程璐瑶, 唐晓音, 李 毅
1. 西安交通大学人居环境与建筑工程学院, 陕西 西安 710049;2. 中国地质科学院地质力学研究所, 北京 100081
磷灰石裂变径迹 (AFT) 热年代学是20 世纪60 年代开始应用于地质学领域的一种同位素定年技术, 它能有效重塑地壳浅部约3 ~5 km 内数百万年以来的热演化历史 (Kohn and Green, 2002; 周海, 2010)。 随着定年方法的不断完善, AFT 已发展成为比较成熟的低温热年代学技术, 在盆地构造热演化史分析、 沉积物源恢复及造山带剥露历史等领域取得了良好的应用效果 (Yan et al. ,2003; 杨农和张岳桥, 2010; Chew and Donelick,2012; 丁波等, 2019; Tang et al. , 2019)。
磷灰石裂变径迹是238U 自发裂变产生的高能带电粒子穿过绝缘固体材料时, 由于辐射损伤所留下的狭窄痕迹 (Fleisher et al. , 1981; Nadzri et al. ,2017)。 裂变径迹仅在某一温度范围(约90 ~120 ℃)以下才能保存, 并且具有随温度升高和受热时间增长, 径迹长度减小、 密度降低直至完全消失的特征, 这一特性称之为退火 (付明希, 2003; 田云涛等, 2009)。 了解退火过程是理解裂变径迹定年原理的关键 (Kohn et al. , 2003), 因而十分重要。退火过程通常被理解为动力学过程。 一般认为,AFT 的退火动力学过程受温度、 化学成分、 径迹与结晶轴的方位关系等多种因素控制。 但是随着分析技术的进步, 压力、 径迹半径、 晶胞参数等因素也越来越受关注并取得了不错的研究进展(Barbarand et al. , 2003; Donelick et al. , 2003; Liu et al. , 2008; Schmidt et al. , 2014; Nadzri et al. ,2017)。 文中通过回顾AFT 退火动力学模型, 总结近年来有关退火动力学影响因素研究的新进展及尚存的争议, 以期为完善实验室内退火动力学模型、 提高AFT 作为热历史记录器的精度提供参考。
研究AFT 的退火行为是利用其进行热史模拟的基础。 AFT 退火行为研究是在实验室内研究裂变径迹参数 (密度、 长度等) 随温度和时间变化的规律, 建立符合这些规律的退火动力学模型,然后外推到地质时间尺度, 用于实际样品的热史分析。
通过大量的退火实验研究, 不同学者先后提出了不同的退火模型。 由于极少有理论模型可以做到形象描述裂变径迹的生成及其在原子尺度的退火过程, 因此大多数模型都属于经验模型(Ketcham, 2005a)。 早期的研究认为裂变径迹退火主要与温度和时间有关, 并基于等温退火实验建立了不同的磷灰石退火模型, 主要有: 平行模型(Green et al. , 1986), 平行线状、 扇形退火模型(Laslett et al. , 1987), 扇形直线模型 (Crowley et al. , 1991) 以及统计模型 (Laslett and Galbraith,1996)。 然而这些模型最大的缺陷是, 他们都是基于单一组分的磷灰石退火实验结果提出的, 如Durango 磷灰石或富氟磷灰石, 均假定磷灰石具有相似的退火行为。 实际上, 大量研究表明, 不同地区的磷灰石因为成分的差异, 往往具有不同的动力学特征 (Carlson et al. , 1999; Barbarand et al. , 2003; Ketcham, 2003; Tello et al. , 2006;Powell et al. , 2017)。 因此, Ketcham et al. (1999,2007a) 基于扇形退火模型建立了多元动力学退火模型。 该模型按照成分 (Cl 含量) 和Dpar(平行结晶c轴的裂变径迹与抛光面相交的蚀刻象长度)的不同, 将同一样品各个磷灰石颗粒的径迹分成多个具有不同动力学性质的系列, 然后对这些不同的系列分别进行模拟。 该模型代表了现今AFT退火动力学研究的主流, 由于其适用于具有复杂化学动力学成分的磷灰石而被广泛应用 (田云涛等, 2009; Ketcham, 2018)。
可以看出, 随着对AFT 退火特征研究的深入,退火模型也在不断地完善与优化。 为了建立更合理的退火模型, 需要全面了解影响退火的各项因素, 逐步地将更多因素纳入退火模型的建立。 实际上, 磷灰石裂变径迹退火是一个多元动力学行为, 除了受化学成分、 晶体结构等自身因素影响以外, 还受到压力、 温度等外部因素的影响。 下面详细介绍AFT 退火的影响因素及相关研究进展。
2.1.1 化学成分
磷灰石化学式为Ca5(PO4)3(F, OH, Cl),也可以表示为X10YO4Z2, 其中X=主要是Ca; Y=P; Z=F, Cl 或者OH (Ravenhurst, 2003; Mcdannell et al. , 2019)。 AFT 退火实质上是一个受活化能控制的扩散过程, 不同化学成分的活化能不同, 即磷灰石化学成分差异最终导致了不同的扩散结果。 因此, 自身影响因素中, 化学成分是AFT 退火最主导的因素(Laslett et al., 1987; Carlson et al., 1999)。
相关学者针对Z 和X 位点分别开展了众多化学成分对AFT 退火速率产生影响的研究。 卤素位点Z (F, Cl, OH) 上, 单纯的Cl 含量增加或OH含量增加均可减缓AFT 退火速率 (更耐退火)(Gleadow et al. , 1986; Green et al. , 1986; 张向涛等, 2012)。 分析Cl, F 两种元素含量变化与裂变径迹退火难易程度之间的规律发现, 富Cl 磷灰石比富F 磷灰石更耐退火, Cl 与F 含量比值与AFT耐退火能力呈正相关关系 ( 付明希, 2003;Ketcham, 2005b; Nadzri et al. , 2017)。 此外磷灰石卤素位点上F, Cl 和OH 的链阵排布次序也关系到退火难易程度 (Ketcham, 2018), 按一定次序排列的F-Cl-OH 磷灰石会比 Cl 磷灰石更耐退火(Carlson, 1990)。 X 位点上, Ca2+可 被 Fe2+,Mn2+, Sr+, REE (稀土元素) 等取代, 从而使AFT 退火速率减缓 (Barbarand et al. , 2003); 而X位点上REE 含量增加会加速退火 (Carlson, 1990;Barbarand et al. , 2003; Afra et al. , 2014)。
通过对比研究发现, 不同位点 (X, Y, Z)上的化学元素成分差异可能会表现出相似的退火行为。 比如, 富Sr 的磷灰石表现出与F 磷灰石相似的退火行为 (Crowley et al. , 1991), 富REE 的F 磷灰石与Cl 磷灰石退火速率相近 (Donelick,1991), 富Mn 的氟磷灰石的退火行为与Cl 磷灰石相似 (Ravenhurst et al. , 2003)。 此外, 单个位点上会发生连锁取代, 如Y 位点上的P 被Si 取代后,Si 可能还会被其他元素取代 (Ketcham, 2018)。 总之, 元素的替换类型、 数量及替换位置都会影响退火, 最终对退火的影响是多个取代离子综合作用的结果。 今后的研究中应依靠新技术对磷灰石颗粒成分进行更加系统的测定, 进一步深入研究阴阳离子取代反应机制及取代后对退火产生的影响效应, 以便清楚描述各位点化学成分与其退火动力学的响应关系。
2.1.2 晶体结构
磷灰石晶体属于六方晶系, 其晶体结构实际上由其成分控制。 位点 (X, Y, Z) 的元素取代会产生晶格缺陷, 元素含量变化会导致磷灰石原始晶格结构发生改变 (刘羽和胥焕岩, 2001;Barbarand et al. , 2003; 刘飚等, 2006; Carpena and Lacout, 2010; Kinoshita et al. , 2010; Mcdannell et al. , 2019)。 比如, 当X 位点上的Ca2+被一些微量元素 (Mn2+, Sr2+, Zn2+) 取代后, 会造成OH 磷灰石晶胞减小、 晶粒细化 (刘飚等, 2006)。
磷灰石六面柱体状晶胞的形状和大小常用晶胞参数 (三组棱长a,b,c及棱间交角α,β,γ)来表征。 晶胞参数受到磷灰石构造中Ca 多面体、[PO4] 四面体及构造孔道位置上的离子类质同象替换的影响 (刘羽等, 2001)。 Carlson et al.(1999) 通过实验研究发现, 当组分一定时, 晶胞参数a值越大、c值越小, 退火速度越慢。 Barbarand et al. (2003) 的观点与其一致, 并进一步发现晶胞参数a对平均径迹长度 (MTL) 变化的响应程度比c要高。
总体来说, 化学成分是导致晶体结构影响AFT退火的主要原因, 而正确理解晶体结构对退火的影响, 为解释化学成分所起作用开辟了另一种渠道。 例如, Liu and Comodi (1993)、 刘羽和胥焕岩(2001) 通过实验研究晶胞参数与离子含量关系时发现, 随着Cl 含量的增加, 晶胞参数a值变大、c值明显变小、c/a比值急剧变小, 从晶体结构的角度印证了Cl 含量增加可增强抗退火性。
2.1.3 径迹长度与半径
热史模拟过程中, 样品的裂变径迹长度是重要的约束参数之一 (Gleadow et al. , 1986)。 径迹长度是指磷灰石受238U 裂变的碎片损伤区经蚀刻后的 “痕迹” 的长度 (Gleadow and Seiler, 2015)。AFT 初始长度为16.0 ~16.5 μm, 单个径迹在退火早期径迹长度缩短缓慢, 随着退火进行, 当长度缩短至10.5 μm 以下时缩短速度加快 (退火程度明显加重; Donelick et al. , 1999; Ketcham, 2018)。而对于多个化学成分相同的径迹来说, 一般短的径迹比长的径迹更耐退火 (Wendt et al. , 2002;Kohn et al. , 2003)。 裂变径迹按照生成条件可分为自发和诱发两种, 由于自发裂变径迹经历过一定程度的退火, 一般比诱发裂变径迹要短4%~11%,长度分布也比诱发裂变径迹分散。 因此, 为了尽量减小径迹长度对退火过程的影响, 实验室退火实验时通常采用长度一致且分布集中的诱发裂变径迹作为测量对象 (Spiegel et al. , 2007; Ketcham,2018)。
裂变径迹形态常呈圆柱形, 其纵横比超过1000 ∶1, 横向半径虽然没有长度变化那么明显,但退火时也在不断缩短并对退火速率产生影响。整体上, AFT 半径越小, 退火速率越快 (Glaeser,2001; Li et al. , 2011)。 随着小角度X 射线散射法(SAXS) 和透射电子显微镜 (TEM) 等新技术的应用, 径迹半径成为判断退火程度的又一新的约束参量。 Nadzri et al. (2017) 利用SAXS 技术发现, 平行于结晶c轴的初始径迹半径比垂直于c轴的要大一些。 另外, 当温度小于300 ℃时, 径迹半径随温度的变化不大; 温度高于300 ℃时, 随着温度升高, 径迹半径显著减小; 温度高于400 ℃, 大部分径迹消失 (图1)。
图1 Durango 磷灰石退火实验 (30 min) 中径迹半径与温度变化图 (Nadzri et al. , 2017)Fig.1 Track radius as a function of annealing temperature for 30 min for Durango apatite (Nadzri et al. , 2017)
2.1.4 径迹与结晶轴的方位关系
径迹与磷灰石结晶c轴的夹角θ关乎AFT 退火的难易程度。 AFT 退火具有各向异性, 即与结晶c轴夹角不同的径迹退火表现不同。 其中, 与c轴夹角大的径迹对退火敏感性更高, 比与c轴夹角小的径迹退火速率大, 并且随着退火程度增加, 这种差异更加明显 (Green et al. , 1986; Donelick et al. , 1999; Ketcham, 2003; Guedes et al. , 2007)。退火程度通常采用退火率 (r=l0/l, 其中l和l0分别表示退火和未退火裂变径迹长度) 来表示。 受主观因素影响, 实验中与c轴呈65°~75°夹角的径迹最可能被观察和测量, 与c轴呈低角度的一些细小径迹难以识别, 因此夹角会影响封闭径迹长度的测定从而影响退火程度的判断 (Donelick et al. ,1999; Ketcham et al. , 2009; 焦亚先等, 2013)。 此外, 受各向异性影响, 不同方位的径迹蚀刻速率会存在差异 (与结晶c轴平行的径迹优先被蚀刻), 从而可能影响对径迹长度的测量结果, 最终影响热史模拟结果 ( Donelick et al. , 2005;Ketcham, 2019)。
目前, 发展较为成熟的可以去除径迹方位 (各向异性) 对退火造成影响的模型是c轴投影模型(Donelick et al., 1999; Ketcham, 2003; Ketcham et al. , 2007b)。 该模型将AFT 的退火行为划分为两部分进行探讨, 即符合椭圆分布模型的部分和长度加速缩短的部分 (图2)。 当平均径迹长度lm>11 μm 时, AFT 退火程度较轻, 径迹长度呈现椭圆分布; 当lm<11 μm 后, AFT 经历较高程度的退火。 由于与结晶c轴呈高角度的径迹会经历快速的长度缩短, 径迹长度不再呈椭圆分布, 而是分为两种情况:θ≤θalr(θalr为长度加速缩短时, 与结晶c轴的临界角) 的径迹符合椭圆分布;θ>θalr的径迹长度加速缩短, 径迹长度分布呈直线型, 其垂直结晶c轴的截距为a1, 与相应的径迹分布椭圆相交于θalr处 (Donelick et al. , 1999; 付明希,2003)。 基于该模型, 焦亚先等 (2013) 探讨了实际测量长度相同而分布方位不同的径迹模拟的热历史之间的差异, 发现磷灰石裂变径迹与结晶c轴夹角不同, 揭示的最高古地温之间最大差异为15 ℃, 用来研究剥蚀量和年轻造山带冷却抬升速率引起的最大差异可分别达到430 m 及1.5 ℃/Ma, 揭示构造抬升事件的初始抬升时间最大可相差2 Ma。
图2 不同退火程度下AFT 退火的各向异性(Donelick et al. , 1999)Fig.2 Anisotropy of AFT annealing at different levels of annealing(Donelick et al. , 1999)
2.2.1 温度与时间
AFT 的退火行为一旦开始就受到温度及时间的影响, 而且温度是主导因素, 在较高的温度下退火速度更快 (Fleischer and Price, 1964; Duddy et al. , 1988; Hurford, 2018)。 Fleischer and Price(1964) 采用阿累尼乌斯 (Arrhenius) 线性趋势描述了径迹退火与温度、 时间的关系, 为建立恒温退火模型奠定了基础。 而实际上, AFT 退火时温度是随时间不断发生变化的, 将恒温退火模型公式扩展应用于变温过程的关键是等效时间原理(Duddy, 1988; 周成礼等, 1994)。 等效时间原理指出, 退火率为r的径迹在以后的退火过程中, 其退火行为仅取决于当前的退火率、 温度和时间,而与以前的温度、 时间无关。 根据该原理, 变温过程可以拆分为有限个恒温时间小段 (Δt) 集合,然后依次分析各个时间小段 (Δt) 内的退火行为。目前, 该原理仍是实验室研究AFT 的退火行为以及应用退火模型研究样品热史路径的主要基础。
2.2.2 压力
早期有关压力对AFT 影响的研究认为, 相比于温度, 压力对AFT 退火的影响微不足道 (Naeser and Faul, 1969; Ahrens et al. , 1970; Lakatos and Miller, 1970; Fleisher et al. , 1981)。 但是随着研究深入, 越来越多的学者开始重视压力的影响(Wendt et al. , 2002, 2003; Vidal et al. , 2003; 卓鱼周, 2010; Schmidt et al. , 2014)。 相同温度和时间条件下, 退火速率随压力的增强而加快(Schmidt et al. , 2014)。 值得注意的是, 压力只有在特定范围内 (2 ~4 GPa) 才会显著影响AFT 退火, 当压力小于150 MPa 时, 其影响相当微小(Donelick et al. , 2003; Schmidt et al. , 2014)。 另外, 压力对晶体性质也会造成影响: 压力能够提高晶格抗辐照稳定性, 从而增强径迹的抗退火性(Liu et al. , 2008)。
以上探究有助于更全面地理解压力对退火的影响效应, 但由于自发和诱发裂变径迹对于压力敏感性不同、 实验室内压力设定与实际地质背景压力环境存在较大差异等原因, 使得目前压力对AFT 退火的影响效应尚无统一定论。
2.2.3 蚀刻条件
化学蚀刻是AFT 实验中获取径迹长度与密度、Dpar值等退火参数的前提条件 (Moreira et al. ,2008; Murrell et al. , 2009)。 蚀刻变量 (包括溶剂配比、 蚀刻时间和温度等) 会影响AFT 退火观测效果 (汤云晖等, 2004a; Ketcham, 2018)。 蚀刻液中HNO3浓度越高, 达到目标蚀刻长度所需时间越短 (Moreira et al. , 2010)。 蚀刻是一个原始径迹形态不断呈现的过程, 蚀刻径迹长度在特定范围内随蚀刻时间延长呈幂函数增长, 但蚀刻时间过长会出现径迹展宽、 密度过高等问题, 通常高温短时间的蚀刻效果优于低温长时间 (翟鹏济, 1991;汤云晖等, 2004b; Moreira et al. , 2010)。 为了减少由于蚀刻条件不同产生的差异, 建议不同的实验室测试的时候尽量采用相同的蚀刻方案(Ketcham, 2018)。 目前常用的蚀刻方案有两种:5 N HNO3, (20±1) ℃, 20 s (Gleadow and Lovering,1978); 5.5 N HNO3, (21±1) ℃, (20±0.5) s (Carlson et al. , 1999; Donelick, 2005)。 实验过程中, 应注意对蚀刻条件的把控, 以减小实验误差。
AFT 热史模拟的依据是其退火模型, 为顺应AFT 广泛应用, 需完善磷灰石裂变径迹的实验室退火模型, 提高其作为热历史记录器的精度。 而建立退火模型的基础是研究其退火影响因素。 通过文章研究综述主要获得以下认识:
(1) 自身影响因素包括化学成分、 晶体结构、径迹长度与半径、 晶体与结晶c轴的夹角, 其中化学成分起主导作用;
(2) 外部环境因素除温度与时间外, 压力、蚀刻条件也是重要的影响因素;
(3) 退火影响因素间存在着相互作用, 自身和外部影响因素也存在交叉干扰, 应全面了解各因素影响AFT 退火的原理和约束条件, 以便完善退火模型的设计, 获得更加标准化的AFT 分析技术。
致谢:感谢西安交通大学地热与环境课题组老师和同学们的帮助, 感谢编辑和审稿专家给出的宝贵意见。