犏牛雄性不育的减数分裂基因表达与表观遗传调控研究进展

2020-12-09 08:05陈会友张建敏李柏森邓永琳张龚炜
遗传 2020年11期
关键词:精子发生表观牦牛

陈会友,张建敏,李柏森,邓永琳,张龚炜

综 述

犏牛雄性不育的减数分裂基因表达与表观遗传调控研究进展

陈会友,张建敏,李柏森,邓永琳,张龚炜

西南大学动物科学技术学院,重庆 402460

种间杂交雄性不育是自然界普遍现象,是物种形成生殖隔离的重要方式。犏牛作为牦牛()和普通牛()的种间杂交后代,表现为公犏牛不育,而母犏牛可育,是研究种间杂交雄性不育的良好动物模型。近年来利用分子生物学技术发现犏牛睾丸组织中大量基因表达紊乱。研究表明,DNA甲基化、组蛋白修饰和非编码RNA等表观遗传因素参与精子发生过程。本文从减数分裂相关的基因表达、DNA甲基化、microRNA (miRNA)、PIWI蛋白相互作用的RNA (PIWI-interactingRNA, piRNA)、长链非编码RNA (long non-coding RNA, lncRNA)和组蛋白甲基化修饰等方面总结了犏牛雄性不育的相关研究进展,以期从遗传和表观遗传调控角度更加深入理解犏牛雄性不育的分子机理。

犏牛;雄性不育;表观遗传;基因表达

牦牛()被称为“高原之舟”,是青藏高原地区不可或缺的全能家畜,对高寒、缺氧和强紫外线等恶劣的生态环境条件有极强的适应性,是当地居民不可或缺的生产资料和生活资料。但是牦牛乳、肉用生产性能较低。为了改善牦牛生产性能,利用牦牛和优良肉用、奶用普通牛()开展种间杂交,F1、F2代犏牛具有明显杂种优势,肉用、奶用均比亲本牦牛有显著提高并能适应高原地区环境气候。但是,F1、F2代犏牛雄性不育,这使得其杂种优势无法通过横交固定,无法通过杂交育种改良牦牛品种,成为阻碍藏区牦牛产业发展的瓶颈问题。种间杂交雄性不育是自然界普遍现象,是物种形成生殖隔离的重要方式。犏牛雄性不育也是探索物种形成生殖隔离的良好动物模型。目前,国内外学者已从杂交改良、组织学、内分泌学、生物化学、细胞遗传学和分子生物学等主要领域展开研究[1,2]。最近研究表明,DNA甲基化、组蛋白修饰和非编码RNA等表观遗传因素是调控基因表达的重要因子,并对精子发生过程起关键作用[3]。本文从基因表达、DNA甲基化、组蛋白甲基化修饰和非编码RNA等方面总结了犏牛雄性不育的相关研究进展,以期从遗传和表观遗传调控角度更加深入理解犏牛雄性不育的分子机理。

1 基因表达紊乱与犏牛雄性不育

组织学研究发现,犏牛雄性不育主要表现为精母细胞数量减少,生精小管内极少见精子细胞,表明犏牛雄性不育主要是生精细胞减数分裂过程受阻[4]。减数分裂是有性生殖过程中产生配子的一种特殊分裂方式,是哺乳动物繁衍后代的必须条件。研究人员在减数分裂相关基因上展开大量研究,以探索减数分裂基因表达紊乱与犏牛雄性不育的关系,其研究主要集中在以下蛋白家族(表1)。

表1 犏牛雄性不育相关基因

1.1 DAZ (deleted in azoospermia)蛋白家族

DAZ蛋白家族主要有3个成员,(the deleted in azoospermia)基因位于Y染色体上,(deleted in azoospermia like)和(boule protein)是常染色体基因,这3个基因编码蛋白是RNA结合蛋白,在生殖细胞特异表达,是精子发生过程的主要调控因子。有4个拷贝,以头对头的形式排列在Y染色体上,基因产物具有RNA结合蛋白特性,在睾丸组织特异性表达,可能与精子生成有关,是决定精子生成的基因[5]。与基因同源性约为83%,在黄牛()和牦牛睾丸组织中表达,在F1代犏牛睾丸组织不表达,并且的DNA甲基化程度显著高于黄牛和牦牛[6]。这与小鼠()基因敲除后导致精子发生停止或功能异常结果一致[7],说明基因可能对犏牛雄性不育有重要影响。BOULE是动物精母细胞减数分裂过程中的必需蛋白(图1),与精子发生减数分裂阻滞、雄性不育等密切相关,F1代犏牛基因表达水平显著低于黄牛,5ʹ端DNA甲基化水平极显著高于黄牛和牦牛[8],说明犏牛基因的高甲基化可能使其mRNA表达下调,对犏牛生精细胞减数分裂、雄性不育有重要影响。

1.2 SYCP (synaptonemal complex protein)蛋白家族

SYCP蛋白家族主要有4个成员,分别是SYCP1 (synaptonemal complex protein 1)、SYCP2、SYCP3和FKBP6 (FKBP prolyl isomerase 6)。它们参与精原细胞的形成,是联会复合体形成的关键蛋白。主要在减数分裂前期表达,在同源染色体配对中发挥重要作用,是精子发生过程中所必须的基因。在粗线期和双线期,FKBP6与SYCP1蛋白共同结合于常染色体的联会区域,辅助SYCP1形成横丝(transverse filaments, TF)。在犏牛、牦牛和普通牛中都有表达,且差异不显著[9]。SYCP2蛋白能与SYCP3蛋白结合发挥作用。在哺乳动物中,SYCP2和SYCP3是轴向元件(axial element, AE)和侧向元件(lateral elements, LE)形成的主要决定成分[10]。SYCP3蛋白是一个DNA结合蛋白,定位于联会复合体的侧成分,在睾丸中特别是在初级精母细胞中表达(图1),在同源染色体配对中发挥重要作用,是精子发生过程中减数分裂所必须。犏牛睾丸表达显著低于牦牛[11],其DNA启动子甲基化水平显著高于牦牛[12]。主要在性腺组织的粗线期表达,犏牛睾丸表达量显著低于牦牛。因此,、和基因表达紊乱与犏牛雄性不育存在一定联系[13]。

图1 犏牛睾丸中的生精调控

1.3 DEAD-box (DEAD-box helicase)蛋白家族

DEAD-box蛋白家族是一个ATP依赖的RNA解旋酶家族,参与多种RNA代谢过程。其中(DEAD-box helicase 4)、(DEAD-box helicase 3, Y-linked)和是与精子发生密切相关的基因。在哺乳动物中,、和的缺失或减少会导致不同形式的精子发生障碍。DDX4在哺乳动物生殖系特异表达,作为一种广泛的分子标记物被应用于生殖研究[14]。犏牛睾丸组织的启动子区甲基化水平显著高于牦牛,其mRNA在犏牛睾丸中的表达量也极显著低于牦牛[15],说明对犏牛雄性不育存在一定影响。位于牛Y染色体上,在3种牛睾丸组织中mRNA表达量差异不显著[16]。DDX25是已知的唯一由激素调节的RNA解旋酶,基因敲除小鼠精子发生受阻,致使圆形精子无法继续变形[17]。犏牛睾丸组织中的基因表达水平也显著低于牦牛[18],可能致使犏牛精子发生受阻。

1.4 减数分裂同源重组相关基因

在染色体自我复制过程中可能会出现双链断裂(double strand break, DSB)现象,如果这些断裂未能及时修复就会引起细胞凋亡,修复不准确也会引起基因突变和染色体突变。真核生物对这些断裂的修复有两种机理:非同源末端连接和同源重组,而同源重组是DNA上DSB损伤修复的主要方式,对于保持哺乳动物细胞的基因组完整性十分重要[19]。(DNA meiotic recombinase 1)、(replication protein A1)和(BLM RecQ like helicase)等是参与哺乳动物减数分裂同源重组修复的关键基因。这些基因的突变、敲除和表达水平的降低均会引起精母细胞减数分裂障碍,最终导致雄性不育。、基因在犏牛睾丸组织中的表达水平对比黄牛和牦牛差异显著[20~22],且基因DNA启动子区甲基化水平也差异显著,提示其可能和犏牛雄性不育相关。

1.5 Y染色体雄性特异区(male-specific region on the Y, MSY)相关基因

Y染色体是雄性哺乳动物相对于雌性特有的染色体,由常染色体进化而来,和X染色体只有5%的区域相同,该区域是和X染色体同源重组的拟常染色体区,而95%的其他区域则是MSY (图1)。牛Y染色体基因组已经公布(NCBI GenBank accession no. CM001061),通过对牛Y染色体进行测序和注释,牛Y染色体共鉴定出1274个基因,MSY包含28个蛋白编码基因和375个新转录本。利用转录组测序(RNA-seq)技术比较普通牛不同年龄睾丸组织中基因表达模式发现,13个编码基因和220转录本的表达量随睾丸发育显著上调,这表明Y染色体MSY区域的基因参与牛生精过程[23]。

MSY相关基因的拷贝数变异(copy number variation, CNV)被证明和雄性生精功能有关[24]。张龚炜等[25]首次对MSY相关基因的CNV进行研究,发现F1、F2代公犏牛MSY相关基因(testis specific protein, Y-linked)、(heat shock transcription factor, Y-linked)、(preferentially expressed antigen in melanoma, Y-linked)和(zinc finger protein 280B, Y-linked)的几何平均拷贝数(the average geometric mean copy number, CN)显著高于普通牛和牦牛,提示犏牛MSY在基因组结构上和牦牛以及普通牛不同,MSY相关基因的CNV可能是犏牛雄性不育的原因。随后详细分析普通牛和牦牛MSY相关基因、、、和序列,发现只有在牛科是保守的,牦牛缺失类型序列,和在牦牛Y染色体上成功扩增,和的平均拷贝数在普通牛和牦牛之间差异显著[4],说明普通牛和牦牛MSY存在差异性。犏牛、、和表达对比牦牛和普通牛显著下调,究其原因可能是犏牛精子发生异常导致无精子生成,提示这些基因主要参与减数分裂后精子形成过程[23,4]。除以上多拷贝基因外,犏牛睾丸组织MSY区域的单拷贝基因(ubiquitously transcribed tetratricopeptide repeat con­taining, Y-linked)、(oral-facial-digital syndrome 1, Y-linked)和(ubiquitin specific peptidase 9, Y-linked)表达对比牦牛和普通牛显著上调。和具有组蛋白甲基化和泛素化的功能,提示后续可进一步从组蛋白甲基化和泛素化角度探索犏牛雄性不育的机理[16]。

2 表观遗传与犏牛雄性不育

以DNA甲基化、组蛋白修饰和染色质重塑为特征的表观遗传修饰是包括精子发生在内的许多生物学过程中的重要调节因子[3]。DNA甲基化[41]、组蛋白修饰[42]和非编码RNA[43]作为机体重要的表观遗传修饰类型,是在精子发生过程中调控的关键因素。表观遗传修饰的异常,将使生精过程基因的表达紊乱,进而导致雄性不育。

2.1 DNA甲基化与犏牛雄性不育

DNA甲基化是在甲基转移酶(DNA methyltrans­ferase, DNMT)催化作用下,以S-腺苷甲硫氨酸(S-Adenosylmethionine, SAM)作为甲基供体,通过共价键结合的方式使基因组CpG二核苷酸中胞嘧啶5号位碳原子获得一个甲基基团的化学修饰过程[44]。DNA甲基化能引起染色质结构、DNA构象、DNA稳定性及DNA与蛋白质相互作用方式的改变,从而调控基因表达[45]。DNA甲基化可能通过调节雄性生殖细胞的增殖和分化而发挥关键作用[46],是雄性不育的一个重要影响因素。在雄性不育模型中观察到的异常DNA甲基化模式可能是精原细胞的再甲基化失败或精母细胞、精子细胞和成熟精子细胞的甲基化状态维持不变所致[47]。由于启动子DNA甲基化通常抑制基因转录,在精子发生过程中DNA甲基化的紊乱导致了生精基因的表达紊乱,和雄性不育高度相关[45]。在犏牛中,研究发现、和基因启动子区域甲基化水平升高导致基因表达下调,进而影响犏牛生殖[48~50]。最近利用全基因组甲基化测序技术发现启动子高甲基化基因在配子产生、piRNA (非编码RNA的一种)代谢过程和染色质结构的DNA甲基化过程中显著富集,表明启动子高甲基化和piRNA途径等表观遗传紊乱可能和犏牛雄性不育高度相关[29]。犏牛睾丸中PIWI/piRNA通路基因启动子发生DNA超甲基化,使、、(phospholipase D family member 6)、(maelstrom spermatogenic transposon silencer)、、(tudor domain containing 1)和等基因表达下调,并导致犏牛精子发生过程中粗线期piRNA的产生降低,同时还发现转座因子LINEs (long interspersed nuclear elements)、SINEs (short interspersed nuclear elements)和LTRs (long terminal repeats)在犏牛睾丸中高甲基化(图1)。因此,DNA高甲基化和piRNA生成途径中断是导致生殖细胞发育不成功的原因之一,这可能导致犏牛雄性不育[29]。

2.2 非编码RNA与犏牛雄性不育

随着基因组研究的深入,以前普遍认为不编码蛋白质的非编码RNA被证明其在转录后具有基因调控的作用。非编码RNA主要包括lncRNA、核糖体RNA (rRNA)、转运RNA (tRNA)、核小RNA (small nuclearRNA, snRNA)、核仁小RNA (small nucleolar RNA, snoRNA)、miRNA和piRNA等多种已知功能的RNA,及未知功能的RNA。这些RNA的共同特点是都能从基因组上转录而来,但是不翻译成蛋白,在RNA水平上就能行使各自的生物学功能。例如piRNA主要在睾丸组织中表达,其在转录后水平调控动物生殖系统[51~53]。

2.2.1 PIWI/piRNA途径与犏牛雄性不育

piRNA一般长约24~35 nt,通过与AGO蛋白家族相互作用形成piRNA沉默复合体(piRNA-induced silencing complex, pi-RISC)来调控基因重复序列及转座子等基因元件的活性[54],主要影响动物生殖[51]。小鼠减数分裂时期piRNAs主要分前粗线期piRNAs (26~28 nt)和粗线期piRNAs (~30 nt)[55]。前粗线期piRNAs主要在细线期精母细胞中发现,来源于转座子元件[56,57]。粗线期piRNAs起源于基因组不同区域的piRNA簇,并与粗线期精母细胞中的PIWIL1和PIWIL2结合维持到圆形精子细胞阶段,是成年小鼠睾丸中的主要piRNAs,约占总piRNAs的95%[58]。在小鼠中,编码PIWI蛋白的/、和/基因以及其他协助piRNA产生或功能表达所必需的蛋白是PIWI/piRAN通路的重要组成部分,它们共同维持小鼠的精子发生。一旦piRNA通路基因发生突变,都会导致雄性不育[59,60]。例如,转录因子A-MYB/MYBL1 (myelo­blastosis oncogene-like 1)被证明直接识别上游DNA元件来启动粗线期piRNAs的转录[55],生成的piRNA前体转录本被输送到核外细胞质,随后又被PIWI蛋白结构域修剪成前体piRNA,经过一系列修剪后,由核酸外切酶(PARN like, ribonuclease domain con­taining 1, PNLDC1)[61]对piRNA3ʹ端进一步修剪成成熟大小,最终piRNA3ʹ端被2ʹ-O-甲基转移酶(HEN methyltransferase 1, HENMT1)修饰产生成熟的piRNA[62](图2)。如前所述,犏牛睾丸中PIWI/piRNA通路相关基因(、、、、、和)启动子超甲基化抑制基因表达,使piRNA生成显著降低[29],表明PIWI/piRNA通路参与犏牛雄性不育的过程。

2.2.2 miRNA与犏牛雄性不育

miRNA是一种长度约为22 nt并高度保守的内源性非编码小分子RNA,虽然不编码蛋白质但具有调控功能。miRNA的生物学功能主要体现在对其靶基因的转录后水平调控,主要有靶标mRNA的降解和mRNA翻译抑制2种方式,它们在精子发生过程中以相对特异性方式表达,在雄性动物生殖健康中起着至关重要的作用[63]。例如,miRNA参与调控睾丸支持细胞的增殖和粘附,一旦支持细胞增殖和粘附功能异常,将会导致精子发生受阻[64]。因此,miRNAs的失调被认为是雄性不育的分子基础,这些分子的异常表达模式可以遗传给后代[65]。研究表明,miRNA在哺乳动物精子发生的不同过程中起着重要的调节作用:和通过靶向(signal transducer and activator of transcription 3)和(Cyclin D1)在转录后水平促进小鼠 SSCs的更新[66],通过抑制(KIT proto-oncogene, receptor tyrosine kinase)的表达在维持精原细胞的未分化状态中发挥关键作用[67]。研究表明,小鼠粗线期精母细胞中存在许多来自X染色体的miRNAs,这些miRNAs可能导致性染色体减数分裂失活[68]。徐传飞[69]通过对小RNA测序发现61个miRNA在犏牛与牦牛睾丸组织之间差异表达,其中、、、和参与SSCs自我更新以及分化过程;和参与精子发生过程中减数分离起始过程,说明miRNA在犏牛生精过程中具有影响力。廖珂[70]发现涉及细胞增殖、凋亡过程的miRNA表达在犏牛和普通牛间也存在差异,如、和等。徐传飞[71]对差异miRNAs的靶基因进行GO分析和KEGG分析,结果显示靶向的(cyclin dependent kinase 2)、和主要参与细胞分化、增殖以及凋亡等通路。

图2 粗线期piRNA的生物发生

2.2.3 lncRNA与犏牛雄性不育

lncRNA长度一般大于200 nt,主要与染色质修饰蛋白、RNA结合蛋白、小RNA和其他lncRNA相互作用调节各种生理过程。lncRNA的功能大致可分为3种调控模式:竞争者(competitor)、激活者(activator)和前体(precursor)[72]。首先,作为竞争者,lncRNAs可以与某些DNA结合蛋白结合,从而抑制其与靶DNA的结合[73]。例如,一些lncRNAs可以与DNA甲基转移酶1 (DNA methyltransferase 1,DNMT1)结合,从而阻止DNMT1与靶DNA结合[74]。因此,DNA靶区域的甲基化状态会受到影响,导致靶基因的转录激活。其次,与竞争者相反,lncRNAs还可以作为招募者,通过将表观遗传修饰因子招募到特定的靶位点来启动表观遗传修饰,从而加强DNA甲基化或组蛋白修饰[75,76]。第三,lncRNAs可以被某些核糖核酸酶(RNase)如Dicer消化,产生小的非编码RNA,如。是一种附睾特异的1.6 kb mRNA样前体,能产生类似miRNA的小RNA,通过形成类似miRNA的小RNA,下调CES7/CES5A(carboxylesterase 5A)蛋白的表达,从而影响精子获能[77]。在沉默牛的lncRNA(H19母系印迹表达转录本)后,生精小管中的细胞数量有减少的趋势,这影响了IGF-1R (insulin-like growth factor I receptor)在支持细胞和生精细胞中的表达。IGF-1维持多种类型干细胞的存活,在雄性生殖系中具有重要功能[78]。近期,阿果约达等[79]通过RNA-seq技术从犏牛、牦牛和普通牛中筛选出6178个差异显著lncRNA转录本,候选靶基因2676个,最终筛选出犏牛不育相关基因(prostaglandin D2 synthase)、(insulin like growth factor 2和(mesoderm specific transcript)等,这些差异靶基因与犏牛雄性不育相关。伍仕鑫[80]通过分离出犏牛、牦牛睾丸高纯度精原细胞进行lncRNA的RNA-seq、GO和KEGG富集分析后,发现差异lncRNAs的靶基因(Cyclin-dependent kinase 1)、(BRCA1 DNA Repair Associated)、(Claspin)和(G2/mitotic-specific cyclin-B1)等主要参与犏牛生精过程中细胞分裂的起始(图1),细胞周期负性调控和相变调控,细胞周期进程的检控,DNA复制的损伤检测及修复,同源重组和细胞的内吞、程序性死亡、生长、分化和凋亡,以及细胞物质代谢等重要的信号通路和生物学过程。这些结果提示lncRNA可以作为犏牛雄性不育的重点研究方向。

2.3 组蛋白甲基化与犏牛雄性不育

组蛋白甲基化是发生在精氨酸和赖氨酸上的共价修饰,是影响基因活性的一种表观遗传机制,其功能主要体现在异染色质形成、基因印记、X染色体失活和转录调控等方面[81]。它由组蛋白甲基转移酶(histone methyltransferase, HMT)调节,可在精氨酸和赖氨酸残基中添加或移除甲基[82,83],所以组蛋白赖氨酸甲基化修饰与基因的活化或抑制有关。通常认为,组蛋白H3K4﹑H3K36和H3K79的甲基化与转录活化基因有关,而H3K9﹑H3K27和H4K20的甲基化抑制基因表达[84~86]。例如MLL5/KMT2E (lysine methyltransferase 2E)催化组蛋白H3K4二甲基化(H3K4me2),是形成顶体所必须的组蛋白甲基转移酶,基因敲除的小鼠是不育的[87]。而H3K9的去甲基化在减数分裂末期对于精子发生的完成至关重要,否则会抑制鱼精蛋白1 (protamine 1, PRM1)和过渡性蛋白1 (transition protein 1, TNP1)表达,进而导致染色质凝集和不育[88]。由此可见,组蛋白甲基转移酶在精子发生中发挥着重要作用。犏牛支持细胞中组蛋白H3K4三甲基化(H3K4me3)缺失,H3K27me3和H4K20me3显著富集(图1),H3K4me3、H3K9me1、H3K9me3和H4K20me3在犏牛精母细胞减数分裂染色体中的水平和定位存在显著差异,这些结果提示了组蛋白甲基化在精子发生和犏牛雄性不育中的潜在作用[89]。

3 结语与展望

近年来分子生物学兴起,特别是组学技术的发展,可以从全基因组水平分析基因表达、组蛋白甲基化、DNA甲基化和非编码RNA等与犏牛雄性不育的关系,为理解犏牛雄性不育的分子机理提供了新的角度与见解。但要阐述犏牛雄性不育的分子机制,以下几个方面需要引起特别注意:(1)由于睾丸组织细胞异质性和精子发生的动态与连续性,基于睾丸组织的组学研究难以明确具体发生紊乱的细胞类型及发育阶段;(2)由于精子发生细胞无法建立体外培养体系,对候选基因的功能验证需要借助小鼠敲除/敲入体系;(3)前期研究主要关注生精相关细胞的表达调控关系,忽略了支持细胞等睾丸微环境对精子发生的调控作用[64,89];(4)各种表观遗传因素表现出细胞类型特异性和生精阶段特异性的表达调控特性,阐述不同表观遗传因素的动态调控网络是今后一个主要方向,如piRNAs主要在哺乳动物粗线期精母细胞表达[29,58],miRNA参与调控支持细胞和精原细胞[64,69]。

综上所述,表观遗传调控在犏牛雄性不育过程中起到极为关键的作用。今后研究可重点关注犏牛睾丸支持细胞和粗线期以前阶段生精细胞,DNA甲基化、非编码RNA和组蛋白甲基化等表观遗传角度是研究犏牛雄性不育的良好切入点。

[1] Jin YC, Yan ZX, Li SS, Liu LJ. The research progress of Dzo male sterility in China., 2017, 47(3): 41–44.靳义超, 闫忠心, 李升升, 刘连杰. 我国犏牛雄性不育的研究进展. 青海畜牧兽医杂志, 2017, 47(3): 41–44.

[2] An DK, Xie RQ, Zhou ML. The research progress of male infertility Dzo., 2016, (1): 46–48.安德科, 谢荣清, 周明亮. 雄性犏牛不育的研究进展. 黑龙江畜牧兽医, 2016, (1): 46–48.

[3] Rajender S, Avery K, Agarwal A. Epigenetics, sperma­togenesis and male infertility., 2011, 727(3): 62–71.

[4] Zhang GW, Wu YH, Luo ZG, Guan JQ, Wang L, Luo XL, Zuo FY. Comparison of Y-chromosome-linked TSPY, TSPY2, and PRAMEY genes in Taurus cattle, yaks, and interspecific hybrid bulls., 2019, 102(7): 6263–6275.

[5] De Vries JWA, Hoffer MJV, Repping S, Hoovers JMN, Leschot NJ, van der Veen F. Reduced copy number of DAZ genes in subfertile and infertile men., 2002, 77(1): 68–75.

[6] Fu Y, Wei YP, Meng R, Wu KX, Chen SM, Zhang LC, Wang XZ. Establishment of real-time fluorescence quantitative PCR method for detection of Dazl gene in testes of yellow cattle, yak and Dzo., 2013, 22(1): 12–18.付永, 魏雅萍, 孟茹, 吴克选, 陈生梅, 张立成, 王谢忠. 黄牛、牦牛和犏牛睾丸组织Dazl基因实时荧光定量PCR检测方法的建立. 西北农业学报, 2013, 22(1): 12–18.

[7] Ruggiu M, Speed R, Taggart M, Mckay SJ, Kilanowski F, Saunders P, Dorin J, Cooke HJ. The mouse Dazla gene encodes a cytoplasmic protein essential for gametogenesis., 1997, 389(6646): 73–77.

[8] Fu Y, Wei YP, Chen SM. Expression level of Boule gene mRNA in testes of yellow cattle, yak and Dzo., 2013, 49(1): 10–13.付永, 魏雅萍, 陈生梅. 黄牛、牦牛和犏牛睾丸组织中Boule基因mRNA表达水平. 中国畜牧杂志, 2013, 49(1): 10–13.

[9] Qu XG. Study on the relationship between synaptonemal complex related genes and male sterility in Dzo [Dissertation]., 2008.屈旭光. 联会复合体相关基因与犏牛雄性不育关系的研究[学位论文]. 南京农业大学, 2008.

[10] Yang F, De La Fuente R, Leu NA, Baumann C, McLaughlin KJ, Wang PJ. Mouse SYCP2 is required for synaptonemal complex assembly and chromosomal synapsis during male meiosis., 2006, 173(4): 497–507.

[11] Luo H, Jia C, Qu XG, Zhao XB, Zhong JC, Xie Z, Li QF. Cloning of b-Sycp2 gene and expression level of mRNA in testis of yellow cattle, yak and Dzo., 2013, 46(2): 367–375.骆骅, 贾超, 屈旭光, 赵兴波, 钟金城, 谢庄, 李齐发. 黄牛、牦牛和犏牛b-Sycp2基因的克隆与睾丸组织mRNA的表达水平. 中国农业科学, 2013, 46(2): 367– 375.

[12] Wang S, Pan Z, Zhang Q, Xie Z, Liu H, Li Q. Differential mRNA expression and promoter methylation status of SYCP3 gene in testes of yaks and cattle-yaks., 2012, 47(3): 455–462.

[13] Li BJ, Luo H, Qu XG, Pan ZX, Xie Z, Liu HL, Li QF. Analysis of expression characteristics of synaptonemal complex protein b-FKBP6 gene in yak and Dzo., 2013, 36(5): 129–132.李伯江, 骆骅, 屈旭光, 潘增祥, 谢庄, 刘红林, 李齐发. 牦牛与犏牛联会复合体蛋白b-FKBP6基因的表达特征分析. 南京农业大学学报, 2013, 36(5): 129–132.

[14] Gustafson EA, Yajima M, Juliano CE, Wessel GM. Post-translational regulation by gustavus contributes to selective Vasa protein accumulation in multipotent cells during embryogenesis., 2011, 349(2): 440–450.

[15] Zhou Y, Luo H, Li BJ, Jia C, Xie Z, Zhao XB, Zhong JC, Li QF. mRNA expression level and promoter methylation of DDX4 gene in testes of yak and cattle-yak., 2013, 46(3): 630–638.周阳, 骆骅, 李伯江, 贾超, 谢庄, 赵兴波, 钟金城, 李齐发. 牦牛和犏牛睾丸组织DDX4基因mRNA表达水平与启动子区甲基化. 中国农业科学, 2013, 46(3): 630– 638.

[16] Wu Y, Zhang WX, Zuo F, Zhang GW. Comparison of mRNA expression from Y-chromosome X-degenerate region genes in taurine cattle, yaks and interspecific hybrid bulls., 2019, 50(6): 740–743.

[17] Dai LS. Regulation of Testis-specific miRNA-469 by GRTH/DDX25 controls male germ cells development [Dissertation]., 2011.戴立胜. GRTH/DDX25通过调节睾丸特异miRNA-469控制雄性生殖细胞的发育[学位论文]. 吉林大学, 2011.

[18] Zhang SY, Chai ZX, Peng YL, Zhong JC. Sequencing and expression of DDX25/GRTH mRNA in Yak and Cattle-yak testis., 2015, 24(10): 1–9.张思源, 柴志欣, 彭娅林, 钟金城. 牦牛和犏牛DDX25/ GRTH基因序列及其在睾丸组织的表达水平. 西北农业学报, 2015, 24(10): 1–9.

[19] Valerie K, Povirk LF. Regulation and mechanisms of mammalian double-strand break repair., 2003, 22(37): 5792–5812.

[20] Li X, Li QF, Zhao XB, Xu HT, Gu Y, Zhu X, Xie Z, Liu HL. Sequence analysis and study on the expression level of Dmcl mRNA in yak and cattle-yak testis., 2010, 43(15): 3221–3229.李贤, 李齐发, 赵兴波, 徐洪涛, 顾垚, 朱翔, 谢庄, 刘红林. 牦牛和犏牛Dmc1基因序列分析及睾丸组织转录水平研究. 中国农业科学, 2010, 43(15): 3221–3229.

[21] Luo H. Expression, cloning and promoter methylation analysis of meiotic homologous recombinant genes in testes of yellow cattle and Dzo [Dissertation]., 2013.骆骅. 黄牛和犏牛睾丸组织中减数分裂同源重组基因表达、克隆与启动子区甲基化分析[学位论文]. 南京农业大学, 2013.

[22] Zeng Q, Huang L, Jin SY, Lin YQ, Zheng YC. Study on the difference of Msh4 gene mRNA expression in testes of yak and Dzo., 2013, (6): 62–64, 191–192.曾琴, 黄林, 金素钰, 林亚秋, 郑玉才. 牦牛和犏牛睾丸组织Msh4基因mRNA表达差异的研究. 黑龙江畜牧兽医, 2013, (6): 62–64, 191–192.

[23] Wu YH. Analysis of Y chromosome gene expression patterns and genome-wide DNA methylation differences in cattle, yak and yattle [Dissertation]., 2019.吴雨徽. 普通牛、牦牛和犏牛Y染色体基因表达模式及全基因组DNA甲基化差异分析[学位论文]. 西南大学, 2019.

[24] Giachini C, Nuti F, Turner DJ, Laface I, Xue YL, Daguin F, Forti G, Tyler-Smith C, Krausz C. TSPY1 copy number variation influences spermatogenesis and shows differences among Y lineages., 2009, 94(10): 4016–4022.

[25] Zhang GW, Guan JQ, Luo ZG, Zhang WX, Wang L, Luo XL, Zuo FY. A tremendous expansion of TSPY copy number in crossbred bulls (Bos taurus x Bos grunniens)., 2016, 94(4): 1398–1407.

[26] Wei YP, Fu Y, Wu KX, Chen SM. Boule Gene Evolution Analysis in Cattle,Yak and Cattle-yak Testis Tissue., 2012, 22(4): 53–55.魏雅萍, 付永, 吴克选, 陈生梅. 黄牛、牦牛和犏牛睾丸组织中Boule基因片段进化分析. 生物技术, 2012, 22(4): 53–55.

[27] Yao W, Li YX, Li BJ, Luo H, Xu HT, Pan ZX, Xie Z, Li QF. Epigenetic regulation of bovine spermatogenic cell- specific gene boule., 2015, 10(6): e0128250.

[28] Li B, Luo H, Weng Q, Wang S, Pan Z, Xie Z, Wu W, Liu H, Li Q. Differential DNA methylation of the meiosis- specific gene FKBP6 in testes of yak and cattle-yak hybrids., 2016, 51(6): 1030–1038.

[29] Zhang GW, Wang L, Chen HY, Guan JQ, Wu YH, Zhao JJ, Luo ZG, Huang WM, Zuo FY. Promoter hypermethylation of PIWI/piRNA pathway genes associated with diminished pachytene piRNA production in bovine hybrid male sterility., 2020: 15(9): 914–931.

[30] Yue XP, Chang TC, DeJarnette JM, Marshall CE, Lei CZ, Liu WS. Copy number variation of PRAMEY across breeds and its association with male fertility in Holstein sires., 2013, 96(12): 8024–8034.

[31] Zhang L, Chen ZH, Zhong JC, Jiang XO, Li N. Cloning and sequence analysis of TSPY gene in yak and cattle-yak., 2013, 34(2): 32–37.张利亚, 陈智华, 钟金城, 姜雪鸥, 李娜. 牦牛及杂种后代犏牛的TSPY基因克隆分析. 家畜生态学报, 2013, 34(2): 32–37.

[32] Pan ZX, Liu ZS, Li YX, Yu SL, Li MG, Xie Z, Li QF. Difference of SNRPN methylation status and its mRNA expression in testes between cattle-yaks and their parents., 2010, 43(22): 4709–4716.潘增祥, 刘振山, 李隐侠, 于莎莉, 李明桂, 谢庄, 李齐发. 犏牛及其亲本睾丸组织中印记基因SNRPN DMR甲基化与mRNA表达差异研究. 中国农业科学, 2010, 43(22): 4709–4716.

[33] Liu ZS. The expression activity and DNA methylation modification of four genes (IGF2, H19, SNRPN and DAZL) of Dzo and its parents were analyzed [Dissertation]., 2008.刘振山. 犏牛及其亲本IGF2、H19、SNRPN和DAZL等四个基因表达活性及其DNA甲基化修饰分析[学位论文]. 南京农业大学, 2008.

[34] Li MG, Liu ZS, Pan ZX, Luo H, Xie Z, Li QF. The mRNA expression and methylation status in imprinting control region of H19 gene between cattle-yak and their parents., 2012, 11(10): 1691–1699.

[35] Dong LY, Li QF, Qu XG, Li YX, Li XF, Xu HT, Xie Z. Expression levels of Cdc2 and Cdc25A mRNA in cattle, yak, and cattle-yak testis., 2009, 31(5): 495–499.董丽艳, 李齐发, 屈旭光, 李隐侠, 李新福, 徐洪涛, 谢庄. 黄牛、牦牛和犏牛睾丸组织中Cdc2、Cdc25A基因mRNA表达水平. 遗传, 2009, 31(5): 495–499.

[36] Russell S, Patel M, Gilchrist G, Stalker L, Gillis D, Rosenkranz D, Lamarre J. Bovine piRNA-like RNAs are associated with both transposable elements and mRNAs., 2017, 153(3): 305–318.

[37] Zeng XX, Liu ZN, Yang Q, Song QQ, Zhong JC, Ji QM, Ma ZJ. Self-renewal and differentiation regulation of spermatogonial stem cells in yak and Dzo. In: The Ninth National Congress and academic Symposium of the Chinese Society of Genetics. Haerbin, China, 2013.曾贤彬, 刘仲娜, 杨琴, 宋乔乔, 钟金城, 姬秋梅, 马志杰. 牦牛和犏牛精原干细胞的自我更新与分化调控. 见:中国遗传学会第九次全国会员代表大会暨学术研讨会. 中国哈尔滨, 2013,.

[38] Ma XQ. Study on hybrid sterile gene Prdm9 in yak [Dissertation]., 2014.马晓琴. 牦牛杂交不育基因Prdm9的研究[学位论文]. 西南民族大学, 2014.

[39] Yan P, Xiang L, Guo X, Bao PJ, Jin S, Wu XY. The low expression of Dmrt7 is associated with spermatogenic arrest in cattle-yak., 2014, 41(11): 7255– 7263.

[40] Lei JW, Huang L, Jin SY, Zheng YC. Comparison of mRNA levels of ERK1, ERK2 and P38 genes in testes of yaks and male sterile Dzo., 2016, 35(5): 666–671.雷杰雯, 黄林, 金素钰, 郑玉才. 牦牛和雄性不育犏牛睾丸ERK1、ERK2、P38基因mRNA水平的比较.四川动物, 2016, 35(5): 666–671.

[41] Stewart KR, Veselovska L, Kelsey G. Establishment and functions of DNA methylation in the germline., 2016, 8(10): 1399–1413.

[42] Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility., 2005, 308(5727): 1466–1469.

[43] Bie BB, Wang Y, Li L, Fang H, Liu LB, Sun J. Noncoding RNAs: Potential players in the self-renewal of mammalian spermatogonial stem cells., 2018, 85(8–9): 720–728.

[44] Zeng Y, Chen T. DNA Methylation Reprogramming during Mammalian Development., 2019, 10(4): 257.

[45] Cui XR, Jing X, Wu XQ, Yan MQ, Li Q, Shen Y, Wang ZQ. DNA methylation in spermatogenesis and male infertility., 2016, 12(4): 1973–1979.

[46] Wosnitzer M, Goldstein M, Hardy MP. Review of Azoospermia., 2014, 4: e28218.

[47] Lee J, Shinohara T. Epigenetic modifications and self- renewal regulation of mouse germline stem cells., 2011, 21(8): 1164–1171.

[48] Gu Y, Li QF, Pan ZX, Li MG, Luo H, Xie Z. Molecular cloning, gene expression and methylation status analysis of PIWIL1 in cattle-yaks and the parental generation., 2013, 140(3–4): 131–137.

[49] Liu ZS, Li QF, Pan ZX, Qu XG, Zhang CX, Xie Z. Comparative analysis on mRNA expression level and methylation status of DAZL gene between cattle-yaks and their parents., 2011, 126(3–4): 258–264.

[50] Li B, Luo H, Weng Q, Wang S, Pan Z, Xie Z, Wu W, Liu H, Li Q. Differential DNA methylation of the meiosis- specific gene FKBP6 in testes of yak and cattle-yak hybrids., 2016, 51(6): 1030–1038.

[51] Ozata DM, Gainetdinov I, Zoch A, O'Carroll D, Zamore PD. PIWI-interacting RNAs: small RNAs with big functions., 2019, 20(2): 89–108.

[52] Yuan ZH, Zhao YM. The regulatory functions of piRNA/ PIWI in spermatogenesis., 2017, 39(8): 683–691.袁志恒, 赵艳梅. piRNA/PIWI功能调控与精子发生. 遗传, 2017, 39(8): 683–691.

[53] Iwasaki YW, Siomi MC, Siomi H. PIWI-Interacting RNA: Its Biogenesis and Functions., 2015, 84: 405–433.

[54] Liu QP, AN N, Cen S, LI XY. Molecular mechanisms of genetic transposition inhibition by piRNA., 2008, 40(6): 445–450.刘启鹏, 安尼, 岑山, 李晓宇. piRNA抑制基因转座的分子机制. 遗传, 2018, 40(6): 445–450.

[55] Li XZ, Roy CK, Dong XJ, Bolcun-Filas E, Wang J, Han BW, Xu J, Moore MJ, Schimenti JC, Weng ZP, Zamore PD. An ancient transcription factor initiates the burst of piRNA production during early meiosis in mouse testes., 2013, 50(1): 67–81.

[56] Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, Iovino N, Morris P, Brownstein MJ, Kuramochi-Miyagawa S, Nakano T, Chien M, Russo JJ, Ju JY, Sheridan R, Sander C, Zavolan M, Tuschl T. A novel class of small RNAs bind to MILI protein in mouse testes., 2006, 442(7099): 203–207.

[57] Aravin AA, Sachidanandam R, Bourc'his D, Schaefer C, Pezic D, Toth KF, Bestor T, Hannon GJ. A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice., 2008, 31(6): 785– 799.

[58] Girard A, Sachidanandam R, Hannon GJ, Carmell MA. A germline-specific class of small RNAs binds mammalian Piwi proteins., 2006, 442(7099): 199–202.

[59] Carmell MA, Girard A, Van De Kant HJG, Bourchis D, Bestor TH, De Rooij DG, Hannon GJ. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline., 2007, 12(4): 503–514.

[60] Weick EM, Miska EA. piRNAs: from biogenesis to function., 2014, 141(18): 3458–3471.

[61] Kawaoka S, Izumi N, Katsuma S, Tomari Y. 3' end formation of PIWI-interacting RNAs., 2011, 43(6): 1015–1022.

[62] Lim SL, Qu ZP, Kortschak RD, Lawrence DM, Geoghegan J, Hempfling AL, Bergmann M, Goodnow CC, Ormandy CJ, Wong L, Mann J, Scott HS, Jamsai D, Adelson DL, O'bryan MK. HENMT1 and piRNA stability are required for adult male germ cell transposon repression and to define the spermatogenic program in the mouse., 2015, 11(10): e1005620.

[63] Brodersen P, Voinnet O. Revisiting the principles of microRNA target recognition and mode of action., 2009, 10(2): 141–148.

[64] Xia MM, Shen XY, Niu CM, Xia J, Sun HY, Zheng Y. MicroRNA regulates sertoli cell proliferation and adhesion., 2008, 40(9): 724–732.夏蒙蒙, 申雪沂, 牛长敏, 夏静, 孙红亚, 郑英. MicroRNA参与调控睾丸支持细胞的增殖与粘附功能. 遗传, 2018, 40(9): 724–732.

[65] Rajender S, Meador C, Agarwal A. Small RNA in spermatogenesis and male infertility., 2012, 4: 1266–1274.

[66] He ZP, Jiang JJ, Kokkinaki M, Tang L, Zeng WX, Gallicano I, Dobrinski I, Dym M. MiRNA-20 and mirna-106a regulate spermatogonial stem cell renewal at the post-transcriptional leveltargeting STAT3 and Ccnd1., 2013, 31(10): 2205–2217.

[67] Yang QE, Racicot KE, Kaucher AV, Oatley MJ, Oatley JM. MicroRNAs 221 and 222 regulate the undifferentiated state in mammalian male germ cells., 2013, 140(2): 280–290.

[68] Mineno J, Okamoto S, Ando T, Sato M, Chono H, Izu H, Takayama M, Asada K, Mirochnitchenko O, Inouye M, Kato I. The expression profile of microRNAs in mouse embryos., 2006, 34(6): 1765–1771.

[69] Xu CF. The identification and functional analysis of microRNAs in the spermatogenic arrest of cattleyak [Dissertation]., 2019.徐传飞. 犏牛精子发生阻滞相关microRNA鉴定与功能分析[学位论文]. 西南科技大学, 2019.

[70] Liao K. Comparative analysis of microRNA in yak, ordinary cattle and catttle-yak testis tissue [Dissertation]., 2016.廖珂. 牦牛、普通牛和犏牛睾丸组织microRNA的比较研究[学位论文]. 西南民族大学, 2016.

[71] Xu CF, Shah MA, Mipam T, Wu SX, Yi CP, Luo H, Yuan M, Chai ZX, Zhao WS, Cai X. Bovid microRNAs involved in the process of spermatogonia differentiation into spermatocytes., 2020, 16(2): 239–250.

[72] Zhang CW, Gao LZ, Xu EY. LncRNA, a new component of expanding RNA-protein regulatory network important for animal sperm development., 2016, 59: 110–117.

[73] Hung T, Wang YL, Lin MF, Koegel AK, Kotake Y, Grant GD, Horlings HM, Shah N, Umbricht C, Wang P, Wang Y, Kong B, Langerød A, Børresen-Dale AL, Kim SK, Van De Vijver M, Sukumar S, Whitfield ML, Kellis M, Xiong Y, Wong DJ, Chang HY. Extensive and coordinated transcription of noncoding RNAs within cell cycle promoters., 2011, 43(7): 621–629.

[74] Di Ruscio A, Ebralidze AK, Benoukraf T, Amabile G, Goff LA, Terragni J, Figueroa ME, De Figueiredo Pontes LL, Alberich-Jorda M, Zhang P, Wu M, D'alo F, Melnick A, Leone G, Ebralidze KK, Pradhan S, Rinn JL, Tenen DG. DNMT1-interacting RNAs block gene-specific DNA methylation., 2013, 503(7476): 371–376.

[75] Berghoff EG, Clark MF, Chen S, Cajigas I, Leib DE, Kohtz JD. Evf2 (Dlx6as) lncRNA regulates ultraconserved enhancer methylation and the differential transcriptional control of adjacent genes., 2013, 140(21): 4407–4416.

[76] Klattenhoff CA, Scheuermann JC, Surface LE, Bradley RK, Fields PA, Steinhauser ML, Ding HM, Butty VL, Torrey L, Haas S, Abo R, Tabebordbar M, Lee RT, Burge CB, Boyer LA. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment., 2013, 152(3): 570–583.

[77] Ni MJ, Hu ZH, Liu Q, Liu MF, Lu MH, Zhang JS, Zhang L, Zhang YL. Identification and characterization of a novel non-coding RNA involved in sperm maturation., 2011, 6(10): e26053.

[78] Lei QJ, Pan Q, Li N, Zhou Z, Zhang JQ, He X, Peng S, Li GP, Sidhu K, Chen SL, Hua JL. H19 regulates the proliferation of bovine male germline stem cells via IGF-1 signaling pathway., 2018, 234(1): 915–926.

[79] A GYD, Xiong XR, Wang Y, Yang XY, Han J, Wang B, Li J. Identification and analysis of long non-coding RNA associated with cattle-yak male infertility., 2019, 50(3): 551–561.阿果约达, 熊显荣, 王艳, 杨显英, 韩杰, 王斌, 李键. 犏牛雄性不育相关lncRNA的鉴定与分析. 畜牧兽医学报, 2019, 50(3): 551–561.

[80] Wu SX. Identification and functional analysis of lncRNA related to spermatogenesis block in Dzo [Dissertation]., 2019.伍仕鑫. 犏牛精子发生阻滞相关lncRNA的鉴定与功能分析[学位论文]. 西南科技大学, 2019.

[81] Ge SQ, Li JZ, Zhang XJ. Methylation and acetylation of histones during spermatogenesis., 2011, 33(9): 939–946.葛少钦, 李建忠, 张晓静. 精子发生过程中组蛋白甲基化和乙酰化. 遗传, 2011, 33(9): 939–946.

[82] Fischle W, Wang YM, Jacobs SA, Kim Y, Allis CD, Khorasanizadeh S. Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains., 2003, 17(15): 1870–1881.

[83] Aletta JM, Cimato TR, Ettinger MJ. Protein methylation: a signal event in post-translational modification., 1998, 23(3): 89–91.

[84] Carrell DT, Emery BR, Hammoud S. The aetiology of sperm protamine abnormalities and their potential impact on the sperm epigenome., 2008, 31(6): 537–545.

[85] Werner M, Ruthenburg AJ. The united states of histone ubiquitylation and methylation., 2011, 43(1): 5–7.

[86] Niu YX, Bai JT, Zheng SZ. The regulation and function of histone methylation., 2018, 61(6): 347–357.

[87] Yap DB, Walker DC, Prentice LM, McKinney S, Turashvili G, Mooslehner-Allen K, de Algara TR, Fee J, de Tassigny Xd, Colledge WH, Aparicio S. Mll5 is required for normal spermatogenesis., 2011, 6(11): e27127.

[88] Okada Y, Scott G, Ray MK, Mishina Y, Zhang Y. Histone demethylase JHDM2A is critical for Tnp1 and Prm1 transcription and spermatogenesis., 2007, 450(7166): 119–123.

[89] Li YC, Wang GW, Xu SR, Zhang XN, Yang QE. The expression of histone methyltransferases and distribution of selected histone methylations in testes of yak and cattle-yak hybrid., 2020, 144: 164–173.

Progress on meiotic gene expression and epigenetic regulation of male sterility in Dzo cattle

Huiyou Chen, Jianmin Zhang, Baisen Li, Yonglin Deng, Gongwei Zhang

Interspecific hybrid male sterility is a common occurrence in nature and plays an important role in species reproductive isolation. Dzo (cattle-yak), the offspring of interspecific cross between domestic yak () and cattle (), is a unique animal model for investigating interspecific hybrid male sterility. Dzo females are completely fertile while the males are sterile. In recent years, molecular studies have demonstrated that the expressions of genes were dysregulated during meiosis in Dzo testis, as compared to those in cattle or yak. Other studies have revealed that epigenetic factors/events, such as DNA methylation, histone modification and non-coding RNA, are also involved in spermatogenesis. This review summarizes the dysregulation of gene expression, DNA methylation, microRNA (miRNA), PIWI-interacting RNA (piRNA), long non-coding RNA (lncRNA), and histone methylation modification during meiosis in Dzo testis. These results highlighted the potential roles of genetic and epigenetic regulations of meiosis in Dzo testis, thereby providing a more detailed understanding on the molecular mechanisms of interspecific hybrid male sterility.

Dzo; male sterility; epigenetic; gene expression

2020-06-15;

2020-07-14

国家自然科学基金项目(编号:31802046)和中央高校基本科研业务费(编号:XDJK2020D011,XDJK2019RC001)资助[Supported by the National Natural Science Foundation of China (No. 31802046) and the Fundamental Research Funds for the Central Universities (Nos. XDJK2020D011, XDJK2019RC001)]

陈会友,在读硕士研究生,专业方向:动物遗传育种。E-mail: 17602359737@163.com

张龚炜,博士,副教授,硕士生导师,研究方向:动物遗传育种。E-mail: zgw-vip@163.com

10.16288/j.yczz.20-176

https://kns.cnki.net/kcms/detail/11.1913.R.20200929.1343.001.html

URI: 2020/9/30 13:13:34

(责任编委: 赵要风)

猜你喜欢
精子发生表观牦牛
赛牦牛(布面油画)
牦牛场的雪组诗
美仁大草原的牦牛(外一章)
绿盲蝽为害与赤霞珠葡萄防御互作中的表观响应
精浆外泌体在精子发生与功能调控中的研究进展
人工驯养树鼩精子发生过程中MCM7蛋白的表达
跟着牦牛去巡山
钢结构表观裂纹监测技术对比与展望
“SPT”智慧课堂模式下“体内受精”教学设计
例析对高中表观遗传学的认识