毛丽君 张云波
1) (太原师范学院物理系, 晋中 030619)
2) (浙江理工大学理学院, 杭州 310018)
本文利用绝热近似方法和精确对角化方法研究三量子比特Dicke 模型中的纠缠动力学.处于两种典型的纠缠态GHZ 态和W 态上的量子比特在时间演化过程中与辐射光场发生强耦合作用, 在各种子系统间产生纠缠,通过分析这些纠缠的演化特性发现初始GHZ 态的三体纠缠鲁棒性比W 态强, 这与旋波近似结论一致.与旋波近似下结果不同的是, 两种态中任意一对量子比特间的纠缠都随时间演化到几乎为零, 而三体纠缠随时间周期演化, 且纠缠程度相对较强, 说明系统中的强耦合作用通过抑制量子比特中的对纠缠来支持三体纠缠.
腔体中原子和电磁场的耦合对光与物质相互作用的理解是至关重要的, 也是许多量子技术的核心.在最近几年, 人们感兴趣的光和物质的相互作用不再是传统的弱耦合区域[1], 在许多实验中电子、分子、激子与微腔中光子的相互作用已达到了超强耦合区域[2].此外, 在电路量子电动力学领域中, 通过人造原子实现了光与物质耦合的类似模型, 即超导两能级系统与微波光子的耦合.在这种情况下, 通过高阻抗谐振器或电流耦合机制超越了原有的界限, 进入到了深强耦合区域[3−6].在强耦合条件下, 相互作用中的非旋波项不能忽略, 人们便开始着手研究非旋波近似下光与物质的耦合系统.
在非旋波近似下, 最简单的系统是单个二能级系统(称为量子比特)和光场相互作用的Rabi 模型[7], 人们详尽地探讨了这个模型[8−15], 并将其推广到多个量子比特和单模量子化光场相互作用的Dicke 模型[16], 发现许多非常有趣的现象[17−22].文献[23]系统地研究了各向异性量子Rabi 模型的量子相变问题, 在这样一个有限自由度系统的相变中建立了普适性概念, 还进一步将结论推广到任意原子数的Dicke 模型中, 并与热力学极限下的传统普适性概念等价起来[23].量子纠缠在量子相变中扮演着非常重要的角色, 是量子信息科学的核心.目前, 人们对Dicke 模型中不同子系统间的纠缠演化进行了广泛的研究[24−30].我们利用绝热近似方法严格求解了三量子比特Dicke 模型的本征解, 并在此基础上讨论了三量子比特和光场的纠缠以及量子比特1 和23 的两体纠缠随时间的演化特性[31].除这两类纠缠以外, 光场和量子比特间的相互作用也会导致其余不同子系统间产生纠缠, 例如, 任意两个量子比特间的对纠缠、量子比特和光场结合的子系统与其余量子比特的两体纠缠, 即合作纠缠等等.量子态随时间演化时, 不同子系统间的纠缠相互竞争, 那么该模型中相互作用到底支持哪一类纠缠, 这个问题有待进一步讨论.另外, 三量子比特内部的两体纠缠是把三体系统分解成1 和23 两个子系统, 无法区分是1 和2 的纠缠, 还是1 和3 的纠缠, 抑或是1, 2, 3 之间的纠缠[32−35], 即三体纠缠, 决定系统动力学演化的关键信息.基于此, 本文将利用纠缠并发度和负值度对这些纠缠动力学特性进行深入研究.
本文主要讨论三个全同的量子比特同辐射场耦合时, 不同子系统之间的纠缠行为, 哈密顿量可以写为
这里, a†(a) 代表频率为 ωc的单模辐射场的产生(湮灭)算符, ω 为三个量子比特的跃迁频率, 它们与辐射场的耦合强度都为g, J =Jxex+Jyey+表示三量子比特的总自旋算符, 与哈密顿量对易系统希尔伯特空间可分解为[36]
下面简单介绍一下系统的本征解, 选择总自旋和光场的结合态 | 3/2,m〉|n〉Am为基矢, | n〉Am代表平移Fock 态, | j,m〉 是 总自旋算符 J2和 Jz的共同本征态.当量子比特的跃迁频率与单模辐射场频率满足关系式 ω ≪ωc时, 可以利用绝热近似方法将哈密顿量简化为对角块的形式[31], 即
计算可得 Hn中的各个元素为表 示 平 移Fock 态的内积, 将其展开可得
依据宇称对称性可得出 Hn的本征能量,
假设辐射场为相干态 |z〉 , 其中参数z 决定平均光子数(也就是它的模平方), 三量子比特初始处于GHZ 态 ( |111〉+|000〉)/.其中任意一个比特与剩余所有比特之间具有最大的纠缠, 从这个意义上通常认为它是一个最大多方纠缠态.约化掉任意一个量子比特后, 剩余两量子比特为非纠缠的混合态.在总自旋表象下, 初态可以表示为
当耦合强度g 相对较小时, 初态可按平移Fock态展开为
利用薛定谔方程得出系统随时间演化的密度算符
将本征解(7)式和(8)式代入密度算符中, 对光场取迹可得三量子比特约化密度矩阵, 其在Jx表象下的最简化形式为
[37], 振荡函数 Sk(t,ω)=hkexp(ΦRe+iΦIm) , 其特征参数为复原高度包络因子µk)2fγ2/2 及快速振荡条件ΦIm=tan−1(πkf)/2+µ(1 −f)+2πk|z|2, 其中 f =|γz|2,µk=πk(f +2)/γ2.
下面分别研究各类纠缠.对于A 和B 组成的d1×d2维两体纯态系统 | ψAB〉 , 可以利用纠缠两体纯 态I concurrence 的平方I tangle[38]
来描述该系统的纠缠程度, 这里的 ρA是子系统A 的约化密度矩阵.依据, 可得 (i) 类纠缠的I tangle[38]
可以用来定量地描述辐射场和量子比特1 结合的子系统与剩余两量子比特之间的纠缠性质.进一步对密度算符中的量子比特2 取迹, 即
可得 (iii) 类两体纯态I tangle
描述辐射场和量子比特1, 2 结合的子系统与量子比特3 的纠缠特性.另外, 利用密度矩阵可以进一步讨论三量子比特间的内部纠缠, 由于混合态密度矩阵的秩是小于等于2 的, 从而可得出描述量子比特1 与2, 3 结合的子系统间的 ( iv) 类混合态I tangle[31,38,39]
另一方面也可以用纠缠负值度(Negativity)[40]来描述量子比特间的内部纠缠,其中 λi是密度矩阵的部分转置矩阵的负本征值 , ( iv) 类纠缠负值度为
对于矩阵 ρQ23的部分转置矩阵没有负本征值, 则两量子比特纠缠的负值度
在以上分析的基础上, 可以进一步得到真正的三体纠缠, 即三体纠缠(three-tangle)[33]
其中 τ1,23描述的是量子比特1 和被认为是单一对象23 的纠缠, τ12, τ13描述 的 分别是1 和2、1 和3 的纠缠.( v) 类I tangle=1, , 每对量子比特之间是经典关联并不是纠缠, 将其代入(17)式可得, 即某个量子比特与剩余两个量子比特的纠缠与三体纠缠相等, 这一特性与初始时刻的GHZ 态相同.同样地, 负性平方也可以用来度量三体纠缠, 定义为 π-tangle[35]
关于π-tangle 的计算涉及到纯态纠缠的凸脊扩展,求其最小值几乎是不可能的.虽然在三量子比特直积态基矢下得到的负性纠缠的平方不一定是最小值, 但一定是三体纠缠的上限值.由(18)式可以得到与并发度相同的结果, 即(t)=
如果假设三量子比特初始时刻处于W 态
此态对任何一个量子比特取迹后, 剩余的两量子比特处于纠缠态.用W 态替换GHZ 态重复上面的计算过程, 可得耦合角动量空间中的三量子比特约化密度矩阵
进而利用(10)式得出表征量子比特和光场纠缠的 (i) 类I tangle
由(20)式可得 ( ii) 类两体纯态I tangle
得出 ( iii) 类两体纯态I tangle 的具体表达式
与GHZ 态相比, W 态为初态时系统随时间演化比较复杂, 约化密度矩阵的秩大于2, I tangle不适用于描述 ( iv) 类混合态纠缠, 但仍然可以通过纠缠负值度来描述该类纠缠特性[31].另外, 依据约化密度矩阵(t) 可得两量子比特间的纠缠负值度(t) , 进而可以利用(t) 来表征三体纠缠特性.
图1 初始时刻为GHZ 态(左)和W 态(右)时, (i) 类两体纯态纠缠I tangle, 其中红色(实线)表示数值结果, 蓝色(虚线)表示解析结果, 系统参数为 ω =0.15ωc , z =3 , g =0.02ωc (a) , 0.04ωc (b) , 0.06ωc (c) , 0.08ωc (d)Fig.1.Time evolution of the I tangle for the type (i) with the initial GHZ (left) and W (right) states for ω =0.15ωc , z =3 , and different coupling strengths: g =0.02ωc (a) , 0.04ωc (b) , 0.06ωc (c) , 0.08ωc (d) , given by the numerical method (solid red line),and the analytical approach (dashed blue line).
图2 初始时刻为GHZ 态(左)和W 态(右)时, ( ii) 类两体纯态I tangle 随时间的演化, 其中红色(实线)表示数值结果, 蓝色(虚线)表示解析结果, 系统参数与图1 相同Fig.2.Time evolution of the I tangle for the type ( ii) with the initial GHZ (left) and W (right) given by the numerical method (solid red line), and the analytical approach (dashed blue line).The corresponding parameters are the same as in Fig.1.
本节将对上一节得到的一些重要结果进行分析与讨论.图1 给出了两种初态下三个量子比特作为整体与光场的纯态纠缠 (i) 类I tangle, 解析结果分别为(11)式和(19)式.图2 给出了光场和量子比特1 结合的子系统与其余量子比特的纯态纠缠(ii)类I tangle, 绝热近似下的解析解与数值结果的包络相符合, 左边表示初态为GHZ 态, 解析结果如(12)式所示, 只包含单一的振荡因子 S (t,2ω).当初始时刻为W 态时, 解析结果(21)式中包含两个振荡因子 S (t,ω) 和 S (t,2ω) , 但通过比较两个振荡因子前的系数, 发现仍然是 S (t,2ω) 起决定作用,因此W 态与GHZ 态两种情形下的 ( ii) 类纠缠演化接近相同, 起初会随着时间的增加而达到峰值, 稳定一段时间后突然减小而后又有所增加并达到峰值, 且没有纠缠突然死亡的现象.这个特性与图1所示的 (i) 类I tangle 是截然不同的, 后者只在W 初态时才能演化到峰值.( ii) 类I tangle 整体上呈周期性振荡, 且耦合强度越大, 周期越小, 因此可以通过控制两量子比特与辐射场的耦合强度来调控 ( ii) 类纠缠行为.图3 给出了GHZ 态和W 态下光场和量子比特1, 2 结合的子系统与量子比特3 纠缠的 ( iii) 类I tangle, 解析结果分别为(13)式和(22)式.当耦合强度较弱时, ( iii) 类I tangle 都接近于1, 无明显的振荡因子, 且未发现纠缠死亡现象, 是辐射场与量子比特耦合系统中的纠缠稳态.
图4 给出了(iv)类纠缠负值度的平方, 即量子比特1 和23 的两体纠缠, 左图表示初态为GHZ态时该类纠缠随时间演化的最小值非零, 没有发生突然死亡现象, 而右图中初态为W 态时该类纠缠出现突然消失的现象.图5 给出了任意一对量子比特的纠缠负值度的平方, 即(v)类纠缠负值度, 左图中GHZ 态约化后的两量子比特始于可分离态,而右图中W 态始于纠缠态, 可以发现两种初态下随时间演化的对纠缠都变得很小, 接近于零, 以至于失去了作为信息资源的能力, 这与旋波近似下的结论不同.
在分析了 ( iv) 和 ( v) 两类纠缠的基础上, 进一步利用(18)式定义的 π-tangle 讨论量子比特之间的三体纠缠.从图6 可以看出, 随着耦合强度的增加,解析结果可粗略地描述量子比特间的三体纠缠, 将绝热近似下的本征解(5)式和(6)式代入约化密度矩阵中, 进而计算 π-tangle, 可以得出更准确的三体纠缠演化规律.无论量子比特处于哪一个初态,在强相互作用下单模辐射场和三量子比特之间会产生纠缠, 即图1 所示的 (i) 类纠缠, 通过比较图1 和图6 发现, 三体纠缠随时间演化而减弱时, (i)类纠缠就会增强, 反之亦然.图6 的左侧展示了初始时刻为GHZ 态时, 三体纠缠在任何区域都没有纠缠猝死现象, 并且图1 左侧的 (i) 类纠缠I tangle 没有演化到最大值.但是W 态情况下(图6右侧), 当三体纠缠随时间演化突然猝死时, 图1 右侧所示的 (i) 类纠缠I tangle 恰好达到最大值.在不同初态的纠缠演化中, 不发生纠缠猝死的态不容易与外界系统产生纠缠, 且比发生纠缠猝死的态保持纠缠的能力更强, 即鲁棒性更强.通过比较两种初态下的纠缠演化情况, 发现GHZ 态维持三体纠缠的鲁棒性比W 态强, 这与旋波近似下的结论一致.但是无论初态是GHZ 态还是W 态, 随时间演化的对纠缠与三体纠缠相比均很弱, 说明系统中的强耦合通过约束对纠缠以实现对三体纠缠的支持.纠缠态是量子信息领域的基本资源, 其鲁棒性会影响纠缠在量子信息中的应用, 该结果可应用于多量子比特信息处理.
图3 初始时刻为GHZ 态(左)和W 态(右)时, (iii) 类两体纯态I tangle 随时间的演化, 其中红色(实线)表示数值结果, 蓝色(虚线)表示解析结果, 系统参数与图1 相同Fig.3.Time evolution of the I tangle for the type (iii) with the initial GHZ (left) and W (right) states given by the numerical method (solid red line), and the analytical approach (dashed blue line).The corresponding parameters are the same as in Fig.1.
图4 初始时刻为GHZ(左)态和W(右)态时, (iv)类纠缠负值度的平方随时间的演化, 其中红色(实线)表示数值结果, 蓝色(虚线)表示解析结果, 系统参数与图1 相同Fig.4.Time evolution of the square of the negativity for the type (iv) with the initial GHZ (left) and W (right) given by the numerical method (solid red line), and the analytical approach (dashed blue line).The corresponding parameters are the same as in Fig.1.
图5 初始时刻为GHZ(左)态和W(右)态时, (v) 类对纠缠负值度的平方随时间的演化, 其中红色(实线)表示数值结果, 蓝色(虚线)表示解析结果, 系统参数与图1 相同Fig.5.Time evolution of the square of the negativity for the type (v) with the initial GHZ (left) and W (right) given by the numerical method (solid red line), and the analytical approach (dashed blue line).The corresponding parameters are the same as in Fig.1.
图6 初始时刻为GHZ(左)态和W(右)态时, 真正的三体纠缠π-tangle 随时间的演化, 其中红色(实线)表示数值结果, 绿色(实线)表示绝热近似结果, 蓝色(虚线)表示解析结果, 系统参数与图1 相同Fig.6.Time evolution of π-tanglewith the initial GHZ (left) and W (right) given by the numerical method (solid red line), the adiabatic approximation method (solid green line) and the analytical approach (dashed blue line).The corresponding parameters are the same as in Fig.1.
利用绝热近似方法分析了三量子比特Dicke模型全对称空间中的纠缠演化行为.初始制备在相干态上的辐射场与处于GHZ 态或W 态的三个量子比特发生强耦合作用, 随着时间的演化不同子系统间产生纠缠, 包括量子比特和场的合作纠缠以及量子比特内的三体纠缠.通过I tangle 和 Negativity来表征纠缠量, 两者在绝热近似下的解析表达式能够很好地展示不同子系统间的纠缠特性.初态为GHZ 态时, 三体纠缠没有发生纠缠突然死亡的现象, 量子比特和辐射场之间的纠缠随时间演化时没有达到最大值, 而W 态恰好相反.表明在相互作用条件下, 三量子比特GHZ 态维持三体纠缠的能力更强, 鲁棒性更好, 这与旋波近似下的模型得出的结果相同.与其不同的是, 不论初态是W 态还是GHZ 态, 随时间演化的任意两量子比特间的纠缠度都很小, 说明强耦合是通过抑制两量子比特之间的纠缠来支持三体纠缠的.本文的研究为纠缠态的鲁棒性以及利用Dicke 模型实现量子信息处理的工作提供理论参考.