曾晓丹
(梅州供电局,广东 梅州 514011)
电能从开始的产生到最终的使用的整个过程中,必会存在电能的损耗情况。电网电能的损失简称为线损,一般使用线损率衡量线损的具体情况,并且其被作为电力企业的重要技术指标,全面体现了电力企业的管理、运行等综合情况。10 kV配电网包含于中压配电网,但是10 kV配电网的线损率却高于高压配电网的线损率,所以制定有效降损举措对确保电力企业良性运行意义重大。
在所有导致10 kV配电网产生线损异常的原因中,最主要的原因便是配电设备的损坏和老化。因为10 kV配电网长期处于运行状态,其设备必然会发生严重老化的现象,部分电力设施使用时间较为长久,且得不到及时维护,所以易导致线损异常。设备因素产生线损异常表现在如下3个方面:(1)电气设施的材料发生老化现象,其物理特性出现变化,从而导致设备性能出现下降,使得配电网产生较大的损耗,橡胶龟裂、介质拉弧就是典型表现;(2)由于电厂比较集中,进一步加快设备的老化,进而使得设备性能下降严重,导致电能运行中产生过多损耗;(3)环境因素,电力设备处在具有腐蚀性介质存在的环境中,受温度和湿度变动的影响,然而电能依靠电缆传输,所以必然导致损耗增加。
纳入标准:(1)查体、X线片、MRI、CT和ECT骨扫描检查符合脊柱转移性肿瘤;(2)出现顽固性背痛,尤其在夜间及身体活动时疼痛严重;(3)疼痛造成活动障碍,严重影响正常休息,导致睡眠状况不佳;(4)采取药物等其他保守治疗措施后没有明显好转;(5)对其进行Tomita评分,分值4~7分。排除标准:(1)成骨性转移;(2)肿瘤侵犯椎管产生神经压迫症状;(3)椎弓根破坏严重;(4)椎体塌陷超过75%;(5)穿刺部位感染;(6)不能耐受俯卧位;(7)凝血功能异常;(8)全身状况差不能耐受手术者。
社会的进步带动众多行业的快速发展,并伴随用电量和用电负荷的增加。然而,10 kV配电网的无功补偿设备在有些地区明显不足和滞后,导致电能损耗加大,线损率增高。当电压波动情况发生时,不能及时将无功补偿设施投切,电压过低时,无功欠缺补偿,造成损耗加大;电压过高时,无功过于补偿,导致设备损坏。所以,电网实现经济运行取决于合理的无功补偿。
变压器是配电网中举足轻重的电力设备,其容量的选择直接关联着线损率。传统的变压器实现损耗最低、运行最经济的条件是在70%的额定负荷;而新型变压器实现损耗最低、运行最为经济是在30%的额定负荷下。设计单位在进行方案设计时变压器选择不合理、电荷考虑不全、变压器超载或者轻载等均会导致线损率增加。
由于铸件的形状复杂,可以选择两个较薄的内浇口.根据内浇口厚度一般不超过连接压铸件壁厚一半的原则,铸件浇口的厚度设计为2.5 mm.根据铸件的形状,最终确定了两个内浇口,浇口的尺寸分别为105 mm×2.5 mm和30 mm×2.5 mm.浇口是传动压力的主要部分,浇口结构的设计与选择生产的压铸机类型有关[2].试验所选择的压铸机型号是UBE350,冲头直径为75 mm.流道直径为28 mm.
在配电网中,多种因素影响线损的管理工作,而多数供电企业在分析线损时,仅将客户的用电量和表的电量进行对比,未做深入分析,因此必然影响线损的管理。为有效提高线损的管理工作,应严格按照配电包线、营销保护和运行包站等规则,通过增强线损的管理水平,从而确保线损监管工作质量的进一步提升。
(1)优化布局,更新设备。利用技术降低10 kV配电网线损,应改进不合理的供电模式,结合具体情况添加电源点,强化电网技术方面的改进,合理分布电网。配电网常出现供电距离远、设备老化严重、迂回供电较多等问题,所以应合理布局电网。通过简化电气半径,选用适合的供电距离,拉进电源点和负荷之间的距离。对导致10 kV配电网产生线损的因素进行分析,应将重点放到变压器的老化问题上。因为在传统的电力运行过程中,考虑投资而使用了容量较小的变压器,其负荷率很高,三相不平衡情况较大。因此,选用能效较高的设备是优选。
(2)使用无功功率补偿降损。如果有功功率在线路中可以维持恒定,为有效降低无功功率,可采取增加负载功率来完成。常采用分布法和集中法对功率因素进行补偿。集中补偿法是基于变电站母线上安装单一或者多个电容器,并结合功率和电压的变换进行切换。为实现变压器与上层电网功率产生的损耗有效降低,调整变压器和电压的输出功率。同时,通过加设无功功率的补偿设备加大无功功率补偿,进而可实现远距离降低无功功率,便可直接降低电压与有功功率的损失,实现线损的直接减少。增加功率一方面可将电网传输的容量进行合理的优化,另一方面对电压初始的质量起到改善作用[1]。
(1)完善线损管理体系。对实际工作中的线损问题进行针对性的预测及分析,能让其供电管理工作质量得到保证。供电企业只有不断完善其管理体系,才能对线损目标展开有效分解,并把总体目标精细化处理,分解为多个小目标。同时,根据供电企业实际情况,构建岗位责任制,把分解的多个小目标落实到个人。让供电企业工作能够真正做到职责分明,让其线损管理格局更优良,增强线损管理工作人员的积极性[2]。
(3)变压器降损技术。需控制变压器产生的线损,因为其在配电网中产生的线损占比最大。如给将10 kV配电网中使用的电压器进行合理的优化,采用新材质、新技术以及线损少的新型变压器,必将大幅度减少配电网中的线损。一般可通过如下举措控制变压器。第一,采用低能变压器代替高能变压器。以往的高能变压器具有较高的能耗,现阶段大量采用的单晶合金变压器的能耗相较之前有大幅度降低,还可随着季节变化改变配电网的负荷密度,有效减少功率损耗,从而对电源的质量以及线损的降低都起到保障作用。第二,关闭空载变压器。10 kV配电网变压器在不同的季节中处于过载或满载运行状态,其中空载运行变化情况比较大。对于这样情形,可将负载不同的变压器并联在线路上,同时根据季节的不同关闭或者打开相应的变压器。在保证电力供应的前提下,空载被最小化,进而有效的降低配电网中的所有线损。
(2)利用故障监控平台严控异常窃电行为,增强计量数据管理工作。传统排查、判断故障均为人工模式,由于告警数据信息量较大,对计量设备的排查治理效率较低。通过云平台可以提高用户快速查找运行故障的准确性,让其快速定位、处理的能力得到增强,对系统运维成本进行有效控制,从而提高其工作效率,让计量数据质量得到保证。第一,异常情况反馈。通过云平台能实现对表前接线窃电、表内分流窃电、相零对调窃电、断零窃电、电流不平衡、电压异常、超容规则、超出发电量规则、超出平均发电时间、电压异常、电流不平衡异常等情况的实时反馈。第二,异常处理反馈库管理。用户可以通过云平台,对处理的异常数据资料及维护信息进行管理,对所有异常规则进行异常处理流程流转,同时还能进行历史处理信息查阅;进入平台主界面的规则明细中对低压用户、小水电及专变用户进行异常处理,然后通过操作栏对异常情况的处理结果进行填写,同时还能对其历史处理轨迹进行查看。第三,规则库管理。规则库管理主要是对异常规则判定时用到的使用说明、阈值进行编写,能对异常规则阈值完成查、改、删、增等的处理。第四,回流数据监控。对不同时间段中回流业务数据表的数据量、回流时间等进行查询。第五,异常信息规则二次查询。对所有判定为异常情况的内容进行二次查询。主要是对变异常信息、小水电异常信息、低压异常信息查询界面中显示为“不需处理”,但是在后一月中又一次出现异常情况的记录进行二次处理、查询。第六,电量负荷曲线展示。通过电量负荷曲线图,对日线损值、日电量、所属台区或线路、数据时间等进行反馈,并通过设置起止时间对日线损数据、日电量等进行查询。第七,线损明线曲线趋势图。可以根据负荷的明线及信息,形成功率因素曲线图、电量负荷曲线图。通过云平台实现对异常情况的及时感知,并进行智能分析,提高解决效率,让其计量数据质量得到保证,严控配电网线损[3]。
综上可见,敦煌文献数据库的建设随着计算机技术和数字化技术的发展而方兴未艾,但已取得了显著的成绩,在文献保护和研究方面做出了巨大贡献。但通过调研也发现,敦煌数据库的建设尚缺乏系统理论语言学原则指导下建立的、面向敦煌文献语言文字研究而创建的深加工研究型语料库。现有的敦煌文献电子化、数字化工作取得的显著成果,为建设这种深加工多模态语料库提供了有利条件。
目前,社会的快速发展使得供电企业需不断强化供电的管理工作,将配电网中线损尽可能的降低,并整体提升电力运行的可靠性和安全性。在线损控制的工作中应对其成因进行有效分析,并制定降低线路损耗的有效方案,从线路损耗的源头控制线损,采用适合线路的变压器。同时,优化配电网中的变压器设备和电压电流,从而实现配电网的经济运行。