大豆基因组研究首次实现基于图形结构基因组构建

2020-12-14 09:20姚媛
粮食科技与经济 2020年6期
关键词:遗传变异基因组学种质

姚媛

2020年6月17日23时,国际权威学术期刊《细胞》在线发表了中国科学院遗传与发育生物学研究所田志喜科研团队关于大豆泛基因组的最新研究进展。该项成果突破传统线性基因组的存储形式,在植物中首次实现了基于图形结构基因组(graph-based genome)的构建,将引领全新的下一代基因组学研究思路和方法,被审稿人称为“基因组学的里程碑工作”。同时也是中国科学院种子创新研究院建立后取得的又一重大研究突破。

大豆是重要的粮食经济作物。我国大豆需求量大,且消费对外依赖严重。因此,加强研究、提高大豆生产能力迫在眉睫。高质量参考基因组是作物育种基础研究和应用研究的前提基础。传统的基因组学研究是将不同碱基以线性的形式存储于染色体上,且大多基于一个参考基因组来获取一个物种的基因信息。由于一个物种中不同个体间存在遗传变异,线性基因组不能同时体现不同个体的遗传变异情况,这极大地限制了不同个体遗传变异的鉴定和分析。构建囊括一个物种所有遗传信息的新型存储形式——“泛基因组”,已成为当前基因组学研究的重要任务和前沿挑战。

此前,田志喜研究团队在对大豆种质资源的深度重测序和群体遗传学分析中发现,不同大豆种质资源之间存在较大的遗传变异,单一或少数基因组不能代表大豆群体的所有遗传变异。大豆基础研究和分子设计育种亟需能够代表不同大豆种质材料的全新基因组资源。

为此,田志喜研究团队联合中科院遗传发育所梁承志和朱保葛研究团队、中科院分子植物科学卓越创新中心韩斌院士团队、上海师范大学黄学辉教授团队以及北京贝瑞和康生物技术有限公司相关人员,对来自世界大豆主产国的2898个大豆种质材料进行了深度重测序和群体结构分析,精心挑选出26个最具代表性的大豆种质材料,包括3个野生大豆种、9个农家种和14个现代栽培品种。研究团队利用最新组装策略对26个大豆种质材料进行了高质量的基因组从头组装和精确注释,contig N50平均长度达22.6 Mb, scaffold N50 平均长度达 51.2 Mb。在此基础上,结合已经发表的中黄13、Williams 82 和 W05 基因组,开展了系统的基因组比较,构建了高质量的基于图形结构泛基因组,挖掘到大量利用传统基因组不能鉴定到的大片段结构变异。

经深入分析发现,结构变异在重要农艺性状调控中发挥重要作用。例如,HPS基因的结构变异调控大豆种皮亮度变化;野生与栽培大豆CHS基因簇的结构变异是导致种皮颜色由黑色向黄色驯化的主要原因;SoyZH13_14G179600基因结构变异导致了其在不同種质材料中基因表达的差异,可能与调控大豆缺铁失绿症有关。此外,研究还鉴定到15个结构变异导致了不同基因间的融合,这为新基因的产生研究提供了重要线索。此高质量图形结构泛基因组的构建不仅本身具有重要的理论意义和应用价值,同时为过去已经开展的大量重测序数据提供了一个全新的分析平台,将使得这些数据获得“第二次生命”。

本次泛基因组研究所选用的大豆种质材料不仅在遗传多样性上具有代表性,且具有重要的育种和生产价值。其中,满仓金、十胜长叶、紫花4号等种质材料作为骨干核心亲本已各自培育出了上百个优良新品种;黑河43、齐黄34、豫豆22、皖豆28、晋豆23、徐豆1号等品种都是各个大豆主产区推广面积最大的主栽品种。该基因组和相关的2898份种质材料遗传变异的发布为大豆研究提供了极为重要的资源和平台,将大力推进大豆分子设计育种,助力实现大豆“绿色革命”。

(来源:中国农网)

猜你喜欢
遗传变异基因组学种质
山西新增2处国家林木种质资源库
玉簪属种质资源收集筛选及耐阴性研究
加快完善种质资源保护体系 扎实开展种质资源登记
花生地方品种骨干种质的遴选
基于改进粒子群优化算法的电动汽车最优充放电策略研究
本草基因组学
本草基因组学
组织培养诱发玉米自交系H99、A188和黄早四的变异研究
建构“软磁铁模型”突破教学难点的课例分析
肝纤维化无创诊断的研究现状