段娇阳 刘 慧 陈四清 蒋增杰 蔺 凡 常丽荣 卢龙飞
基于DEB理论的皱纹盘鲍个体生长模型参数的测定*
段娇阳1,2刘 慧2①陈四清2蒋增杰2蔺 凡2常丽荣3卢龙飞3
(1. 上海海洋大学水产科学国家级实验教学示范中心 水产动物遗传育种中心上海市协同创新中心 上海水产养殖工程技术研究中心 上海 201306;2. 中国水产科学研究院黄海水产研究所 农业农村部海洋渔业可持续发展重点实验室 青岛 266071;3. 威海长青海洋科技股份有限公司 荣成 264316)
皱纹盘鲍;DEB理论;模型参数
动态能量收支(Dynamic energy budget, DEB)理论是Kooijman(1986)基于原则提出的,描述生物摄食同化的能量一部分()用于维持身体结构生长,另一部分(1–)用于性腺成熟和繁殖储备(Kooijman, 2000)。依据DEB理论而建立的个体生长模型,又称动态能量收支模型、DEB模型,不仅能够量化能量在整个生物生活史阶段的分配情况(Sousa, 2010; Ren, 2001;Kooijman, 2010),而且能够模拟生物在一段时期内的生长状况。DEB理论的关键是基于物种之间代谢的相似性,且都遵循原则。DEB模型是参数化模型,原则上相同的基础模型结构可用于所有的生物物种,模型表现出的物种在生命史上的差异主要是由于DEB参数集合的差异(Sousa, 2006)。因此,参数对于DEB模型的构建十分重要,参数越准确,模型的拟合效果越好(Ren, 2008; 张继红等, 2016)。目前,DEB模型已成功应用于水产养殖,包括鱼类(Orestis, 2019)、贝类(Bourlès, 2009)、大型海藻(蔡碧莹等, 2019)和海参(Ren, 2016)等。
选取壳长为(5.91±0.26) cm的皱纹盘鲍用于饥饿实验。选取不同规格[分为3组:a组壳长为(2.37± 0.18) cm,b组为(4.65±0.11) cm,c组为(6.21±0.51) cm]分别用于温度对耗氧的影响实验和生物学测量。样品均取自山东省荣成市寻山集团。皱纹盘鲍去掉表层附着物之后置于实验室水槽中24 h充气暂养,暂养水温为(18±1)℃,盐度为30,暂养3 d,成活率稳定后开始正式实验。
实验于2018年9月~10月初、10月底~12月在威海长青海洋科技股份有限公司国家海产贝类研究中心实验室进行。
1.2.2 单位干重耗氧率的影响 将暂养的3种规格的皱纹盘鲍分为5组,每组5只,由室温18℃逐步升温或降温至5℃、10℃、15℃、20℃和25℃5个温度梯度,防止皱纹盘鲍因温度骤变不适应而死亡。溶解氧采用碘量法测定,耗氧实验进行1~2 h,在密闭的呼吸室中测定初始和终末耗氧率(DO),并测定鲍的软组织干重(DW)。
1.2.3 生物学测定 取100只不同规格的鲍测定其生物学参数,包括壳长()、总湿重()、软组织湿重(WW)及软组织干重(DW)。壳长用游标卡尺(精度0.01 mm)测量;重量采用电子天平(精度0.01 g)称量。体积()通常较难测量,一般根据软组织湿重和密度(1.1 g/cm3)的乘积得到(Sablani, 2004)。
实验结果运用Excel 2016进行数据统计与线性回归估计并作图;采用SPSS 22.0分析软件进行单因素方差分析(One-way ANOVA)得到标准差,最终结果以平均值±标准差(Mean±SD)表示。
实验共进行35 d,期间不投喂。随着饥饿时间延长,皱纹盘鲍软组织干重和耗氧率逐渐降低。鲍呼吸耗氧率由最初2.69 mg/(ind.∙h)逐渐下降,到第30天左右逐渐稳定在0.8 mg/(ind.∙h) (图1),软组织干重由(5.21±0.89) g降低至(3.84±0.22) g(图2),并基本保持恒定。软组织干重和呼吸耗氧率较初始值下降26.3%和70%,皱纹盘鲍软组织有机物含量从80%降到58% (表1)。
图1 皱纹盘鲍耗氧率随饥饿时间的变化情况
图2 皱纹盘鲍软组织干重(A)和存储物质(B)随饥饿时间变化情况
表1 饥饿实验相关参数计算值
Tab.1 Parameter calculation value related to the starvation experiment
表2 3组皱纹盘鲍生物学特征
Tab.2 Biological characteristics of three groups of H. discus hannai
图3 不同大小的皱纹盘鲍在不同温度下的单位干重耗氧率
图4 皱纹盘鲍单位干重耗氧率的ln值与温度的倒数线性关系
通过拟合回归,皱纹盘鲍壳长与体积符合三次函数(图5):=0.06393.1621(²=0.9852),根据公式(6)壳长与软组织湿重的立方根线性回归的斜率(图5)即为形状系数的值为0.43。
图5 皱纹盘鲍壳长与软组织湿重的关系
目前已有多种双壳贝类DEB模型参数的报道,其中,形状系数主要在0.17~0.39范围内,如太平洋牡蛎()的值为0.175,紫贻贝()为0.287,虾夷扇贝为0.32等(van der Veer, 2006)。本研究测得的皱纹盘鲍形状系数是0.43,比已报道的双壳贝类数值要大,这也许与皱纹盘鲍是单壳贝类,其软组织湿重与壳长的比值要高于双壳贝类。
DEB模型中其他的参数,如温度函数中温度的上下限可根据鲍生长温度确定,结构物质体积根据鲍性腺发育成熟的壳长计算,吸收效率可根据已有研究得出。
DEB模型已广泛应用于双壳贝类,但对于鲍等单壳贝类研究较少。本研究通过实验计算了6个参数值,为进一步构建皱纹盘鲍DEB模型提供了必需的参数值,也为进一步研究其他单壳贝类提供了理论依据。
Bourlès Y, Alunno-Bruscia M, Pouvreau S,. Modelling growth and reproduction of the Pacific oyster: Advances in the oyster-DEB model through application to a coastal pond. Journal of Sea Research, 2009, 62(2–3): 62–71
Brey T, Rumohr H, Ankar S. Energy content of macrobenthic invertebrates: General conversion factors from weight to energy. Journal of Experimental Marine Biology and Ecology, 1988, 117(3): 271–278
Cai BY, Zhu CB, Liu H,. Model simulated growth of kelpin Sanggou Bay. Progress in Fishery Sciences, 2019, 40(3): 31–41 [蔡碧莹, 朱长波, 刘慧, 等. 桑沟湾养殖海带生长的模型预测. 渔业科学进展, 2019, 40(3): 31–41]
Chang YQ, Wang ZC. An energy budget for individual pacific abalone (Ino). Chinese Journal of Applied Ecology, 1998, 9(5): 511–516 [常亚青, 王子臣. 皱纹盘鲍的个体能量收支. 应用生态学报, 1998, 9(5): 511–516]
Chang YQ. Mollusc culture. Beijing: China Agriculture Press, 2007 [常亚青. 贝类增养殖学. 北京: 中国农业出版社, 2007]
Fang JH, Zhang P, Fang JG,. The growth and carbon allocation of abalone (Ino) of different sizes at different temperatures based on the abalone-kelp integrated multitrophic aquaculture model. Aquaculture Research, 2018, 49(8): 2676–2683
He MX, Yuan T, Huang LM. Preliminary study on compensatory growth in pearl oysterDunker, following starvation. Journal of Tropical Oceanography, 2010, 29(6): 143–146 [何毛贤, 袁涛, 黄良民. 马氏珠母贝饥饿补偿生长的初步研究. 热带海洋学报, 2010, 29(6): 143–146]
Koizumi Y, Tsuji Y. Abalonespp. Application of Recirculating Aquaculture, 2017, 12(30): 175–211
Kooijman SALM. Population dynamics on basis of budgets. Dynamics of Physiologically Structured Populations, 1986, 266–297
Kooijman SALM. Dynamic energy and mass budgets in biological systems. 2nd ed. Cambridge: Cambridge University Press, 2000
Kooijman SALM. Dynamic energy budget theory for metabolic organization. Cambridge: Cambridge University Press, 2010
Leighton D, Boolootian RA. Diet and growth in the black abalone,. Ecology, 1963, 44(2): 227
Li TW, Su XR, Ding MJ. The determination of some nutritional in abaloneIno. Chinese Journal of Marine Drugs, 1995(1): 47–48 [李太武, 苏秀榕, 丁明进. 皱纹盘鲍中几种营养成分的测定. 中国海洋药物, 1995(1): 47–48]
Liu H, Cai BY.Advance in research and application on aquaculture carrying capacity. Progress in Fishery Sciences, 2018, 39(3): 158–166 [刘慧, 蔡碧莹. 水产养殖容量研究进展及应用. 渔业科学进展, 2018, 39(3): 158–166]
Mehner T, Wieser W. Energetics and metabolic correlates of starvation in juvenile perch (). Journal of Fish Biology, 2010, 45(2): 325–333
Orestis SZ, Nikos P, Konstadia L. A DEB model for European sea bass (): Parameterisation and application in aquaculture. Journal of Sea Research, 2019, 143: 262–271
Ren JS, Ross AH. Environmental influence on mussel growth: A dynamic energy budget model and its application to the greenshell mussel. Ecological Modelling, 2005, 189(3–4): 347–362
Ren JS, Ross AH. A dynamic energy budget model of the Pacific oyster. Ecological Modelling, 2001, 142(1–2): 105–120
Ren JS, Schiel DR. A dynamic energy budget model: Parameterisation and application to the Pacific oysterin New Zealand waters. Journal of Experimental Marine Biology and Ecology, 2008, 361(1): 42–48
Ren JS, Stenton-Dozey J, Zhang J. Parameterisation and application of dynamic energy budget model to the sea cucumber. Aquaculture Environment Interactions, 2016, 9(1): 1–8
Rico-Villa B, Bernard I, Robert R,. A dynamic energy budget (DEB) growth model for Pacific oyster larvae,. Aquaculture, 2010, 305(1–4): 84–94
Sablani SS, Kasapis S, Rahman MS,. Sorption isotherms and the state diagram for evaluating stability criteria of abalone. Food Research International, 2004, 37(10): 915–924
Saraiva S, van der Meer J, Kooijman SALM,. Validation of a dynamic energy budget (DEB) model for the blue mussel. Marine Ecology Progress, 2012, 463(3): 141–158
Sousa T, Domingos T, Poggiale JC,. Dynamic energy budget theory restores coherence in biology. PhilosophicalTransactions of the Royal Society B: Biological Sciences, 2010, 365(1557): 3413–3428
Sousa T, Mota R, Domingos T,. Thermodynamics of organisms in the context of dynamic energy budget theory. Physics Review E, Statistical, Nonlinear, and Soft Matter Physics, 2006, 74(5 Pt 1): 051901
van der Veer H, Cardoso JFMF, van der Meer J. The estimation of DEB parameters for various Northeast Atlantic bivalve species. Journal of Sea Research, 2006, 56(2): 107–124
van der Veer H, Kooijman SALM, van der Meer J. Intra- and interspecies comparison of energy flow in North Atlantic flatfish species by means of dynamic energy budgets. Journal of Sea Research, 2001, 45(34): 303–320
van Haren RJF, Kooijman SALM. Application of a dynamic energy budget model to(L.). Netherlands Journal of Sea Research, 1993, 31(2): 119–133
Wang YJ, Li LS, Li Q,.Research progress on eco-physiological responses of shellfish under ocean acidification and global warming. Acta Ecologica Sinica, 2014, 34(13): 3499–3508 [王有基, 李丽莎, 李琼, 等.珍海洋酸化和全球变暖对贝类生理生态的影响研究进展. 生态学报, 2014, 34(13): 3499–3508]
Yang Y, Jiang SH, Tang L,. Advancements in studies on energy budget of abalone. Science Paper Online, 2007, 2(2): 149–152 [杨义, 姜森颢, 唐玲, 等. 鲍能量学研究进展. 中国科技论文, 2007, 2(2): 149–152]
Zhang JH, Wu WG, Liu Y,. A dynamic energy budget (DEB) growth model for Japanese scallopcultured in China. Journal of Fishery Sciences of China, 2017, 24(3): 497–506 [张继红, 吴文广, 刘毅,等. 虾夷扇贝动态能量收支生长模型. 中国水产科学, 2017, 24(3): 497–506]
Zhang JH, Wu WG, Xu D,.The estimation of dynamic energy budget (DEB) model parameters for scallop.Journal of Fisheries of China, 2016, 40(5): 703–710 [张继红, 吴文广, 徐东, 等. 虾夷扇贝动态能量收支模型参数的测定. 水产学报, 2016, 40(5): 703–710]
Zhang XM, Wang CL, Li LG,. Oxygen consumption rate and effect of hypoxia stress on enzyme activity of. Journal of Hydroecology, 2010, 3(2): 72–79 [张晓梅, 王春琳, 李来国, 等. 耗氧率及溶氧胁迫对长蛸体内酶活力的影响. 水生态学杂志, 2010, 3(2): 72–79]
The Measurement of Parameters for the Dynamic Energy Budget (DEB) Model in(Disk Abalone)
DUAN Jiaoyang1,2, LIU Hui2①, CHEN Siqing2, JIANG Zengjie2, LIN Fan2, CHANG Lirong3, LU Longfei3
(1. National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai Engineering Research Center of Aquaculture, Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai 201306; 2. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071; 3. Weihai Changqing Ocean Science & Technology Co., Ltd, Rongcheng 264316)
; Dynamic energy budget (DEB) theory; Model parameters
LIU Hui, E-mail: liuhui@ysfri.ac.cn
S917
A
2095-9869(2020)05-0013-08
10.19663/j.issn2095-9869.20190722001
http://www.yykxjz.cn/
段娇阳, 刘慧, 陈四清, 蒋增杰, 蔺凡, 常丽荣, 卢龙飞. 基于DEB理论的皱纹盘鲍个体生长模型参数的测定. 渔业科学进展, 2020, 41(5): 110–117
Duan JY, Liu H, Chen SQ, Jiang ZJ, Lin F, Chang LR, Lu LF. The measurement of parameters for the dynamic energy budget (DEB) model in(disk abalone). Progress in Fishery Sciences, 2020, 41(5): 110–117
* 科技部国际创新合作专项“基于生态系统的水产养殖空间规划研究”(2016YFE0112600)和“欧盟地平线2020项目”(633476-H2020-SFS-2014-2015)共同资助 [This work was supported by the Key Programme for International Cooperation on Scientific and Technological Innovation, Ministry of Science and Technology (2016YFE0112600), and Optimizing Space Available for European Aquaculture (AquaSpace) (633476-H2020-SFS-2014-2015)]. 段娇阳,E-mail: d1395127939@163.com
刘 慧,研究员,E-mail: liuhui@ysfri.ac.cn
2019-07-22,
2019-08-02
(编辑 陈 辉)