张纯萍
[摘要] 糖尿病以及并发症已成为威胁人类健康的主要疾病之一。芹菜素是广泛分布于各种蔬菜和水果中的天然黄酮类化合物,芹菜素具有抗氧化、抗炎、保护神经等作用,并从机制上肯定了其治疗糖尿病及其并发症的有效性。本文对芹菜素治疗糖尿病及其并发症的作用机制进行归纳总结,包括芹菜素可减少抗氧化应激、保护胰岛β细胞线粒体膜、增加胰岛素敏感性、激活过氧化物酶体增殖物激活受体-γ改善心肌梗死后血流动力学紊乱以及抑制胶原Ⅳ、纤连蛋白改善肾脏的纤维化,说明芹菜素具有多靶点、多途径、多层次等治疗优势,可用于治疗糖尿病及其并发症,改善预后,具有广阔的研究前景,为进一步开发芹菜素提供新的思路和依据。
[关键词] 芹菜素;糖尿病;研究进展;作用机制
[中图分类号] R587.1 [文献标识码] A [文章编号] 1673-7210(2020)08(b)-0034-03
[Abstract] Diabetes mellitus and its complications have become one of the major diseases threatening human health. Apigenin is a natural flavonoid widely distributed in a variety of vegetables and fruits. Apigenin has antioxidant, anti-inflammatory and neuroprotective effects, and confirmed its effectiveness in the treatment of diabetes mellitus and its complications. This paper summarizes the mechanism of apigenin in the treatment of diabetes mellitus and its complications, including apigenin can reduce antioxidant stress, protect the mitochondrial membrane of pancreatic beta cells, increase insulin sensitivity, and activate peroxisome proliferator-activated receptor-γ (PPAR-γ) to improve hemodynamics disorder after myocardial infarction and inhibits collagen Ⅳ and fibronectin to improve renal fibrosis. These results indicate that apigenin has therapeutic and prognostic advantages in patients with diabetes mellitus and complications based on multi-target, multi-pathway and multi-layer treatment, which provides a new idea and basis for the further development of apigenin.
[Key words] Apigenin; Diabetes mellitus; Research progress; Mechanism of action
糖尿病主要是指因胰島素分泌绝对或相对缺乏导致糖、蛋白与脂肪等代谢发生紊乱的一组临床综合征。近年来,2型糖尿病发病率急剧上升,已经成为世界性公共卫生问题[1]。目前我国2型糖尿病的患病率位于世界第1位[2]。芹菜素属于黄酮类化合物,它广泛存在于日常食用的蔬菜和水果中[3]。黄酮类化合物具有抗氧化、抗炎、抗菌以及抗癌的作用。有研究显示,芹菜素对糖尿病及其并发症有一定的作用[4]。本文将有关芹菜素治疗糖尿病及其并发症的药理作用进行综述,为进一步研究探索与开发利用芹菜素防治糖尿病的药理作用提供参考。
1 芹菜素治疗糖尿病的作用机制
2型糖尿病是由遗传与环境因素共同作用形成的复杂疾病,其中胰岛素抵抗和β细胞功能障碍是2型糖尿病发病机制中的重要决定因素[5-6]。研究表明,胰岛β细胞的功能异常以及代偿能力下降可导致2型糖尿病的发生[7-8]。
1.1 抗氧化应激,保护胰岛β细胞功能
2型糖尿病发病机制复杂,主要是由于糖脂毒性、氧化应激、炎症等因素导致胰岛β细胞数量进行性减少[9]。Suh等[10]研究显示,芹菜素通过抗氧化应激、保护胰岛β细胞线粒体膜损伤的作用减少胰岛β细胞凋亡。Rukiyah等[11]发现,芹菜素通过抑制环氧化酶-2的表达减少氧化应激反应。芹菜素还可以通过减少活性氧自由基对胰岛细胞的损伤[12]以及减少氧化应激所导致的炎症反应达到保护胰岛β细胞的作用[13]。
1.2 增加胰岛素敏感型、改善胰岛素抵抗
芹菜素具有调节微小RNA(miRNA)表达的作用。miRNA是内源性单链小RNA,其中miRNA 103/107可调控机体对胰岛素敏感性与血糖稳态[14]。Ohno等[15]在过度表达miRNA 103的转基因小鼠腹腔中注射芹菜素2周后可抑制miRNA 103的成熟,从而改善小鼠的糖耐量。此外,miRNA 122参与调节糖脂代谢平衡,它与糖尿病、胰岛素抵抗等疾病的发生密切相关[16]。Shibata等[17]发现,芹菜素能降低人体肝细胞中miRNA 122的表达,这可能是芹菜素治疗糖尿病的作用靶点。
1.3 抑制糖异生
葡萄糖-6-磷酸酶(G6Pc)和磷酸烯醇丙酮酸羧化激酶(PEPCK)为肝脏糖异生的关键酶[18]。肝脏的胰岛素活性主要是由叉头转录因子1调控。当出现胰岛素抵抗时,叉头转录因子1转录活性增强后可活化G6Pc和PEPCK,从而导致胰岛素抵抗[19]。体外研究表明,芹菜素通过激活NF-E2相关因子2,可减少肝细胞中的G6Pc和PEPCK mRNA的表达[20],达到抑制糖异生的作用。
2 芹菜素对糖尿病并发症的治疗作用
2.1 治疗糖尿病心血管疾病
氧化应激和细胞凋亡增加是糖尿病心脏共同发病的原因之一[21]。研究表明,过氧化物酶体增殖物激活受体-γ(PPAR-γ)激动剂可减轻心肌缺血再灌注所致的炎症及继发性心肌损伤[22]。因此,PPAR-γ成为预防代谢紊乱、心脏并发症和心力衰竭的新的治疗靶点[23]。Buwa等[24]研究表明,芹菜素对心肌损伤的保护作用与刺激PPAR-γ产生有关。芹菜素可增强内源性抗氧化剂作用,增加心脏的收缩功能[25-26]。Gutierrez-Venegas等[27]在糖尿病心肌梗死大鼠模型中使用芹菜素后,发现大鼠血流动力学紊乱明显改善,同时还可以提高左室舒张功能,考虑与激动PPAR-γ有关。此外,芹菜素可以减轻心肌细胞炎症反应,抑制缺氧诱导的心肌损害,下调低氧诱导因子-1α,缓解高血压导致的心肌肥厚[28]。这些研究表明芹菜素可减少高糖状态下的心血管损害。
2.2 治疗糖尿病肾病
糖尿病肾病是由于长期未控制的高血糖引起的一种微血管并发症,其早期病理表现为肾小管肥大、肾小球系膜细胞扩张、基底膜增厚,并伴有巨噬细胞和T淋巴细胞的浸润。糖尿病肾病临床表现为肾小球高滤过状态、白蛋白排泄增加;晚期可出现蛋白尿增多,最终导致肾小管萎缩、肾间质纤维化,腎小球滤过率逐渐下降[29]。Malik等[30]研究发现,对链脲佐菌素诱导的糖尿病大鼠予以多种剂量的芹菜素可显著抑制肾脏的纤维化,尤其以高剂量芹菜素对胶原Ⅳ、纤连蛋白的抑制作用最明显。此外,通过调节MAPK-NF-κB-TNF-α通路,芹菜素可抑制高糖状态下的肾脏炎症反应。以上研究提示芹菜素具有保护肾脏的作用。
2.3 治疗糖尿病视网膜病
糖尿病视网膜病变是糖尿病最常见的微血管并发症之一,其发病机制为视网膜微血管炎症,可刺激血清中肿瘤坏死因子-α(TNF-α)升高,导致淋巴细胞活化分泌大量炎症介质使患者血管内皮损伤,进而诱发微血管并发症的发生[31]。Fu等[32]研究发现,芹菜素通过抑制天冬氨酸蛋白水解酶的凋亡和激活NF-κB来减轻TNF-α诱导的细胞凋亡,进而减轻视网膜神经节细胞功能受损。此外,芹菜素还能促进视网膜细胞ATP和总摄氧量增加。因此,芹菜素有可能成为治疗视网膜病变的抗凋亡药物。
3 小结与展望
从目前的研究来看,芹菜素通过多靶点、多通路潜在改善炎症、糖尿病及其并发症等,而且其毒性与其他黄酮类化合物相比较低。近年来芹菜素的研究多处于动物模型阶段,许多作用机制仍不清楚,还需要更多的研究进一步深入了解芹菜素,开发为新型抗糖尿病药物。
[参考文献]
[1] Zhou B,Lu Y,Hajifathalian K,et al. Worldwide trends in diabetes since 1980:a pooled analysis of 751 population-based studies with 4.4 million participants [J]. Lancet,2016,387(10027):1513-1530.
[2] Chan M. China′s burgeoning epidemic of diabetes-associated mortality [J]. JAMA,2017,317(3):264-266.
[3] Hertog MG,Kromhout D,Aravanis C,et al. Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study [J]. Arch Internal Med,1995, 155(4):381-386.
[4] 王慧,郑宏庭.糖尿病的抗氧化治疗与肿瘤[J].中华内分泌代谢杂志,2016,32(10):799-802.
[5] Sampath Kumar A,Arun Maiya G,Shastry BA,et al. Correlation between basal metabolic rate,visceral fat and insulin resistance among type 2 diabetes mellitus with peripheral neuropathy [J]. Diabetes Metab Syndr,2019,13(1):344-348.
[6] Lee E,Ryu GR,Ko SH,et al. A role of pancreatic stellate cells in islet fibrosis and β-cell dysfunction in type 2 diabetes mellitus [J]. Biochem Biophys Res Commun,2017, 485(2):328-334.
[7] Potter KJ,Westwell-Roper CY,Klimek-Abercrombie AM,et al. Death and dysfunction of transplanted β-cells:lessons learned from type 2 diabetes? [J]. Diabetes,2014,63(1):12-19.
[8] Yousefzadeh G,Gozashti M,Najafipour H,et al. Common autoimmune biomarkers,thyroid hormonal abnormalities,and β cells dysfunction in patients with latent autoimmune diabetes in adults with type Ⅱ diabetes mellitus [J]. Diabetes Metab Syndr,2016,10(1 Suppl 1):S52-S55.
[9] Rahier J,Guiot Y,Goebbels RM,et al. Pancreatic β-cell mass in European subjects with type 2 diabetes [J]. Diabetes Obes Metab,2008,10 Suppl 4:32-42.
[10] Suh KS,Oh SJ,Woo JT,et al. Apigenin attenuates 2-eox-D-ribose-induced oxidative cell damage in HIT-T15 pancreatic beta-cells [J]. Biol Pharm Bull,2012,35(1):121-126.
[11] Rukiyah T,Dross V,Hong XM,et al. Inhibition of TPA-induced cyclooxygenase-2 (COX-2) expression by apigenin through downregulation of Akt signal transduction in human keratinocytes [J]. Mol Carcinog,2005,44(2):83-91.
[12] Jung WW. Protective effect of apigenin against oxidative stress-induced damage in osteoblastic cells [J]. Int J Mol Med,2014,33(5):1327-1334.
[13] Montane J,Cadavez L,Novials A. Stress and the inflmmatory process:a major cause of pancreatic cell death in type 2 diabetes [J]. Diabetes Metab Syndr Obes,2014,7(2):25-34.
[14] Trajkovski M,Hausser J,Soutschek J,et al. MicroRNAs 103 and 107 regulate insulin sensitivity [J]. Nature,2011,474(7353):649-653.
[15] Ohno M,Shibata C,Kishikawa T,et al. The flavonoid apigenin improves glucose tolerance through inhibition of microRNA maturation in miRNA103 transgenic mice [J]. Sci Rep,2013,3:2553.
[16] Willeit P,Yin X,Kaudewitz D,et al. Circulating micro RNA-122 is associated with incident metabolic syndrome and type-2 diabetes [J]. Circulation,2015,132(Suppl 3):A17961.
[17] Shibata C,Ohno M,Otsuka M,et al. The flavonoid apigenin inhibits hepatitis C virus replication by decreasing mature microRNA122 levels [J]. Virology,2014,462/463:42-48.
[18] Goto M,Yoshioka T,Battelino T,et al. TNF-alpha decreases gluconeogenesis in hepatocytes isolated from 10-day-old rats [J]. Pediatr Res,2001,49(4):552-557.
[19] Kamagte A,Qu S,Perdomo G,et al. FoxO1 me diates insulin-dependent regulation of hepatic VLDL production in mice [J]. J Clin Invest,2008,118(6):2347-2364.
[20] Bumke-Vogt C,Osterhoff MA,Borchert A,et al. The flavones apigenin and luteolin induce FOXO1translocation but inhibit gluconeogenic and lipogenicgene expression in human cells [J]. PLoS One,2014,9(8):e104321.
[21] Li B,Chi RF,Qin FZ,et al. Distinct changes of myocyte autophagy during myocardial hypertrophy and heart failure:association with oxidative stress [J]. Exp Physiol,2016,101(8):1050-1063.
[22] Balaji SP,Chand CV,Justin A,et al. Telmisartan mediates anti-inflammatory and not cognitive function through PPAR-γ agonism via SARM and MyD88 signaling [J]. Pharmacol Biochem Behav,2015,137:60-68.
[23] Jin H,Gebska MA,Blokhin IO,et al. Endothelial PPAR-γ protects against vascular thrombosis by downregulating P-selectin expression [J]. Arterioscler Thromb Vasc Biol,2015,35(4):838-844.
[24] Buwa CC,Mahajan UB,Patil CR,et al. Apigenin attenuates β-receptor-stimulated myocardial injury via safeguarding cardiac functions and escalation of antioxidant fefence system [J]. Cardiovasc Toxicol,2016,16(3):286-297.
[25] Lee YM,Lee G,Oh TI,et al. Inhibition of glutamine utilization sensitizes lung cancer cells to apigenin-induced apoptosis resulting from metabolic and oxidative stress [J]. Int J Oncol,2016,48(1):399-408.
[26] Mahajan UB,Chandrayan G,Patil CR,et al. The protective effect of apigenin on myocardial injuryin diabetic rats mediating activation of the PPAR-gamma pathway [J]. Int J Mol Sci,2017,18(4):756.
[27] Gutierrez-Venegas G,Gonzalez-Rosas Z. Apigenin reduce lipoteichoic acid-induced inflammatory response in rat cardiomyoblast cells [J]. Arch Pharm Res,2017,40(2):240-249.
[28] Yang X,Yang J,Hu J,et al. Apigenin attenuates myocardial ischemia/reperfusion injury via the inactivation of p38 mitogenactivated protein kinase [J]. Mol Med Rep,2015,12(5):6873-6878.
[29] Pourghasem M,Shafi H,Babazadeh Z. Histological changes of kidney in diabetic nephropathy [J]. Caspian J Intern Med,2015,6(3):120-127.
[30] Malik S,Suchal K,Khan SI,et al. Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-kappaB-TNF-alpha and TGF-beta1 MAPK-fibronectin pathways [J]. Am J Physiol Renal Physiol,2017,313(2):F414-F422.
[31] 張华,刘利祥,刘智.糖尿病合并高血压患者血清IL-6、IL-10、TNF-α水平变化及意义[J].山东医药,2015, 55(19):79-80.
[32] Fu MS,Zhu BJ,Luo DW. Apigenin prevents TNF-α induced apoptosis of primary rat retinal ganglion cells [J]. Cell Mol Biol(Noisy-le-grand),2014,60(4):37-42.
(收稿日期:2020-02-17)