赵令浩 曾令森 詹秀春 胡明月 袁继海 孙冬阳 张立飞
1. 国家地质实验测试中心,北京 100037 2. 北京大学地球与空间科学学院,北京 100871 3. 自然资源部深部动力学重点实验室,中国地质科学院地质研究所,北京 100037
以锆石为代表的含铀矿物U-Pb年代学的快速发展,包括锆石、斜锆石、榍石、磷灰石、金红石、独居石、褐帘石、磷钇矿、钙钛矿,甚至包括锡石、黑钨矿、石榴子石、碳酸盐、黑云母等(Sunetal., 2012; Gevedonetal., 2018; Thomsonetal., 2012; Willigersetal., 2002; Lietal., 2016; Pochonetal., 2016; Chipleyetal., 2007; 袁继海等, 2016; Baxteretal., 2017; Zack and Kooijman, 2017; Kohn, 2017; Engi, 2017; Schaltegger and Davies, 2017; Rubatto, 2017),为建立地质体的时空演化构架、追溯地质演化历史提供了强有力的手段,已经成为现代地质学研究的支柱学科之一。
榍石[CaTi1-xAlxSiO4(O, OHx, Fx)]作为副矿物在各种成分岩浆岩、变基性岩(角闪岩、退变质榴辉岩),甚至沉积岩中广泛存在。榍石中高U、Th含量,低Pb含量的特征使其成为U-Pb定年的理想矿物(Frostetal., 2001; Kohn, 2017及其参考文献)。榍石的结构元素Ca和Ti为主要造岩元素,因此在变质及岩浆作用过程中,常伴随着榍石的形成或分解。榍石中高度富集REE和Nb、Ta等关键元素,被广泛用于指示岩浆及变质过程,同时,榍石具有良好的元素和同位素保存能力(Cherniak, 1993, 1995, 2006, 2015),能够记录多期次地质过程和变质作用信息。结合U-Pb年龄、微量元素、榍石Zr温度计、Sr、Nd、O同位素,榍石对于地质过程的指示作用可以媲美锆石(Storeyetal., 2007; Smithetal., 2009; Kohn and Corrie, 2011; Gaoetal., 2012; Spenceretal., 2013; Stearnetal., 2016; Jietal., 2016; Jiangetal., 2016)。
相对于锆石,榍石中高Pbc/U比值以及缺少基体匹配标准样品限制了榍石U-Pb定年技术的开发和利用。近年来随着原位微区技术SHRIMP、SIMS、LA-(MC)ICP-MS技术的发展,尤其是榍石U-Pb标准样品的开发(Aleinikoffetal., 2007; Kennedyetal., 2010; Maetal., 2019及其参考文献)、非基体匹配U-Pb定年技术(Storeyetal., 2007; Burnetal., 2017; Yokoyamaetal., 2018)以及多种普通铅校正方法的建立(Andersen, 2002; Storeyetal., 2006; Chewetal., 2014),推动了榍石U-Pb定年技术的发展、应用和普及。含普通铅副矿物U-Pb定年中,准确测定207Pb并校正普通铅是影响测试数据质量的关键。因此目前榍石LA-ICP-MS U-Pb定年分析,尤其是对于年轻的和低U含量的榍石,常采用较大激光斑束(>40μm),而准确测定榍石Sr和Nd同位素需斑束直径60~120μm,因此,榍石U-Pb定年空间分辨率在一定程度上影响了其他测试工作的开展。
长期以来,对于榍石U-Pb封闭温度存在较大争议。Mattinson (1978)提出榍石具有较低的U-Pb封闭温度450~500℃;Cherniak (1993)实验测定榍石中Pb相较于其他元素具有较高的扩散速率,计算获得榍石U-Pb体系封闭温度约为600℃。随着榍石U-Pb定年技术的发展和广泛应用,越来越多的U-Pb年代学数据表明,榍石在高温下仍可以保持U-Pb体系的封闭性,Scott and St-Onge (1995)和Pidgeonetal. (1996)测定的榍石U-Pb封闭温度650~700℃被广泛接受。但Kohn and Corrie (2011)根据高喜马拉雅片麻岩榍石年龄推测榍石的U-Pb封闭温度>775℃;Gaoetal. (2012)在大别造山带发现变质和岩浆榍石记录了>800℃的年龄信息,进一步提高了对于榍石U-Pb封闭温度的认知;Kohn (2017)根据自然样品榍石颗粒边缘U-Pb年龄梯度计算获得榍石Pb扩散系数与Sr在榍石中的扩散系数一致,支持榍石U-Pb封闭温度>800℃。确定榍石U-Pb体系封闭温度对于其U-Pb年龄和地球化学特征的地质解译以及推动榍石的地质学应用具有重要意义。
本文采用高灵敏度扇形磁场质谱(SF-ICP-MS),以激光斑束25~30μm,准确测定标准榍石样品(~1045Ma和~20Ma)和青藏高原年轻榍石样品U-Pb年龄(<100Ma),保证测试结果准确性并提高空间分辨率。通过测定对比榍石和锆石U-Pb年龄及统计不同成分岩浆岩中榍石形成温度,限定了榍石结晶温度范围和U-Pb体系封闭温度,为榍石U-Pb年龄和地球化学特征的地质学解译提供参考。
榍石U-Pb定年在国家地质实验测试中心完成,采用高分辨扇形磁场质谱仪Finnigan ELEMENT 2质谱和NEW WAVE UP213激光器。该质谱仪具有高灵敏度和高分辨率,更利于样品中低含量元素的准确测定。实验以He作为载气,ICP-MS分析采用低分辨模式。测试前使用NIST612进行仪器信号调谐,激光斑束30μm线扫描,频率为10Hz,光斑移动5μm/s,输出能量密度约为10J/cm2,调谐质谱参数获得232Th和238U信号强度大于2×105cps,监测ThO+/Th+控制氧化物产率<0.2%,同位素信号比值238U/232Th≈1,降低分析过程中动态分馏作用的影响。具体仪器运行参数见表1。
表1 LA-SF-ICP-MS运行参数
榍石U-Pb分析检测202Hg、204Pb、206Pb、207Pb、208Pb、232Th、238U等7个同位素,设置232Th、238U检测时间为2ms,202Hg、204Pb、206Pb、207Pb、208Pb检测时间为3ms。样品采用单点分析模式,气体背景采集时间20s,激光剥蚀榍石样品信号采集时间30s,剥蚀后吹扫时间20s。每分析8个样品点插入国际标准榍石样品BLR-1(2点)及OLT-1(2点)(Aleinikoffetal., 2007; Kennedyetal., 2010)。对于自然榍石样品,通过监控其中各元素及同位素信号变化以避免包裹体对测试数据产生影响。
数据处理和年龄计算采用GLITTER和Isoplot/EX v3.71完成(Ludwig, 2003),采用207Pb法进行普通铅校正。同源的具有相同年龄和初始普通铅比值的一组数据点在Tera-Wasserburg等时线图上(Tera and Wasserburg, 1972)形成良好的等时线,其与横轴的交点,即下交点为本组样品的年龄;等时线与纵坐标交点为本组样品普通铅207Pb/206Pb比值。将该初始Pb同位素比值和交点年龄带入到地球铅同位素演化二阶段模式(Stacey and Kramers, 1975),计算样品中普通Pb和放射成因Pb比例,并校正普通铅对于206Pb的影响,获得准确的206Pb/238U年龄,并计算206Pb/238U加权平均年龄。准确的测试与合理的Pb同位素校正,获得的下交点年龄与加权平均年龄在误差范围内一致,代表榍石样品的形成年龄。
基体匹配标准样品的开发是LA-ICP-MS技术发展的关键。前人采用锆石U-Pb标准样品91500进行榍石U-Pb定年,发现存在明显的基体效应(Sunetal., 2012; 袁继海等, 2016),年龄偏差可达10%以上。近年来随着榍石U-Pb定年技术的应用,开发了大量的榍石U-Pb定年参考样品:BLR-1、OLT-1、Ontario、MKED1、Pakistan、TLS等(Aleinikoffetal., 2007; Kennedyetal., 2010; Maetal., 2019及其参考文献)。其中,BLR-1和OLT-1在榍石LA-ICP-MS U-Pb定年研究中应用最为广泛。本文采用LA-SF-ICP-MS,以BLR-1为标准,采用25~30μm激光斑束,分别测定榍石样品BLR-1、OLT-1和Pakistan的U-Pb年龄(表2、图1)。
表2 BLR-1、OLT-1和Pakistan榍石LA-SF-ICP-MS U-Pb定年数据
续表2
图1 榍石标准样品U-Pb定年结果(a、b) BLR-1;(c、d) OLT-1;(e、f) Pakistan;(b、d、f) 207Pb法普通铅校正年龄Fig.1 U-Pb dating of titanites by LA-SF-ICP-MS with BLR-1 titanite as the external standard(a, b) BLR-1 titanite; (c, d) OLT-1 titanite; (e, f) Pakistan titanite; (b, d, f) 207Pb-corrected age
以25μm激光斑束分析了BLR-1和OLT-1各24点,在Tera-Wasserburg等时线图上,数据点集中在238U/206Pb轴附近,分别形成良好的等时线,MSWD分别为0.8和0.9,交点年龄分别为1044±7Ma(2σ,n=24)和1016±21Ma(2σ,n=24),样品中普通铅约占1%~2%,207Pb法校正后获得206Pb/238U加权平均年龄分别为1046±9Ma(2σ,n=24)和1016±8Ma(2σ,n=24),2个榍石样品的年龄与推荐年龄(BLR-1:1048.0±0.7Ma和OLT-1:1014.7±3.8Ma,Aleinikoffetal., 2007; Kennedyetal., 2010)一致。
以30μm激光斑束分析榍石样品Pakistan 16点。在Tera-Wasserburg等时线图上,数据点形成良好的等时线,MSWD=1.7,交点年龄为21.2±0.6Ma(2σ,n=16),普通铅约占1%~6%,部分样品点高普通铅比例可能是由于样品表面污染所致。207Pb法校正后获得206Pb/238U加权平均年龄分别为21.1±0.5Ma(2σ,n=16),与Maetal. (2019) LA-Q-ICP-MS测定年龄(21.4±0.4Ma)在误差范围内一致。
花岗岩样品15RKZ采自西藏日喀则大竹卡地区,具有高Sr/Y比值特征。该样品副矿物(锆石、榍石、磷灰石、烧绿石等)含量较高。分别测定了该样品中的锆石和榍石U-Pb年龄。
花岗岩样品15RKZ中锆石呈短柱状,具有韵律生长环带,为岩浆锆石。选择30颗锆石颗粒进行LA-ICP-MS定年分析。分析点U、Th含量范围分别为90×10-6~282×10-6和53×10-6~218×10-6,Th/U比值较高,为0.40~0.94。该锆石样品谐和年龄为84.0±0.7Ma(n=30;MSWD=0.82)(图2a);206Pb/238U年龄分布在80.2~87.5Ma之间,加权平均年龄为84.0±0.7Ma(n=30;MSWD=0.93)(图2b)。典型的韵律环带结构和高Th/U比值表明~84Ma为岩浆锆石的结晶年龄,与前人报道该地区高Sr/Y花岗岩年龄一致(Wenetal., 2008; 纪伟强等, 2009)。
图2 花岗岩样品15RKZ锆石(a、b)和榍石(c、d) U-Pb年龄Fig.2 U-Pb dating of zircon (a, b) and titanite (c, d) in granite sample 15RKZ
花岗岩样品15RKZ中榍石自形较好,部分颗粒在BSE图像中显示环带结构,具有岩浆结晶榍石特征。选择24个榍石颗粒进行LA-ICP-MS定年分析(表3)。在Tera-Wasserburg等时线图上,数据点集中在238U/206Pb轴附近,形成良好的等时线,MSWD=1.04,获得交点年龄为84.6±3.2Ma,初始207Pb/206Pb比值为0.674(图2c)。采用207Pb法扣除榍石中普通铅影响,单点普通铅比例8%~37%,多数样品点集中于10%~18%之间,计算获得206Pb/238U年龄变化范围为80.1~90.2Ma之间,加权平均年龄为84.6±1.3Ma(n=24;MSWD=0.64)(图2d),该年龄与锆石年龄一致。
表3 花岗岩样品15RKZ和T0592-6-9中榍石样品LA-SF-ICP-MS U-Pb定年数据
续表3
粗粒花岗岩样品T0592-6-9采自西藏白清,该样品的锆石U-Pb年龄为46.6±0.3Ma(Wangetal., 2018)。样品中含有大量榍石,自形,粒径100~200μm,BSE图像显示环带结构发育,榍石颗粒中包裹体较多(图3a)。
图3 粗粒花岗岩样品T0592-6-9中榍石颗粒BSE图像(a)、微量元素含量变化(b)及U-Pb定年结果(c、d)微量元素含量根据赵令浩等 (2018)Fig.3 BSE image (a), Trace element content (b) and U-Pb age (c, d) of titanite in sample T0592-6-9 Trace element content data after Zhao et al. (2018)
榍石颗粒中微量元素呈连续变化特征(图3b, 赵令浩等, 2018):1)榍石核部富集流体不活动元素(P、Y、REE、HFSE、Th),相对富集LREE,Eu负异常明显(0.5~0.7),Nb/Ta比值低于球粒陨石(10.3~16.3),高Th/U比值(4.2~8.8);2)榍石边部富集流体活动元素(Sb、W、Bi、U),亏损流体不活动元素,相对富集LREE,Eu正异常(0.6~1.7),Nb/Ta比值高于榍石核部(>11.5),边缘最高达152,低Th/U比值(0.9~7.9)。榍石Zr温度计算结果表明该榍石颗粒核部与边部最高形成温度相差~50℃。
为对比榍石和锆石之间U-Pb年龄的异同性,揭示其可能的影响因素,本文选择14颗榍石颗粒,分别测定了核部和边部的U-Pb年龄(图3c, d;表3)。在Tera-Wasserburg图解上,所有测试数据形成良好的等时线,MSWD=0.62,获得样品年龄为44.4±3.2Ma,初始207Pb/206Pb比值为0.694。采用207Pb法扣除普通铅,单点普通铅占比37%~74%,206Pb/238U年龄变化范围为38.1~48.7Ma,加权平均年龄为44.3±1.1Ma。
尽管受普通铅影响榍石单点定年结果误差相对较大,但所有14颗榍石颗粒核部年龄大于对应边部年龄(图3c, d;表3)。榍石核部年龄48.0~42.0Ma,与锆石U-Pb年龄~47.0Ma年龄一致,榍石边部较年轻,为46.0~38.0Ma,因此,榍石核部和边部的年龄可能反映了二者形成时间的差别。
为探讨榍石结晶温度区间,本文选择采自冈底斯岩基和南迦巴瓦地区18件岩浆岩样品,岩石类型从酸性岩到中基性岩浆岩(SiO2=48.1%~77.0%),每件样品中具有较高的岩浆榍石含量,全岩及榍石地球化学特征见赵令浩(2020)。
采用LA-ICP-MS分析榍石核部及边部Zr含量,并估算了榍石的结晶温度(Haydenetal., 2008)。在估算参数中,压力是榍石Zr温度计算的主要误差来源,压力升高1kbar,计算温度增大~12℃。为限定岩浆结晶压力的影响,利用全岩Sr/Y比值作为替代指标,所研究样品具有宽泛的Sr/Y比值(4.4~196, 赵令浩, 2020),对应的压力在6±4kbar之间。因此假设榍石形成压力为6±4kbar,中-酸性岩石样品αSiO2=1,αTiO2=0.7(Hayden and Watson, 2007),计算温度误差为40~50℃。统计获得榍石在2~10kbar压力区间范围内结晶温度宽泛,为600~900℃,正态分布,最集中结晶温度为~750℃(图4)。
图4 榍石Zr温度计计算榍石结晶温度统计(假设αSiO2=1,αTiO2=0.7,P=6±4kbar)Fig.4 Crystal temperature of titanite calculated by Zr-in-titanite thermobarometer, assuming αSiO2=1, αTiO2=0.7, P=6±4kbar
含普通铅副矿物LA-ICP-MS U-Pb定年中,准确测定207Pb并校正普通铅是影响测试数据质量的关键,因此质谱仪灵敏度成为影响激光空间分辨率的关键因素。目前LA-ICP-MS分析中常用的质谱仪包括四级杆质谱(Q-ICP-MS)和扇形磁场质谱(SF-ICP-MS),后者灵敏度高于前者二倍至一个数量级(Latkoczy and Günther, 2002),因此采用扇形磁场质谱理论上可以明显降低激光斑束大小。目前榍石LA-Q-ICP-MS U-Pb定年采用激光斑束常大于40μm(Sunetal., 2012; Maetal., 2019),而准确测定榍石Sr和Nd同位素组成常采用分析激光斑束一般为60~120μm;另外,单颗粒榍石能够记录多期次地质过程或变质作用信息,因此高空间分辨率榍石U-Pb定年对于榍石的综合研究具有重要意义(Stearnsetal., 2016)。
本文采用LA-SF-ICP-MS,以25μm激光斑束分析榍石U-Pb标准样品BLR-1和OLT-1;以30μm激光斑束分析了年轻榍石样品Pakistan(Pb*=0.49×10-6, Maetal., 2019),通过207Pb法进行普通铅校正,获得年龄分别为1046±9Ma(2σ,n=24)、1016±8Ma(2σ,n=24)和21.1±0.5Ma(2σ,n=16),与推荐年龄及文献测定年龄在误差范围内一致(BLR-1:1048.0±0.7Ma;OLT-1:1014.7±3.8Ma;Pakistan:21.4±0.4Ma,Aleinikoffetal., 2002; Kennedyetal., 2010; Maetal., 2019)。尽管BLR-1、OLT-1和Pakistan榍石样品中含有少量普通铅(1%~6%),但每个样品中U-Pb同位素比值均一,可用做榍石LA-ICP-MS U-Pb定年标准物质。本文对标准榍石样品和自然榍石样品U-Pb定年结果表明采用LA-SF-ICP-MS可准确测定榍石U-Pb年龄,同时有效提高空间分辨率(25~30μm)。
岩浆演化过程中,关于榍石的结晶时间一直存在不同的观点。榍石在钙碱性侵入岩中大量存在,但是在相同成分的喷出岩中含量较低,因此一般认为榍石在熔体演化晚期结晶(Nakada, 1991; Colombinietal., 2011; Glazneretal., 2008)。但在俯冲带相关的低温-含水-氧化的高Si流纹质熔体中榍石可以稳定存在,并发生结晶分异作用(Bachmann and Bergantz, 2008)。熔体中榍石的结晶取决于熔体中TiO2的溶解度。在长英质熔体中,TiO2的溶解度与温度、熔体含水量和熔体成分特征FM正相关,与压力呈负相关关系(Xiongetal., 2009)。因此,相对于钙碱性侵入岩,喷出岩熔体形成后压力快速降低导致熔体中TiO2溶解度升高,抑制榍石结晶,可能是喷出岩中少有榍石结晶的原因之一。
为探讨榍石结晶温度区间,本文选择采自冈底斯岩基和南迦巴瓦地区18件不同岩性岩浆岩样品,估算了岩浆榍石的结晶温度(Haydenetal., 2008)。统计获得榍石在2~10kbar压力区间范围内结晶温度宽泛,为600~900℃,正态分布,最集中结晶温度为~750℃(图4),与Colombinietal. (2011)计算的高Si流纹岩中榍石的结晶温度(715~755℃)一致,并表现出更宽泛的结晶温度范围,略低于全岩Zr饱和温度645~801℃。同一件样品不同榍石颗粒或榍石核部与边缘也具有较大的温度差异,最高可达~150℃。因此岩浆演化过程中,榍石的结晶是持续的过程,即岩浆演化早期、中期、晚期榍石都可结晶(Xieetal., 2010),并且结晶的峰期主要集中于岩浆演化中-晚期,可能是由于熔体经初期演化导致TiO2富集或熔体成分变化导致熔体TiO2溶解度降低所致。
榍石颗粒普遍发育的成分环带和U-Pb年龄数据也支持榍石长时间结晶过程。样品T0592-6-9榍石颗粒核部至边部微量元素呈连续变化特征(图3b):榍石核部至边部,流体不活动元素含量逐渐降低,流体活动元素含量逐渐升高,Eu由负异常变为正异常,Nb/Ta比逐渐升高至超球粒陨石,Th/U比值逐渐降低。熔体成分和榍石配分系数的变化造成了榍石颗粒中微量元素的环带特征。榍石Zr温度计表明该榍石核部与边部最高形成温度相差~50℃。该样品榍石核部U-Pb年龄48~42Ma,与锆石U-Pb年龄~47Ma一致,边部年龄46~38Ma(图3c, d)。T0592-6-9榍石微量元素、形成温度及U-Pb定年结果均支持岩浆中榍石的结晶是持续的过程,可以记录从岩浆演化早期至晚期的地球化学信息。
综合前人报道榍石U-Pb封闭温度范围450℃~>800℃,与本文计算榍石结晶温度范围一致。因此,文献报道的宽泛的榍石U-Pb体系封闭温度范围可能反映了榍石具有较大的结晶温度范围。本文中岩浆榍石核部年龄与锆石年龄基本一致,支持榍石U-Pb封闭温度接近于锆石。岩浆体系中,榍石结晶后即快速达到U-Pb同位素体系封闭。因此,同一岩浆体系中锆石与榍石的年龄差别可能反映了熔体较晚达到榍石饱和,而非熔体热演化历史或Pb封闭温度相关信息。
(1)本论文采用LA-SF-ICP-MS建立榍石U-Pb定年方法。准确测定了榍石标准样品(~1045Ma和~20Ma)和年轻榍石样品(<100Ma)的年龄,有效提高检测空间分辨率(25~30μm);
(2)基性岩至酸性岩样品中岩浆榍石Zr温度统计结果表明,岩浆榍石具有宽泛的结晶温度范围600~900℃,最集中结晶温度为~750℃,因此,同一岩浆体系中锆石与榍石的年龄差异可能反映了熔体较晚达到榍石饱和,而非榍石的封闭温度较低或反映岩石热演化历史;
(3)同一岩浆体系中,锆石与岩浆榍石U-Pb年龄一致,结合榍石的结晶温度表明榍石形成后快速达到U-Pb体系封闭,推测榍石U-Pb同位素体系封闭温度接近或略低于锆石,>700~750℃。
致谢感谢中国地质科学院矿产资源研究所陈振宇教授级高工和国家地质实验测试中心屈文俊研究员及本刊编辑对本文的审阅并提出了宝贵的修改意见。