CK,空白对照;100%PU,常规氮肥;80%PU,减氮20%;80%CRF+BC,缓控释肥减氮20%+生物炭;80%SF+BC,稳定性复合肥减氮20%+生物炭。CF,常规淹灌;AWD,干湿交替灌溉。PPFP,磷肥偏生产力;PAE,磷吸收效率。表中不同处理数据后不同字母表示有显著性差异(<0.05),显著性分析采用LSD多重比较。下同。
Note: CK, blank control; 100% PU, conventional nitrogen fertilizer; 80% PU, nitrogen reduction 20%; 80% CRF+BC, 80% of control-released fertilizer-nitrogen plus biochar; 80% SF+BC, 80% of stable fertilizer-nitrogen plus biochar; CF, conventional flooding irrigation; AWD, alternate wet and dry irrigation; PPFP, partial productivity of phosphate fertilizer; PAE, Phosphorus absorption efficiency. There are significant differences in different letters after data of different treatments in the table (<0.05), LSD multiple comparisons were used for significance analysis The same as below.
由表5可知,在0~15 cm土层中,与CF相比,AWD显著提高了80%SF+BC处理LOP,以及80%PU、80%CRF+BC和80%SF+BC处理MLOP含量,且80%SF+BC处理下LOP、MLOP、MROP和HROP有机磷含量最高(<0.05);15~30 cm土层中,AWD显著提高80%CRF+BC(除MLOP)和80%SF+BC(除LOP)处理土壤LOP、MLOP和MROP等形态有机磷,以及80%PU处理LOP和100%PU处理MLOP含量。无论是CF还是AWD模式,80%SF+BC处理下LOP(除CF下100%PU)、MLOP、MROP和HROP含量均显著高于常规施肥处理。
表3 不同灌溉和施肥模式下土壤磷含量及磷活化系数
表4 不同灌溉和施肥模式下土壤无机磷含量
注:Al-P-铝磷;Fe-P-铁磷;O-P-闭蓄态磷;Ca-P-钙磷。下同。
Note: Al-P Al-Phosphate; Fe-P Fe-Phosphate; O-P Occluded phosphate; Ca-P Ca-Phosphate. The same as below.
2.5.1 土壤无机磷相对含量
如图1所示,不同形态无机磷相对含量受灌溉、施肥模式和土壤深度影响。在0~15和>15~30 cm土层中,Ca-P相对含量最高,平均为40.7%和52.9%;Al-P相对含量最低,平均为4.5%和4.1%。在0~15 cm中,Fe-P和O-P相对含量次之,平均为34.6%和20.3%,而在>15~30 cm中O-P和Fe-P相对含量分别为26.3%和16.7%。
与CF相比,AWD显著增加了0~15 cm土层100%PU处理Ca-P、80%PU处理Al-P和80%CRF+BC处理O-P相对含量,但显著降低了>15~30 cm土层100%PU和80%CRF+BC处理Ca-P以及80%PU处理Al-P相对含量(<0.05)。不论AWD还是CF灌溉模式下,80%CRF+BC和80%SF+BC处理0~15、>15~30 cm土壤O-P相对含量均显著高于其他施肥处理。
表5 不同灌溉和施肥模式下土壤有机磷含量
注:LOP-活性有机磷,MLOP-中活性有机磷,MROP-中稳性有机磷,HROP-高稳性有机磷。下同。
Note: LOP-Labile organic phosphorus, MLOP-Moderately labile organic phosphorus, MROP-Moderately resistant organic phosphorus, HROP-Highly resistant organic phosphorus. The same as below.
2.5.2 土壤有机磷相对含量
如图2所示,不同灌溉和施肥模式对稻田土壤有机磷相对含量影响不大。在0~15、>15~30 cm土层中,MLOP相对含量最高,平均为62.1%、53.6%;MROP和HROP相对含量次之,平均为23.3%、27.4%和7.5%和10.7%;LOP相对含量最低,平均为7.0%、8.3%。在0~15 cm土层中,与CF相比,AWD灌溉显著提高了80%SF+BC处理MLOP相对含量;>15~30 cm土层中,100%PU处理下LOP、MROP相对含量显著增加,而在80%SF+BC处理下LOP相对含量显著降低(<0.05)。
由表6可知,MROP、MLOP、LOP和Al-P对有效磷的直接通径系数分别为0.599、0.248、0.177和0.126,远大于其他形态磷对有效磷的直接通径系数。表明上述磷形态对土壤有效磷含量有直接影响,为有效态磷,其含量增加会促进有效磷的积累;而Ca-P、O-P与有效磷的直接相关系数为负值,即Ca-P、O-P含量的减少会导致有效磷含量的增加。Al-P和Fe-P与MLOP、MROP的间接通径系数分别为0.144和0.253、0.188和0.120,远大于二者与其他形态磷形态的间接通径系数,这说明Al-P和Fe-P与MLOP、MROP间的相关系数较二者与有效磷的相关系数更为明显,可以通过二者来对MLOP和MROP的影响作用表征其对有效磷含量变化的贡献特征。O-P与有效磷的直接通径系数不大,表明O-P与有效磷的相关关系较小,是土壤无机磷中的缓效态,即土壤的潜在磷源。Ca-P、LOP、MLOP、HROP与MROP的间接通径系数分别为0.318、0.302、0.295、0.315,均大于其与有效磷的直接通径系数,表明Ca-P、LOP、HROP、MLOP是通过与MROP较大的相关关系对有效磷含量进行间接影响。MROP、MLOP、LOP和Al-P对有效磷的决策系数分别为0.567、0.278、0.174和0.129,是有效磷含量的主要决策因子;O-P、Ca-P对有效磷的决策系数分别为-0.079、-0.137,是有效磷含量的主要限制因子,因此提高MROP、MLOP、LOP和Al-P含量,限制O-P、Ca-P含量是提高土壤有效磷含量的有效途径。
表6 不同形态无机磷、有机磷与有效磷通径相关分析
本研究结果表明,与常规淹灌(CF)相比,干湿交替灌溉(AWD)显著提高了各施肥处理水稻产量,且80%CRF+BC和80%SF+BC处理水稻产量显著高于其他处理。孙永健等[18]发现干湿交替灌溉耦合实时实地氮肥管理,能通过促进磷素从营养器官向生长中心转移,提高磷素吸收和利用效率,与该研究结果一致,本研究结果表明,水稻成熟期穗部磷累积量显著高于水稻茎鞘与叶片磷素累积量,并且在80%CRF+BC与80%SF+BC处理下水稻各部位磷累积量均显著高于80%PU处理。而在CK处理下水稻茎鞘磷素累积量显著高于其他施肥处理,由于在不施肥处理下,茎鞘向穗部的磷素转运量低,其转运率不高,导致穗部磷积累量低,而在茎鞘的残余量大,因此不施肥处理下水稻茎鞘磷素累积量显著高于施肥处理。李汉常等[19]发现,干湿交替灌溉能显著提高水稻根系磷吸收,且土壤有效磷与植株磷累积量、各器官磷吸收量显著正相关。这可能因为干湿交替可通过提高根系溶解氧含量活化水稻根际土壤难溶性磷,进而提高土壤有效磷水平[20-21];同时,干湿交替有利于促进水稻根系生长,形成早期快速生长势,能提高水稻磷养分吸收[19]。
AWD灌溉模式较CF处理显著提高了成熟期80%CRF+BC水稻穗部磷累积量,且80%CRF+BC和80%SF+BC处理各器官磷素累积量、磷肥偏生产力以及磷吸收效率均显著高于80%PU处理。这可能与80%CRF+BC和80%SF+BC处理中缓控释/稳定性复合肥养分释放特性能有效契合水稻养分需求规律有关,其不仅能防止叶片早衰、增强后期光合作用,还有利于维持生育后期较强的根系活力,增强根系磷养分吸收能力,进而提高水稻磷利用效率[18]。此外,生物炭与缓控释或稳定性复合肥配施也可有效控释养分的释放速率,降低田面水和渗漏水的磷浓度和可溶态磷损失量[11,22]。王静等[23]发现尿素配施硝化抑制剂可有效地增加水稻生物量和磷吸收量,提高水稻磷素利用效率,这与本研究结果基本一致。这可能因为硝化抑制剂通过影响硝化细菌活性抑制了硝化作用,使施入的氮源以NH4+-N的形式存在,植物根系大量吸收NH4+导致根际周围pH值下降,活化土壤中固定的磷,增加了土壤磷释放[24]。
土壤全磷含量高低可表征磷库容量的大小,其磷素盈亏取决于磷肥施用量、作物吸磷量和磷损失量。本研究发现AWD较CF灌溉显著增加了各施肥处理水稻产量和磷素吸收量,但在等磷量投入条件下,干湿交替灌溉显著提高了各施肥处理(除80%SF+BC)0-15 cm土壤总磷,稻田土壤磷的收支均为盈余状态。从磷平衡的角度考虑,这可能是其较常规淹灌显著降低了稻田磷素径流、渗漏损失。有效磷与全磷比值作为土壤磷素活化系数,可以反映土壤全磷与有效磷的变异状况[25],表征土壤磷养分的供应能力。本研究结果表明,AWD灌溉模式下80%CRF+BC与80%SF+BC土壤磷活化系数显著高于其他施肥处理。这可能因为干湿交替灌溉下,土壤团聚体发生破裂,受物理保护的有机质暴露出来,有机质分解使得土壤可溶性磷含量增加;此外,干湿交替灌溉模式有利于提高土壤酸性磷酸酶活性,可促进有机磷转化为可溶态的无机磷[26-27]。施入稻田中的磷大多数被土壤、植物和微生物吸收固定[28],少量溶于水体之中。本研究结果表明,与CF相比,AWD灌溉模式显著增加了各施肥处理不同剖面深度土壤有效磷和无机磷含量。进一步研究发现,AWD显著提高了80%CRF+BC和80%SF+BC处理土壤各形态无机磷含量,以及CK、100%PU和80%PU处理Fe-P和闭蓄态磷(O-P)含量。这是由于长期淹灌条件下的嫌气环境可显著降低土壤黏粒和有机质对磷的吸附[11],释放土壤蓄闭态磷(O-P),使得土壤中O-P含量增大;淹水后Ca8-P向Ca2-P转化,Ca2-P溶解产生PO43-,而PO43-可被晶型氧化铁转化为非晶型氧化铁,从而增加了Fe-P含量[29-30]。AWD灌溉模式下,生物炭与稳定性或缓控释复合肥配合处理均明显提高了土壤Fe-P、Al-P和O-P,这可能与生物炭添加明显提高了土壤闭蓄态磷(O-P)含量有关[31];生物炭也可通调节土壤pH改变磷酸根与Al3+、Fe3+和Fe2+等金属离子的作用强度,减少土壤溶液中Al3+沉淀[22],增加土壤Al-P含量。也有研究指出,添加生物炭显著提高土壤 Ca2-P、Ca8-P和Fe-P含量,但降低了Ca10-P和O-P含量[32]。不同研究结果间的差异可能与土壤质地、生物炭和施用环境等条件差异有关。
当土壤中的无机磷含量供应不足时,植物可以吸收一定含量的可溶性有机磷,难溶性有机磷的矿化过程是有效磷的主要供应方式,因而有机磷对磷素有效性的影响也十分明显。与CF相比,AWD灌溉模式显著增加了80%CRF+BC和80%SF+BC处理土壤有机磷含量,显著提高80%SF+BC处理0-15 cm土壤活性有机磷(LOP)和中活性有机磷(MLOP)含量,其含量均显著高于其他各施肥处理。分析这可能与该80%CRF+BC和80%SF+BC处理下较高的水稻生物量有关,其可通过根系分泌物增加土壤微生物活性和群落结构,而频繁干湿交替可诱导微生物死亡裂解释放有机磷[33],增加土壤中有机磷含量。聂云鑫等[34]发现,脲酶-硝化双抑制剂缓释肥可显著提高土壤磷酸酶活性增加土壤磷素有效性。土壤碱性磷酸酶活性的提高,能够加速有机磷的矿化,特别是中活性有机磷(MLOP)和中稳性有机磷(MROP)[35]。本研究中添加生物炭处理显著提高了LOP、MLOP含量,但对MROP和HROP含量无显著影响。这可能因为一方面外源添加生物炭可促进土壤团聚体的形成,改善土壤通透性,显著提高土壤脲酶和碱性磷酸酶活性[12],促进土壤中有机磷的矿化;另一方面,磷在植物组织中以酯类或焦磷酸盐等有机态存在,这些形态磷素是活性有机磷(LOP)的主要组分,低温热解炭化过程中植物体内磷素不易发生变化,因此施用生物炭可以提高土壤活性有机磷(LOP)含量;土壤中活性有机磷(MLOP)是通过化学吸附紧密结合在土壤固相上的生物炭中而植酸镁、钙等化合物,生物炭中的钙、镁在土壤中以盐基离子的形态存在,它们会与腐植酸络合进而促进中活性有机磷(MLOP)的积累[10]。由于高稳性有机磷(MROP)是很难矿化且难以被植物吸收利用的有机态磷含量,因此其含量变化不明显。
通径分析可以通过对两变量之间表面直接相关性的分解,来研究自变量对因变量的直接重要性和间接重要性。决策系数是通径分析中的决策指标,用它可以把各自变量对响应变量的综合作用进行排序,以确定主要决策变量和限制性变量。前期,有关土壤各形态磷有效性的研究结果不甚一致。颜晓军等[36]研究认为Al-P是土壤高度有效的磷源,而Uzoma等[37]则认为Ca-P是土壤中有效磷的主体。与张为政[38]对土壤各形态磷对有效磷含量影响的研究结果相似,本研究表明中稳性有机磷(MROP)、中活性有机磷(MLOP)、活性有机磷(LOP)和Al-P是直接影响有效磷含量的主要决策因子,闭蓄态磷(O-P)、Ca-P是有效磷含量的主要限制因子。需要指出的是,灌溉模式对80%CRF+BC和80%SF+BC处理土壤高稳性有机磷(MROP)含量无显著影响,这与通径分析结果并不一致。分析这可能因为高稳性有机磷(MROP)是土壤有机磷的活跃形态,高稳性有机磷(MROP)的分解是磷素的主要供给过程,其可通过对活性有机磷(LOP)和中活性有机磷(MLOP)含量的间接影响表征其对有效磷含量变化的贡献特征。结果表明,干湿交替灌溉下通过合理施肥提高土壤LOP、MLOP和Al-P含量可能是提高土壤有效磷的有效途径。
1)干湿交替(Alternate Wet and Dry irrigation,AWD)灌溉模式显著增加了各处理水稻产量(<0.05),缓控释复合肥减氮20%+生物炭(Control-Released Fertilizer,80%CRF+BC)和稳定性复合肥减氮20%+生物碳(Stable Fertilizer,80%SF+BC)处理水稻产量分别达9 656.2和10 032.4 kg/hm2,显著高于常规施肥处理;且显著增加了成熟期80%SF+BC处理水稻穗部磷累积量,80%CRF+BC与80%SF+BC处理水稻各器官磷累积量、磷吸收效率与磷肥偏生产力均显著高于80%PU处理。
2)AWD灌溉显著提高80%CRF+BC和80%SF+BC处理0~30 cm 土壤有效磷、无机磷、有机磷含量与磷活化系数、各形态无机磷以及0~15 cm 土壤活性有机磷(Moderately Labile Organic Phosphorus,MLOP)、活性有机磷(Labile Organic Phosphorus,LOP)含量,且其含量均显著高于100%PU和80%PU处理。
3)通径分析结果表明,中稳性有机磷(Moderately Resistant Organic Phosphorus,MROP)与有效磷的直接通径系数最大,达0.599;活性有机磷(LOP)和中活性有机磷(MLOP)、钙磷(Ca-P)、铝磷(Al-P)和闭蓄态磷(O-P)的直接通径系数分别为0.248、0.177、-0.169、0.126和-0.079,表明MROP、LOP、MLOP和Al-P是有效磷的主要决策因子,O-P(闭蓄态磷)和Ca-P是有效磷的主要限制因子。AWD灌溉模式下生物炭配施稳定性复合肥/缓控释肥能通过提高土壤中Al-P、MROP、LOP和MLOP含量,活化土壤中的闭蓄态磷(O-P),进而提高水稻磷吸收累积和磷素利用效率。
[1] 徐壮,王婉瑕,徐磊,等. 水稻磷素吸收与转运分子机制研究进展[J]. 植物营养与肥料学报,2018,24(5):1378-1385.
Xu Zhuang, Wang Wanxia, Xu Lei, et al. Research progress in molecular mechanism of rice phosphorus uptake and translocation[J]. Jouranl of Plant Nutrition and Fertilizers, 2018, 24(5): 1378-1385. (in Chinese with English abstract)
[2] 李鹏,张敬智,魏亚,等. 配方施肥及磷肥后移对单季稻磷素利用效率、产量和经济效益的影响[J]. 中国水稻科学,2016(1):85-92.
Li Peng, Zhang Jingzhi, Wei Ya, et al. Effect of formulated fertilization and postponed application of phosphorus fertilizer on phosphorus utilization efficiency, grain yield and economic benefit of single cropping rice[J]. Chinese Journal of Rice Science, 2016(1): 85-92. (in Chinese with English abstract)
[3] 吴汉卿,万炜,单艳军,等. 基于磷指数模型的海河流域农田磷流失环境风险评价[J]. 农业工程学报,2020,36(14):17-27.
Wu Hanqing, Wan Wei, Shan Yanjun, et al. Environmental risk assessment of phosphorus loss from farmland based on phosphorus index model in the Haihe River Basin[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(14): 17-27. (in Chinese with English abstract)
[4] 屈凡柱,于君宝,陈小兵,等. 湿地土壤磷分级方法研究[J]. 土壤通报,2012,43(1):243-248.
Qu Fanzhu, Yu Junbao, Chen Xiaobing, et al. A review on soil phosphorus fractionation scheme on wetlands[J]. Chinese Journal of Soil Science, 2012, 43(1): 243-248. (in Chinese with English abstract)
[5] 江孟孟,赵喜辉,谢小文,等. 氮肥形态与干湿交替灌溉下水稻土壤酶及养分差异[J]. 植物生理学报,2021,57(5):1123-1134.
Jiang Mengmeng, Zhao Xihui, Xie Xiaowen, et al. Difference of soil enzyme activity and soil nutrient content of rice under alternative wetting and drying irrigation and nitrogen form interaction[J]. Plant Physiology Journal, 2021, 57(5): 1123-1134. (in Chinese with English abstract)
[6] Blackwell M, Brookes P C, Fuente-Martinez N, et al. Effects of soil drying and rate of re-wetting on concentrations and forms of phosphorus in leachate[J]. Biology and Fertility of Soils, 2009, 45(6): 635-643.
[7] 郑子成,秦凤,李廷轩. 不同坡度下紫色土地表微地形变化及其对土壤侵蚀的影响[J]. 农业工程学报,2015,31(8):168-175.
Zheng Zicheng, Qin Feng, Li Tingxuan. Changes in soil surface microrelief of purple soil under different slope gradients and its effects on soil erosion[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(8): 168-175. (in Chinese with English abstract)
[8] 刘彦伶,李渝,白怡婧,等. 长期不同施肥对水稻干物质和磷素积累与转运的影响[J]. 植物营养与肥料学报,2019,25(7):1146-1156.
Liu Yanling, Li Yu, Bai Yijing, et al. Effect of long-term fertilization patterns on dry matter and phosphorus accumulation and translocation in rice[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(7): 1146-1156. (in Chinese with English abstract)
[9] 冯轲,田晓燕,王莉霞,等. 化肥配施生物炭对稻田田面水氮磷流失风险影响[J]. 农业环境科学学报,2016,35(2):329-335.
Feng Ke, Tian Xiaoyan, Wang Lixia, et al. Influence of combined synthetic fertilizer and biochar applications on nitrogen and phosphorus losses from surface water of paddy field[J]. Jouranl of Agro-Environment Science, 2016, 35(2): 329-335. (in Chinese with English abstract)
[10] 高天一,李娜,彭靖,等. 连续施用生物炭对棕壤磷素形态及有效性的影响[J]. 植物营养与肥料学报,2019,25(9):1451-1460.
Gao Tianyi, Li Na, Peng Jing, et al. Effect of consecutive application of biochar on phosphate morphology and availability in brown soil[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(9): 1451-1460. (in Chinese with English abstract)
[11] 叶玉适,梁新强,李亮,等. 不同水肥管理对太湖流域稻田磷素径流和渗漏损失的影响[J]. 环境科学学报,2015,35(4):1125-1135.
Ye Yushi, Liang Xinqiang, Li Liang, et al. Effects of different water and nitrogen managements on phosphorus loss via runoff and leaching from paddy fields in Taihu Lake basin[J]. Acta Scientiae Circumstantiae, 2015, 35(4): 1125-1135. (in Chinese with English abstract)
[12] 崔虎,王莉霞,欧洋,等. 生物炭-化肥配施对稻田土壤氮磷迁移转化的影响[J]. 农业环境科学学报,2019,38(2):412-421.
Cui Hu, Wang Lixia, Ou Yang, et al. Effect of the combined application of biochar and chemical fertilizer on the migration and transformation ofnitrogen and phosphorus in paddy soil[J]. Journal of Agro-Environment Science 2019, 38(2): 412-421. (in Chinese with English abstract)
[13] 刘娟,张乃明,张淑香. 潮土磷素累积流失风险及环境阈值[J]. 农业工程学报,2020,36(20):8-16.
Liu Juan, Zhang Naiming, Zhang Shuxiang. Accumulative loss risk of phosphorus and its environmental threshold in fluvo-aquic soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(20): 8-16. (in Chinese with English abstract)
[14] 罗东海,王子芳,龙翼,等. 化肥减量配施生物炭对紫色土坡耕地磷流失的影响[J]. 环境科学,2020,41(3):1286-1295.
Luo Donghai, Wang Zifang, Long Yi, et al. Effect of optimized fertilization and biochar application on phosphorus loss in purple soil sloping farmland[J]. Enviromental Science, 2020, 41(3): 1286-1295. (in Chinese with English abstract)
[15] 鲍士旦. 土壤农化分析(3版)[M]. 北京:中国农业出版社, 2000.
[16] 蒋柏藩,顾益初. 石灰性土壤无机磷分级的测定方法[J]. 中国农业科学,1989,22(3):58-66.
Jiang Bofan, Gu Yichu. Study on the classification system of inorganic phosphorus in calcareous soil[J]. Scientia Agricultura Sinica, 1989, 22(3): 58-66. (in Chinese with English abstract)
[17] Bowman R A, Cole C V. An exploratory method for fractionation of organic phosphorus from grassland soils. [J]. Soil Science, 1978, 125(2): 95-101.
[18] 孙永健,孙园园,徐徽,等. 水氮管理模式与磷钾肥配施对杂交水稻冈优725养分吸收的影响[J]. 中国农业科学,2013,46(7):1335-1346.
Sun Yongjian, Sun Yuanyuan, Xu Hui, et al. Effects of water nitrogen management patterns and combined application of phosphorus and potassium fertilizers on nutrient absorption of hybrid rice Gangyou 725[J]. Scientia Agricultural Sinica, 2013, 46(7): 1335-1346. (in Chinese with English abstract)
[19] 李汉常,谭歆,李宗浩,等. 施磷量和灌溉方式对水稻磷素吸收利用的影响[J]. 灌溉排水学报,2021,40(6):45-52.
Li Hanchang, Tan Xin, Li Zonghao, et al. Irrigation and phosphorus fertilization combine to affect uptake and utilization of phosphorus by rice[J]. Journal of Irrigation and Drainage, 2021, 40(6): 45-52. (in Chinese with English abstract)
[20] 余华清,丁峰,殷尧翥,等. 不同水氮管理下麦茬杂交稻氮磷钾吸收和转运及其与产量的关系[J]. 湖南农业大学学报:自然科学版,2019,45(4):337-343.
Yu Huaqing, Ding Feng, Yin Yaozhu, et al. The uptake and transfer of nitrogen, phosphorus, potassium and their relationship with the yield in wheat stubble hybrid rice under different management of water and nitrogen[J]. Journal of Hunan Agricultural University: Natural Sciences, 2019, 45(4): 337-343. (in Chinese with English abstract)
[21] 胡志华,朱练峰,林育炯,等. 根部增氧模式对水稻产量与氮素利用的影响[J]. 植物营养与肥料学报,2016,22(6):1503-1512.
Hu Zhihua, Zhu Lianfeng, Lin Yujiong, et al. Effect of root aeration methods on rice yield and nitrogen utilization[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(6): 1503-1512. (in Chinese with English abstract)
[22] 刘玉学,唐旭,杨生茂,等. 生物炭对土壤磷素转化的影响及其机理研究进展[J]. 植物营养与肥料学报,2016,22(6):1690-1695.
Liu Yuxue, Tang Xu, Yang Shengmao, et al. Review on the effect of biochar on soil phosphorus transformation and mechanisms[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(6): 1690-1695. (in Chinese with English abstract)
[23] 王静,王允青,万水霞,等. 脲酶/硝化抑制剂对沿淮平原糯稻养分吸收利用的影响[J]. 江苏农业学报,2020,36(1):77-82.
Wang Jing, Wang Yunqing, Wan Shuixia, et al. Effects of urease /nitrification inhibitor on nutrient uptake of glutinous rice in plain along the Huaihe River[J]. Jiangsu Journal of Agricultural Science, 2020, 36(1): 77-82. (in Chinese with English abstract)
[24] 孙爱文,石元亮,张德生,等. 硝化/脲酶抑制剂在农业中的应用[J]. 土壤通报,2004,35(3):5.
Sun Aiwen, Shi Yuanliang, Zhang Desheng, et al. Application of nitrification/urease inhibitors in agriculture[J]. Chinese Journal of Soil Science, 2004, 35(3): 5. (in Chinese with English abstract)
[25] 林诚,王飞,李清华,等. 长期不同施肥下南方黄泥田有效磷对磷盈亏的响应特征[J]. 植物营养与肥料学报,2017,23(5):1175-1183.
Lin Cheng, Wang Fei, Li Qinghua, et al. Response characteristics of olsen-P to P balance in yellow paddy fields of southern China[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(5): 1175-1183. (in Chinese with English abstract)
[26] Alamgir M, Marschner P. Short-term effects of application of different rates of inorganic P and residue P on soil P pools and wheat growth[J]. Journal of Plant Nutrition and Soil Science, 2013, 176(5): 696-702.
[27] Rupp H, Meissner R, Leinweber P. Plant available phosphorus in soil as predictor for the leaching potential: Insights from long-term lysimeter studies[J]. AMBIO A Journal of the Human Environment, 2018, 47(S1): 103-113.
[28] Kang J, Amoozegar A, Hesterberg D, Osmond D L. Phosphorus leaching in a sandy soil as affected by organic and inorganic fertilizer sources[J]. Geoderma, 2011, 161(3-4): 194-201
[29] 范浩隆,王旭刚,陈志怀,等. 淹水对石灰性土壤无机磷形态转化的影响[J]. 植物营养与肥料学报,2021,27(8):10.
Fan Haolong, Wang Xugang, Chen Zhihuai, et al. Effects of flooding on transformation of inorganic phosphorusfraction in calcareous soil[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(8): 10. (in Chinese with English abstract)
[30] 朱强,安然,胡红青,等. 三峡库区消落带土壤对磷的吸附和淹水下磷的形态变化[J]. 土壤学报,2012,49(6):1128-1135.
Zhu Qiang, An Ran, Hu Hongqing, et al. Adsorption and transformation of phosphorus in soils of the tidal zone of the Three Gorges Reservoir region[J]. Acta Pedologica Sinica, 2012, 49(6): 1128-1135. (in Chinese with English abstract)
[31] 翟龙波,章熙锋,陈靖,等. 施肥对坡地土壤团聚体与磷素赋存形态的影响[J]. 西南大学学报:自然科学版,2019,41(7):105-115.
Zhai Longbo, Zhang Xifeng, Chen Jing, et al. Effects of Fertilization Soil Aggerates and Phosphorus Fractions of Sloping Upland of Purple Soil[J]. Journal of Southwest University: Natural Science Edition, 2019, 41(7): 105-115. (in Chinese with English abstract)
[32] 张婷,佟忠勇,张广才,等. 添加稻草生物炭对水稻土磷含量和形态的影响[J]. 华北农学报,2018,33(1):211-216.
Zhang Ting, Tong Zhongyong, Zhang Guangcai, et al. Effects of rice straw-derived biochar on phosphorus content and form in paddy soil[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(1): , 211-216. (in Chinese with English abstract)
[33] 王子琬,梁新强. 土壤干湿交替对磷素释放的影响机制[J]. 环境生态学,2020,2(5):54-58.
Wang Ziwan, Liang Xinqiang. Effects of alternate drying-rewetting process on migration and transformation of soil phosphorus[J]. Environmental Ecology, 2020, 2(5): 54-58. (in Chinese with English abstract)
[34] 聂云鑫,徐卫红,陈序根,等. 脲酶硝化双抑制剂缓释肥对土壤养分含量及土壤酶活性的影响[J]. 中国农学通报,2019,35(11):65-71.
Nie Yunxin, Xu Weihong, Chen Xugen, et al. Effects of slow-release fertilizer containing urease inhibitor and nitrification inhibitor on nutrients contents and enzymes activities in soil[J]. Chinese Agricultural Science Bulletin, 2019, 35(11): 65-71. (in Chinese with English abstract)
[35] 杨艳菊,王改兰,张海鹏,等. 长期施肥条件下栗褐土碱性磷酸酶活性及其与磷形态的关系[J]. 土壤,2013,45(4):678-682.
Yang Yanju, Wang Gailan, Zhang Haipeng, et al. Effects of long-term fertilization on relationship among phosphorus forms in loess hilly-gully region[J]. Soils, 2013, 45(4): 678-682. (in Chinese with English abstract)
[36] 颜晓军,苏达,郑朝元,等. 长期施肥对酸性土壤磷形态及有效性的影响[J]. 土壤,2020,52(6):6.
Yan Xiaojun, Su Da, Zheng Zhaoyuan, et al. Effects of long-term fertilization on phosphorus forms and availability in acid soils[J] Soils, 2020, 52(6): 6. (in Chinese with English abstract)
[37] Uzoma K C, Inoue M, Andry H, et al. Effect of cow manure biochar on maize productivity under sandy soil condition[J]. Soil Use and Management, 2011, 27(2).
[38] 张为政. 土壤磷组分对有效磷影响的通径分析及其相对重要性[J]. 土壤学报,1991,28(4):417-425.
Zhang Weizheng. Path analysis for the phosphorus poles on available phosphorus in soil and the relative importance[J]. Acta Pedologica Sinica, 1991, 28(4): 417-425. (in Chinese with English abstract)
Effects of various irrigation and fertilization schedules on the transformation and availability of phosphorus in paddy fields
Tian Cang1,2, Yu Yijun3, Wu Longlong1, Zhang Lu1, Huang Jing1, Zhu Lianfeng1, Zhang Junhua1, Zhu Chunquan1, Kong Yali1, Wu Meiyan2, Cao Xiaochuang1※, Jin Qianyu1
(1.,,,311400,;2.,,,,,434025,;3.,310020,)
Phosphorus has been one of the most limiting factors to food security in modern agriculture, due to the nonrenewable natural resource. This study aims to investigate the effects of irrigation and fertilization schedules on the phosphorus absorption, transformation, and use efficiency in paddy fields. A systematic evaluation was made on the contribution to the phosphorus availability of rice in the paddy soil. Taking the hybrid indica rice Zhongzheyou 1 as the experimental material, two irrigation schedules were set, including the conventional flooding and alternate wet/dry (AWD) irrigation. Five types of nitrogen application were the zero fertilizer (CK), traditional nitrogen level (100% PU), 80% of traditional nitrogen level (80% PU), 80% of control-released nitrogen fertilizer plus biochar (control released fertilizer, 80% CRF + BC), and 80% of stable compound nitrogen fertilizer plus biochar (stable fertilizer, 80% SF + BC). An analysis was performed on the rice yield and phosphorus absorption efficiency, as well as the contents of soil available phosphorus, and the composition of the various phosphorus forms. The results showed that: 1) The AWD irrigation under various treatments significantly increased the rice yield (0.05), compared with the CF schedule. The maximum yields of 9 656.2 and 1 0032.4 kg/hm2were achieved in the 80% CRF+BC and 80% SF+BC treatments, respectively. All yields here were also significantly higher than those in the 100% PU and 80% PU treatments.2) The AWD also significantly improved the content of phosphorus that accumulated in the panicle at the maturity stage of rice in the 80% SF+BC treatment. The phosphorus accumulation in the different organs of rice, the absorption efficiency, and partial factor productivity were all significantly higher in the 80% CRF+BC and 80% SF+BC treatments than those in the 80% PU one; 3) There were the higher contents of soil available phosphorus, inorganic/organic phosphorus, and soil phosphorus activated coefficient at the depth of 0-15 cm and >15-30 cm in the 80% CRF + BC and 80% SF + BC treatments, including the moderately labile organic phosphorus (MLOP), and labile organic phosphorus (LOP) at the depth of 0-15 cm, compared with the 100% PU and 80% PU treatments; 4) A correlation analysis showed that there was the largest direct path coefficient of available phosphorus with the moderately resistant organic phosphorus (MROP, 0.599). The direct path coefficient with the LOP and MLOP, Ca-, Al- and O-Phosphate were 0.248, 0.177, -0.169, 0.126, and -0.079, respectively. It indicated that the MROP, LOPs, MLOP, and Al-Phosphate were the main decision-making factors for the soil available phosphorus, whereas, the Ca- and O-phosphate were the limiting factors for the available phosphorus. Correspondingly, an effective way can be expected to increase the content of MROP, LOP, and MLOP under the appropriate water and fertilizer management, further to increase the soil available phosphorus. Furthermore, the phosphorus uptake and use efficiency of rice can be achieved for the better transformation and activity of soil phosphorus at the mature stage of rice under the suitable AWD irrigation, control-released nitrogen fertilizers, or stable compound nitrogen fertilizer plus biochar in paddy fields.
fertilization; irrigation; soils; alternate wet and dry; organic phosphorus; inorganic phosphorus; phosphorus availability; rice
2021-09-23
2021-12-10
浙江省重点研发计划(2021C02035);国家自然科学基金(31771733);国家重点研发计划(2017YFD0300106,2016YFD0200800)作者简介:田仓,研究方向为稻田养分资源管理。Email:t192688@163.com
曹小闯,博士,副研究员,研究方向为稻田养分资源管理。Email:caoxiaochuang@126.com
10.11975/j.issn.1002-6819.2021.24.013
S511
A
1002-6819(2021)-24-0112-11
田仓,虞轶俊,吴龙龙,等. 不同灌溉和施肥模式对稻田磷形态转化和有效性的影响[J]. 农业工程学报,2021,37(24):112-122. doi:10.11975/j.issn.1002-6819.2021.24.013 http://www.tcsae.org
Tian Cang, Yu Yijun, Wu Longlong, et al. Effects of various irrigation and fertilization schedules on the transformation and availability of phosphorus in paddy fields[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(24): 112-122. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.24.013 http://www.tcsae.org