马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析

2021-02-05 14:26秦天元刘玉汇毕真真李安一许德蓉王一好张俊莲白江平
作物学报 2021年4期
关键词:元件染色体根系

秦天元 刘玉汇 孙 超 毕真真 李安一 许德蓉 王一好 张俊莲 白江平,*

研究简报

马铃薯基因家族的鉴定及其对干旱胁迫的响应分析

秦天元1,2刘玉汇1,2孙 超1,2毕真真1,2李安一3许德蓉1,2王一好1,2张俊莲1白江平1,2,*

1甘肃省干旱生境作物学重点实验室 / 甘肃省作物遗传改良与栽培种创新重点实验室, 甘肃兰州 730070;2甘肃农业大学农学院, 甘肃兰州 730070;3兰州大学草地农业科技学院 / 草地农业生态系统国家重点实验室, 甘肃兰州 730020

干旱胁迫是影响马铃薯产量和品质的主要非生物胁迫因素之一。马铃薯在抵御干旱胁迫的过程中, 根系的生长发育和构型分布发挥着重要作用。基因家族是普遍存在于植物中的一类功能基因, 在调控植物根系构型和提高植株抗逆性等方面效果显著。本研究以马铃薯双单倍体‘DM-v4.03’高质量基因组为参考, 在全基因组范围内分析鉴定了基因家族的成员, 并采用多种生物信息学软件对其进行了系统进化树构建、染色体定位、保守蛋白结构域、基因结构和顺式元件预测。同时, 利用本课题组前期对马铃薯四倍体品系在不同干旱条件下的转录组测序结果, 分析了响应干旱胁迫的表达谱。结果表明, 在马铃薯中共鉴定获得10个家族成员, 其中由本课题组前期克隆获得。除位置信息不明外, 其余基因不均匀地分布在1、2、5、7、10和11号染色体上。StIgt家族蛋白长度为110~283个氨基酸, 分子量介于13.136~32.542 kD之间, 预测等电点为3.82~9.86。系统进化树分析发现, 该基因家族可分为3个亚族, 亚族间的基因结构、蛋白保守域和顺式作用元件差别明显。干旱胁迫下的表达谱分析表明,和响应早期干旱胁迫, 在干旱2 h时即迅速上调表达。这些结果为阐明基因家族的进化关系和进一步研究其成员的功能特性提供了理论基础。

全基因组; 马铃薯;基因家族; 干旱胁迫; 表达谱分析

马铃薯(L.), 属茄科(Solanaceae)龙葵亚属(), 一年生植物, 是继玉米、小麦和水稻之后的世界第四大粮食作物[1]。马铃薯属于块茎类作物, 在块茎发育过程中, 干旱胁迫会改变马铃薯的库源关系, 从而影响块茎的形成, 降低产量和品质[2-4]。植物为了避免在干旱胁迫下的不利影响, 在进化过程中建立了一套自我防卫机制[5-8], 其中是普遍存在于植物中的一类与根系发育和抗逆相关的功能性基因, 主要包括、和3种不同的亚簇[9]。其中,()在作物中的研究相对深入。水稻中的研究发现,受到生长素信号下游关键转录因子的直接调控, 主要控制植物根细胞的伸长, 影响根系的向地性生长, 可通过减小根系的垂直角度而造成深根效应, 进而提高水稻抗旱性[9-10]; 在小麦、拟南芥和李属植物中也发现,可通过改变侧根角度和初生根长度来影响根系构型[11]。主要调控植物分蘖角度[12-14]。同样主要参与植物根系角度的调控[15-16]。此外, 还有研究表明,家族在作物应对高盐和干旱等非生物胁迫中也发挥着重要作用[10-12]。

目前为止,基因家族仅在模式植物拟南芥和禾本科的少数作物中有所研究, 在马铃薯中基因家族成员尚未被鉴定和克隆, 其在植物地上部分和根系的形态建成以及抵御干旱胁迫过程中的功能尚有待阐明。随着马铃薯全基因组序列的测序完成, 为研究者更充分地研究马铃薯基因家族提供了可能。因此本研究首先通马铃薯全基因组范围内鉴定了该基因家族成员的10个成员, 并对其序列特征、染色体位置、系统发育关系、顺式元件和干旱胁迫响应的表达谱等方面进行了综合分析。这些结果为进一步研究马铃薯基因家族的分化历程及生物学功能奠定了基础, 也为马铃薯抗逆基因挖掘和种质创新提供了理论参考。

1 材料与方法

1.1 马铃薯StIgt基因家族成员的鉴定

从Ensemble数据库下载马铃薯参考基因组序列(PGSC, http://plants.ensembl.org/Solanum_tuberosum/Info/ Index)以鉴定马铃薯基因组中的基因家族成员。由于马铃薯基因没有隐马尔可夫模型(HMM), 所以我们采用BLAST方法进行搜索[17]。从NCBI数据库(https:// www.ncbi.nlm.nih.gov/)下载了拟南芥、水稻、桃子、杨树等物种的基因序列, 并使用它们作为种子序列来搜索马铃薯蛋白质序列中基因家族成员。为了尽可能搜索到真正的基因家族成员, 使用e值≤1e−10的条件进行基于blast算法的搜索。将搜索得到的序列分别提交到CDD数据库(https://www.ncbi.nlm.nih.gov/structure/ bwrpsb/bwrpsb.cgi)和Pfam数据库(http://pfam.xfam.org/)以确认保守结构域[18-19]。同时利用本课题组已有的拼接度较好的马铃薯二代Illumina的转录组序列进一步确认这些成员。最后将所得成员统称为, 命名为~。其中(gi|565391246:116-963)基因为本课题组所克隆。

1.2 马铃薯StIgt基因的生物信息学分析

将最终鉴定的进行系统发育分析。所有获得的序列首先由ClustalX (版本1.83)软件[20](默认参数)进行对齐, 再利用MEGA7软件[21]采用邻接法构建系统进化树, bootstrap测试1000次, 根据系统发育树的拓扑结构将马铃薯基因家族成员分为不同的类群。所有高置信度序列均提交至ExPASy网站(http://web.expasy.org/ protparam/)计算氨基酸数量、分子量和理论等电点(pI)。利用meme工具(版本4.11.2,http://alternate.meme-suite. org/tools/meme)来搜索识别序列中的保守基序[22]。通过(PG2C, http://mg2c.iask.in/mg2c_v2.1/)获得的染色体位置和内含子数量。利用在线绘图网站(GSDS, http://gsds.cbi.pku.edu.cn/)鉴定了基因的外显子-内含子结构。提取马铃薯中得到的基因编码区上游1.5 kb序列, 然后提交到PlantCARE (http://bioinformatics.psb. ugent.be/webtools/plantcare/html/)数据库进行顺式作用元件鉴定。根据马铃薯基因组数据库中的物理位置信息, 使用Circos软件将基因定位到马铃薯染色体上。

1.3 马铃薯StIgt的基因表达模式分析

利用课题组已有的马铃薯二代Illumina的RNA-seq数据, 进一步分析基因基因家族响应干旱的表达谱。将供试马铃薯品系C119 (CIP398098.119)的无菌试管苗培养于含有3%蔗糖和0.8%琼脂的Murashige和Skoog (MS)培养基上, pH 5.9[23]。C119保存在人工气候室中, 光照时间为16 h光照/8 h黑暗, 培养温度为 (22±1)℃。待C119长至25 d时, 将幼苗重新移入含有150 mmol L-1甘露醇的MS液体培养基中进行干旱胁迫, 分别于0、2、6、12和24 h时采集植株根部, 用于转录组测序。从上述RNA-seq数据中提取出在这5个时间点的FPKM值, 运用R软件中的Heatmap包来绘制其响应干旱胁迫的表达模式热图。

2 结果与分析

2.1 马铃薯StIgt基因家族的成员鉴定和聚类分析

利用生物信息学方法通过双向BLAST分析, 从马铃薯‘DM-v4.03’全基因组中共筛选到了21个备选序列, 通过局部BLASTP并删除重复序列后, 保留15个序列, 提交CDD、Pfam确认蛋白结构域。再将这15条序列与已在拟南芥、李属植物、水稻、玉米等其他作物中报道的基因序列进行同源比对(表1), 最后在马铃薯中共确定了10个家族成员(表2)。由表2可知, 马铃薯中家族蛋白长度范围从110 (StIgt10)到283个氨基酸(StIgt1)不等, 分子量介于13.136 kD (StIgt10)和32.542 kD (StIgt1)之间, 预测等电点为3.82 (StIgt4)~9.86 (StIgt10)。大多数蛋白(90%)的等电点小于7.0, 推测其可能是一类酸性蛋白。为进一步了解基因家族成员之间的同源关系, 本研究利用拟南芥、辣椒、水稻和玉米中已研究的基因共同构建了的系统进化树, 聚类为3个亚族:(I)、(II)和(III), 分别含有4、4、2个基因(图1)。

2.2 马铃薯StIgt基因家族的结构特征分析

对马铃薯基因家族蛋白保守结构域进行分析, 共鉴定出10个保守基序(Motif)。其中, 第I亚族中包含Motif 1、Motif 2、Motif 3、Motif 5、Motif 8、Motif 9和Motif 10, 第II亚族中包含Motif 1、Motif 3、Motif 4、Motif 6、Motif 7、Motif 9和Motif 10, 第III亚族中包含Motif 1、Motif 3、Motif 4和Motif 10 (图2)。I亚族中的基因相对于其他成员拥有更多的蛋白保守序列, 推测I亚族基因结构可能较II和III亚族更为复杂。此外, 在中普遍存在的保守结构域为Motif 1、Motif 3和Motif 10。从3个亚族的结构来看, I亚族包含除Motif 3、Motif 6和Motif 7之外的其他所有结构域; II亚族主要包含Motif 1、Motif 3、Motif 6和Motif 7, 且Motif多集中于序列前半段和后半段; III亚族则主要含有Motif 1和Motif 3结构域, 其中III亚族基因1相对于同亚族2多了一个Motif 3和Motif 4, 且Motif 1和Motif 3之间的内含子长度不同, 说明这些基因在遗传进化过程中可能存在遗传信息的遗失(图2-A)。同时, 基因结构分析表明,3个亚族的基因结构具有显著差别, 整体看来, I亚族外显子数目为1~4个, II亚族为1~6个, III亚族为2个。同亚族内基因一般都具有类似的外显子结构, 但从基因全长来看, 相似的CDS长度却有不同的基因全长, 说明内含子长度具有较大的差异性(图2-B)。

表1 拟南芥、桃、玉米与水稻Igt基因登录号

表2 马铃薯StIgt基因家族信息

2.3 马铃薯StIgt基因家族的染色体定位分析与胁迫相关的顺式元件分析

马铃薯基因家族共鉴定到10个成员, 其中可能由于参考基因组组装完整度的问题, 并没有找到染色体位置信息, 其余9条基因分别分布在1、2、5、7、10和11号染色体上, 其中1号染色体上有3个基因, 7号染色体上分有2个, 其余染色体各有1个。2号染色体上的基因分布在其下端, 7号和11号染色体的基因分布在其中间部位, 5号和10号染色体上基因分布在其上端。通过比较3个亚族基因在染色体上分布情况, 发现I亚族基因分布于1、2、5和11号染色体上, II亚族基因分布在1、7和10号染色体上, III亚族基因在7号染色体上(图3-A)。为进一步研究基因是否响应非生物胁迫, 本研究提取基因翻译起始位点上游1.5 kb的序列提交到PlantCare在线网站进行顺式元件检测。结果如图3-B所示, 共检测到6个非生物胁迫响应元件, 分别为脱落酸响应元件(ABRE)、脱水反应元件(MBS), 参与防御和应激反应的作用元件(ERE)、胁迫响应元件(W-box)、水杨酸响应元件(TCA- element)和生长素响应元件(TGA-element)。通过3个亚族基因的顺式元件分布情况比较发现, 马铃薯基因家族均含有ERE顺式作用元件, 其中II亚族基因相对于Ⅲ亚族富含更多逆境响应元件如ABRE、MBS、TCA-element和W-box, 而I亚族基因相对于II亚族富含更多生长素响应的顺式作用元件如TGA-element。这表明,基因家族与逆境响应, 尤其是非生物胁迫的响应密切相关。

A: 蛋白结构域特征; B: 基因结构。A: protein structure; B: gene structure.

ABRE:脱落酸作用元件;ERE: 参与防御和应激反应的作用元件; MBS:干旱胁迫反应元件; TCA-element:水杨酸作用元件;TGA-element:生长素响应元件;W-box:胁迫响应元件。

ABRE: cis-acting element involved in the abscisic acid responsiveness; ERE: elements involved in defense and stress response; MBS: MYB binding site involved in drought-inducibility; TCA-element: cis-acting element involved in salicylic acid responsiveness; TGA-element: cis-acting element involved in auxin responsiveness; W-box: cis-acting element involved in the stress responsiveness.

2.4 马铃薯StIgt基因家族在响应干旱胁迫的表达谱分析

基于前述生物信息分析结果,基因家族可能响应非生物胁迫。因此, 本研究利用课题组前期的对四倍体马铃薯品系C119的转录组测序数据, 提取不同干旱处理时间下的FPKM值, 对其响应干旱胁迫的表达谱进行了分析, 并对其中3个基因进行了qPCR验证。结果显示, 该家族的3个亚族间的表达趋势各不相同, 其中亚族I中的、和均在干旱胁迫2 h时基因表达量升高至最高, 在6 h和24 h时表达量下降;的表达量也呈先升高后降低的趋势, 但是于6 h时达到峰值。亚族II的和在干旱胁迫2 h时表达量开始降低, 随后保持较低水平, 直至在胁迫24 h的表达量降至最低。亚族III的和在干旱胁迫早期2 h时表达量呈下降趋势, 到6 h时降至最低, 随后在胁迫12 h时基因的表达量开始上升, 到24 h时又表达量升至最高, 这与亚族I和II呈现相反的表达趋势。综合来看,和基因在干旱胁迫2 h时表达量均发生上调且达到峰值, 说明这部分基因可能迅速响应早期干旱胁迫(图4)。随后我们重新处理了材料, 选取了3个基因和进行qPCR验证, 它们分别为拟南芥的、和的直系同源基因。qPCR结果表明, 这3个基因的表达趋势与转录组结果相吻合, 印证了转录组数据的可靠性, 其中基因表达量在6 h和12 h时相对于对照0 h时差异极显著,基因表达量在12 h时相对于对照0 h时差异极显著,基因表达量在2 h和12 h时相对于对照0 h时差异极显著(图5)。表明,基因家族可响应干旱胁迫, 且3个亚族的在不同的胁迫条件下响应模式也不同。

3 讨论

目前我国60%左右的马铃薯种植于干旱和半干旱地区(年平均降水量小于500 mm, 干燥度在1.5以上)。长期或季节性的干旱胁迫会严重影响马铃薯的植株长势、块茎产量和商品性质量[24-25]。在禾本科作物中的研究表明, 较深的根系可以明显提高作物在极端或者季节性干旱环境下的产量, 且可作为耐旱作物育种评鉴与筛选的指标之一[26-27]。在块根块茎类作物中根系构型也是重要的产量构成因素[28]。深根性状除了可由主根系的长度增加造成外, 还可由侧根系或不定根系的向地性增强造成。而目前在多种植物中的研究发现,基因家族与重力反应相关的向性调控如地上部分支角度、垂直根系角度等密切相关[15-16,29-30]。例如,和, 已被证明可以调控单子叶(水稻和玉米)和双子叶(拟南芥和李属植物)物种的各种侧枝器官的角度, 包括分蘖、分枝、花梗、叶柄和果柄, 以及垂直根系角度[10-11], 此外, 功能研究较为深入的()已被证实可通过增加根系的向地性生长, 形成深根效应, 进而提高水稻的耐旱性[10]。而在马铃薯中,关于根系构型影响抗旱性的基因调控研究还少见报道。本课题组前期克隆了马铃薯(), 并在近期的研究中发现,响应干旱胁迫和生长素处理, 并在拟南芥中验证了其参与调控侧根角度和抵御干旱胁迫。因此,基因家族在调控马铃薯根系构型和抗旱方面的研究值得深入。

*, **分别表示在0.05和0.01水平上显著差异。

* and ** mean significant difference at the 0.05 and 0.01 probability levels, respectively.

为进一步研究的其他成员, 本研究利用马铃薯‘DM-v4.03’参考基因组, 经过Fgenesh[31]和blast[32]方法对马铃薯基因序列进行手动矫正和重新注释后共鉴定获得10个成员, 并对其结构、染色体定位、系统发育和逆境相关顺式元件等进行了分析。系统发育树显示,基因家族可分为3个不同的亚族, 不同亚族间的蛋白结构域和基因结构差异显著, 暗示其进化地位的差异和功能的多样性。此外, 在的启动子区域发现了多种植物激素和非生物胁迫相关的顺式作用元件, 说明的上游可能受到生长素、胁迫相关激素(脱落酸和水杨酸)以及胁迫信号的协同调控, 从而发挥调节植物向地性生长和抵御逆境的功能。

鉴于此, 我们利用本课题组前期的四倍体马铃薯品系在不同干旱处理条件下的转录组数据, 提取FPKM值, 分析了各个成员响应干旱胁迫的表达谱。结果表明, 不同的亚族对干旱的响应模式不同, 同一亚族内则有一定的规律性趋势。亚族I和亚族II的和可在早期(2 h)迅速响应干旱胁迫, 说明可能直接受到干旱信号的诱导, 但具体的机理有待于进一步研究。而所在的亚族III与其他2个亚族的表达模式差异较大, 对干旱胁迫响应相对滞后, 前人在禾本科作物中的研究也发现,受到生长素的直接调控, 这2种信号通路可能在上游通过未知的机制互作来协同调控的表达。同时, 本研究也利用q-PCR验证了转录组表达谱的可靠性。综上所述, 马铃薯的10个成员可能在马铃薯地上部和根系的分支角度以及响应干旱胁迫中发挥不同的作用。本研究对基因家族提供了较全面的信息, 为进一步研究马铃薯的功能和作用机理提供了基础支持。

[1] Boguszewskamańkowska D, Zarzyńska K, Nosalewicz A. Drought differentially affects root system size and architecture of potato cultivars with differing drought tolerance., 2019, 97: 54–62.

[2] Guoju Q, Zhengji Z, Fengju M, Runyuan W. Influence of increased temperature on the potato yield and quality in a semiarid district of northwest china., 2015, 35: 830–836.

[3] Devaux A, Haverkort A J. The effects of shifting planting dates and mulching on late blight () and drought stress of potato crops grown under tropical highland conditions., 2008, 23: 325–333.

[4] Shuangyuan C. Growth and yield response of different crops sowing after potato (L.) harvest in Kunming area., 2013, 41: 3794–3796.

[5] Farooq M, Wahid A, Kobayashi N, Fujita D S M A. Plant drought stress: effects, mechanisms and management to cite this version: review article., 2009, 29: 185–212.

[6] Raza M A S, Shahid A M, Saleem M F. Effects and management strategies to mitigate drought stress in oilseed rape (L.): a review., 2017, 104: 85–94.

[7] Siddiqui M H, Al-Khaishany M Y, Al-Qutami M A, Al-Whaibi M H, Grover A, Ali H M, Al-Wahibi M S, Bukhari N A. Response of different genotypes of faba bean plant to drought stress., 2015, 16: 10214–10227.

[8] Hollender C A, Dardick C. Molecular basis of angiosperm tree architecture., 2015, 206: 541–556.

[9] Uga Y, Sugimoto K, Ogawa S. Control of root system architecture by deeper rooting 1 increases rice yield under drought conditions., 2013, 45: 1097–1102.

[10] Arai-Sanoh Y, Takai T, Yoshinaga S, Nakano H, Kojima M, Sakakibara H, Kondo M, Uga Y. Deep rooting conferred by deeper rooting 1 enhances rice yield in paddy fields., 2014, 4: 5544–5563.

[11] Guseman J M, Webb K, Srinivasan C. DRO1 influences root system architecture inandspecies., 2017, 89: 1093–1105.

[12] Dardick C, Callahan A, Horn R. Ppetac1 promotes the horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species., 2013, 75: 618–630.

[13] Coste A T, Karababa M, Ischer F, Bille J, Sanglard D. TAC1 transcriptional activator of CDR genes is a new transcription factor involved in the regulation ofABC transporters CDR1 and CDR2., 2004, 6: 1639–1652.

[14] Yu B, Lin Z, Li H.: a major quantitative trait locus controlling tiller angle in rice., 2008, 52: 891–898.

[15] Li P, Wang Y, Qian Q.controls rice shoot gravitropism through regulating polar auxin transport., 2007, 17: 327–327.

[16] Dong Z, Jiang C, Chen X, Zhang T. Maize lazy1 mediates shoot gravitropism and inflorescence development through regulating auxin transport, auxin signaling and light response., 2013, 163: 1306–1322.

[17] Altschul S F, Madden T L, Schäffer A A. Gapped blast and psi-blast: a new generation of protein databases search programs., 1997, 25: 3389–3402.

[18] Aron M B, Derbyshire M K, Gonzales N R. CDD: NCBI’s conserved domain database., 2014, 43: 222–226.

[19] Finn R D, Alex B, Jody C. Pfam: the protein families database., 2014, 42: 222–230.

[20] Thompson J D, Gibson T J, Higgins D G. Multiple sequence alignment using clustalw and clustalx., 2003, 23: 1–22.

[21] Kumar S, Stecher G, Tamura K. Mega 7: molecular evolutionary genetics analysis version 7.0 for bigger datasets., 2016, 33: 1870–1874.

[22] Bailey T L, Nadya W, Chris M. Meme: discovering and analyzing dna and protein sequence motifs., 2006, 34: 369–373.

[23] Madke S S, Cherian K J, Badere R S. A modified Murashige and Skoog media for efficient multipleshoot induction inRoxb., 2014, 3: 557–564.

[24] Eiasu B K, Soundy P, Hammes P S. Response of potato (L.) tuber yield components to gelpolymer soil amendments and irrigation regimes., 2007, 35: 25–31.

[25] Walworth J L, Carling D E. Tuber initiation and development in irrigated and nonirrigated potatoes., 2002, 79: 387–395.

[26] Lopes M S, Reynolds M P. Partitioning of assimilates to deeper roots is associated with cooler canopies and increased yield under drought in wheat., 2010, 37: 147–156.

[27] Lynch J P. Steep cheap and deep: an ideotype to optimize water and nacquisition by maize root systems., 2013, 112: 347–357.

[28] Villordon A Q, Ginzberg I, Firon N. Root architecture and root and tuber crop productivity., 2014, 19: 419–425.

[29] Roychoudhry S, Kepinski S. Shoot and root branch growth angle control the wonderfulness of lateralness., 2015, 23: 124–131.

[30] Yoshihara T, Spalding E P.genes mediate the effects of gravity on auxin gradients and plant architecture., 2017, 175: 959–969.

[31] Zhang S L, Li D F. The prediction of rice gene by Fgenesh., 2008, 7: 387–394.

[32] Scott M, Madden T L. Blast: at the core of a powerful and diverse set of sequence analysis tools., 2004, 32: 20–25.

Identification ofgene family and expression profile analysis of response to drought stress in potato

QIN Tian-Yuan1,2, LIU Yu-Hui1,2, SUN Chao1,2, BI Zhen-Zhen1,2, LI An-Yi3, XU De-Rong1,2, WANG Yi-Hao1,2, ZHANG Jun-Lian1, and BAI Jiang-Ping1,2,*

1Gansu Provincial Key Lab of Aridland Crop Science / Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Lanzhou 730070, Gansu, China;2College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China;3College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, Gansu, China

Drought stress is one of the main abiotic stress factors affecting potato yield and quality. The root growth, development and architecture play an important role in potato drought resistance. Thegene family is a functional gene family that are ubiquitous in plants, and has significant effects in regulating root architecture and improving plant stress resistance. In this study, the potato double haploid ‘DM-v4.03’ high-quality genome was used as a reference, and members of thegene family were identified and analyzed on a genome-wide scale. Phylogenetic trees, chromosomal location, conservative protein domains, gene structure and cis element prediction were carried out by bioinformatics software. Meanwhile, the expression profiles ofin response to drought stress were analyzed based on the transcriptome sequencing results of potato tetraploid lines under different drought conditions. The results showed that a total of 10family members were identified in potato, of whichwas obtained and cloned by our research group. Except for the unknown position information ofthe remaining genes are unevenly distributed on chromosome 1, 2, 5, 7, 10, and 11.proteins range in length from 110 to 283 amino acids and have molecular weights ranging from 13.136 kD to 32.542 kD. The predicted isoelectric point is 3.82 to 9.86. Phylogenetic tree analysis revealed that the gene family can be divided into three subfamilies. The gene structure, protein conserved domains and cis-acting elements differ significantly among three subfamilies. The expression profile analysis under drought stress showed that,,andresponded to the early drought stress which rapidly up-regulated at two hours of drought treatment. These results provide a theoretical basis for elucidating the evolutionary relationship of thegene family and further studying the functional characteristics of its members.

genome-wide; potato;gene family; drought stress; gene expression analyses

10.3724/SP.J.1006.2021.04122

本研究由国家自然科学基金项目(31660432), 国家现代农业产业技术体系建设专项(CARS-09-P14), 甘肃省马铃薯产业体系(GARS-03- P1), 甘肃省创新能力提升项目(2019B-073), 甘肃省科技计划项目(19ZD2WA002-02, 18JR3RA174), 甘肃农业大学国重实验室开放基金(GSCS-2017-9)和甘肃农业大学创新基金项目(GAU-XKJS-2018-085)资助。

This study was supported by the National Natural Science Foundation of China (31660432), the China Agriculture Research System (CARS-09-P14), the Gansu Province Potato Industry System (GARS-03-P1), the Gansu Provincial Education Department (2019B-073), the Gansu Provincial Science and Technology Department (19ZD2WA002-02, 18JR3RA174), the Key Laboratory of Arid Land Crop Science of Gansu Agricultural University(GSCS-2017-9), and the Innovation Fund of Gansu Agricultural University (GAU-XKJS-2018-085).

白江平, E-mail:baijp@gsau.edu.cn

E-mail: 1637835362@qq.com

2020-06-04;

2020-10-14;

2020-11-06.

URL: https://kns.cnki.net/kcms/detail/11.1809.S.20201105.1016.002.html

猜你喜欢
元件染色体根系
一种智能磁条传感器
果树根系修剪的作用
山桐子雌树根系结构分析*
沙地柏根系抗拉力学特性研究
直流电机电枢绕组分布排列和连接解析
多一条X染色体,寿命会更长
为什么男性要有一条X染色体?
如何读懂色环电阻
真假三体的遗传题题型探析
能忍的人寿命长