叶 航,刘 琦,彭 勃,罗 聃
(1.中国石油大学(北京)非常规油气科学技术研究院,北京 102249;2.中国石油大学(北京)温室气体封存与石油开采利用北京市重点实验室,北京 102249;3.中国石油大学(北京)新能源与材料学院,北京 102249)
目前随着中国国民经济的快速增长,油气资源需求量持续增加且对外依存度逐年增高,国家能源安全形势更加严峻[1]。随着油气勘探的不断深入,中国剩余油气资源的品质总体较差,低渗透、特低渗透油气资源与重油资源等低品位资源所占比例逐渐增加,开发难度不断增大[2-3]。低渗透油藏一般指储层空气渗透率小于50 mD 的油藏,其孔隙结构复杂、喉道狭窄、裂缝发育、非均质性严重[4-5]。尽管理想单个水分子直径仅为0.40 nm,但水驱过程中水分子间的强氢键缔合作用会形成大分子网络结构,增大水分子的尺寸,导致特/超低渗透区域注水困难。而气体分子直径在0.5 nm 以下,更容易进入低渗透油藏,提高波及效率。因此,气驱是低渗透油藏提高采收率的重要手段之一,具有广阔的应用前景。相较于N2、空气、烃类等气体驱油剂,CO2因具有降低地层含水饱和度、改变润湿性、降压、扩散和降低界面张力等作用使原油黏度降低、原油膨胀等独特优势而备受关注[6-9]。然而,沥青质沉积是CO2驱过程中不可避免的一个问题。沥青质结构复杂,含有氮、硫或氧等杂原子,是原油中最具极性和表面活性的组分[10-12]。沥青质分子的表面活性是极性基团的存在引起的,这会导致沥青质分子之间发生自缔合作用,使沥青质聚集甚至沉积;此外,还会导致原油-岩石界面上产生表面电荷,使沥青质强烈地吸附在储层岩石及井筒的表面[13],从而造成储层孔喉堵塞、润湿性反转、渗透率降低等诸多问题[10,14-16],最终导致油藏受到永久性伤害,大大降低原油采收率。因此,解决或减轻CO2驱过程中的沥青质沉积问题,对提高低渗透油藏的原油采收率至关重要。
近年来,纳米材料由于具有表面效应、体积效应、量子效应等独特的物理化学性质而备受关注,在提高原油采收率方面表现出了巨大的应用潜力。纳米材料提高采收率的主要机理为润湿性改变、降低油水界面张力以及改变油水流度比等[17-18]。纳米颗粒因具有较大的比表面积和吸附容量,较好的悬浮和催化性能,且较化学剂而言不易造成储层损害,故在解决沥青质沉积问题上具有常规有机类沥青质抑制剂(如十二烷基苯磺酸钠、苯酚等)难以比拟的优势,被认为是解决沥青质沉积最有前途的方案之一[15]。笔者讨论了CO2驱过程中沥青质沉积的影响因素,总结了纳米颗粒抑制沥青质沉积的机理,论述了近年来中外使用纳米颗粒抑制沥青质沉积技术的研究进展及应用挑战,以期为现场工作提供思路。
目前,原油被认为是一种连续分布、动态稳定的胶体分散体系,胶质作为体系的分散剂,饱和烃、芳香烃等作为体系的分散介质。原油组分中沥青质具有极性,胶质既有极性又有非极性,而芳香烃、脂肪烃等其他组分都是非极性的。在原油分散体系中,小分子量的沥青质通过分子间作用力聚集成微小粒子作为胶核,部分胶质则吸附在沥青质胶核周围形成溶剂化层并构成胶束,对沥青质起到很好的稳定化作用[10,19]。
当向油藏中注入CO2气体进行驱油时,CO2分子与原油接触后,油藏内的温度、压力发生改变,打破了分散体系的动态稳定状态。如图1所示,由于CO2分子体积较小,在进入原油后会不断和包覆在沥青质表面的胶质争夺空间位置,从而减弱了形成胶质溶剂化层的作用力,使得稳定沥青质的胶质不断从沥青质粒子表面脱离[19]。失去了溶剂化层包覆的沥青质粒子,由于静电作用、偶极作用、氢键等相互作用可能会发生吸引碰撞,并发生聚集,进而导致沥青质沉积[14]。
图1 CO2驱过程中沥青质沉积示意Fig.1 Asphaltene deposition during CO2 flooding
沥青质沉积是低渗透油藏CO2驱过程中不可避免的一个问题,受多方面因素影响。黄磊等通过调节注入压力预测沥青质沉积的规律,指出注入压力一定时,沥青质沉积量随着CO2注入量的增加呈现先增加后减小的趋势[20]。当CO2-原油体系中开始出现气相时,沥青质沉积量达到最大;当CO2-原油体系中CO2物质的量分数一定时,在泡点压力附近沥青质沉积量也达到最大。CAO 等的研究表明,混相和非混相CO2驱过程对沥青质沉积的影响不同[21]。在非混相条件下,由于注入压力较低,沥青质沉积较少;而在混相条件下,由于沥青质分子间距离缩短,在较高的注入压力下,沥青质沉积较多。FAKHER 等在页岩纳米孔隙结构中注入CO2研究发现,压力增大、温度升高都会导致沥青质沉积量增多[10,22]。ZANGANEH 等指出注入压力、CO2含量、温度、沥青质分子结构等都会影响沥青质的沉积,并提出了一种描述和定量沉积趋势的新参数(沉积电位)用以预测特定的油藏出现沥青质沉积的问题,沉积电位越高,说明该油藏更容易沉积沥青质[23]。LI 等研究表明,CO2诱导沥青质沉积的过程受驱替时间的影响,沥青质沉积物的尺寸随驱替时间的延长而增大[24]。且当温度升高时,沥青质颗粒絮凝、聚集,最终沉积在孔隙内表面,颗粒较大,粒径分布较广。
综上所述,CO2驱过程中的沥青质沉积量与注气压力、CO2含量、温度等因素密切相关,现场实施时可以通过调整上述操作条件以平衡CO2气体降低原油黏度时诱导沥青质沉积的负面影响,使驱替过程有利于原油的有效运移,最终达到提高采收率的目的[25]。
沥青质表面的强极性是沥青质分子间发生自缔合甚至沉积的根本原因。在纳米颗粒的作用下,可利用沥青质的强极性来抑制沥青质的沉积,将沥青质稳定分散于原油体系中。通过对纳米颗粒进行改性处理,一方面可以改变颗粒表面的电荷分布情况,使颗粒进入储层后吸附沥青质,避免沥青质发生聚集和沉积;另一方面则可以对纳米颗粒进行表面接枝,使颗粒表面带有相应的极性基团,从而在其进入储层后与沥青质分子产生相互作用力,促进沥青质稳定分散。
根据胶体稳定性(DLVO)理论,沥青质的极性和纳米颗粒的表面电荷使得纳米颗粒和沥青质分子间存在相互作用[26]。纳米颗粒的表面电荷可以通过改变纳米流体的pH 值进行调节,而且由于纳米颗粒尺寸小,在多孔介质中流动性很强,具有较高的表面活性和比表面积,因此可以吸附原油中的沥青质,从而抑制沥青质的沉积[27-28]。MOHAMMA⁃DI 等提出将纳米颗粒做成纳米流体悬浮液,调节纳米流体pH 值后注入储层中,当纳米颗粒接触到沥青质时,会自发吸附沥青质,使沥青质无法发生自缔合和聚集,难以沉积[26,29]。根据纳米颗粒吸附抑制沥青质沉积示意(图2),在低渗透油藏进行CO2驱时,原油中的沥青质会很快发生聚集、沉积;而当注入纳米流体后,沥青质会被纳米颗粒吸附,稳定分散在原油体系中。
图2 纳米颗粒吸附抑制沥青质沉积示意Fig.2 Adsorption inhibition of asphaltene deposition by nanoparticles
纳米颗粒对沥青质的吸附过程受接触时间、沥青质初始饱和度、含水量、温度以及其它存在的分子等多种因素影响。NASSAR 等发现纳米颗粒对沥青质的吸附速率、亲和能力和吸附容量取决于沥青质的相对分子质量[30-32]。沥青质相对分子质量越小,吸附速率越大,吸附容量越大,反之亦然。沥青质在纳米颗粒上的吸附过程发生在一个相对较短的时间内,且金属纳米颗粒的磁性对沥青质的吸附起着重要的作用。此外,纯沥青质比沥青或软沥青质具有更强的吸附能力,这说明吸附程度受原油组分的化学性质、分子大小及其结构的影响。
赵法军等研究发现,相较于其他吸附剂,纳米颗粒吸附速度更快[13],这是因为纳米颗粒分散性更好,不受孔扩散和低外部传质限制。此外,FRANCO等提出纳米颗粒对沥青质的吸附过程具有自发性和放热性,温度对其最终的吸附能力具有决定性作用[33]。KALANTARI 等还将ZnO 纳米颗粒与米糠偶联,将米糠作为有机成分对纳米颗粒结构进行改性,制备出了一种有机ZnO 纳米颗粒,显著改善了纳米颗粒的活性表面[34]。改性后的纳米颗粒吸附沥青质效果良好,可以将原油沥青质沉积的可能性降低约28.3%。
纳米颗粒对沥青质的吸附模型仍存在一定争议,目前最为广泛接受的是Langmuir 吸附模型和Freundlich 吸附模型[35]。Langmuir 吸附模型代表均匀的单层吸附,虽然沥青质集合体是非均质性的,但对于低浓度吸附的沥青质集合体致密层来说,是合理有效的模型。有研究表明,平衡吸附数据与Langmuir 模型有着较好的吻合,证实了该模型的合理性[30,32-33,36]。而Freundlich 吸附模型则模拟了非均匀表面的多层吸附结构,NASSAR 等在使用Lang⁃muir 吸附模型进行数据拟合时发现实验数据与模型计算值有着明显差异,随后应用Freundlich 模型对沥青质吸附等温线的实验数据进行了调整,发现数据吻合良好,表明沥青质通过多层吸附被吸附到非均质表面[37-38]。PANAHI 等制备了一种Fe3O4-壳聚糖纳米复合材料,相比单一的Fe3O4纳米颗粒,该复合材料吸附沥青质的能力更强,而且其沥青质吸附等温线符合Freundlich 模型,进而又印证了沥青质在纳米颗粒上存在自缔合和多层吸附[39]。
沥青质分子间的自缔合作用会加速沥青质的絮凝和沉积。根据胶体溶液理论,纳米颗粒对沥青质的分散作用主要是靠其与沥青质分子间形成更为稳定的相互作用力或是形成空间位阻,从而破坏沥青质分子间的自缔合作用,进而达到抑制沥青质沉积和清除沥青质聚集体的效果。造成沥青质沉积的主要分子间作用力主要有偶极相互作用、电荷转移作用和氢键作用[40]。偶极相互作用是由于杂原子的存在而导致的沥青质分子中局部电荷不平衡,致使沥青质分子中产生永久偶极子,进而在偶极子间产生静电相互作用;电荷转移作用主要表现在芳香分子间的π-π 电荷转移相互作用;而氢键相互作用是与电负性原子O,S,N 等相连的氢和另外的电负性原子或富电子中心之间的相互作用[41-42]。
对纳米颗粒进行表面改性,引入含有极性基团的有机长链,通过接枝使其具有双重性质,既能保留纳米颗粒本身的特性,又能具有强极性。改性后的纳米颗粒具备与沥青质形成强相互作用或空间位阻的能力。如图3 所示,将表面改性过的纳米颗粒制备成纳米流体悬浮液注入到储层中,当纳米颗粒进入到胶质和沥青质之间时,会通过偶极相互作用、电荷转移作用和氢键作用等与沥青质结合在一起,在沥青质分子表面建立烷基空间稳定层,进而使沥青质分散,避免了沥青质的自缔合,从而稳定沥青质使其无法沉积[43]。
目前,由于表面接枝的复杂性和不确定性,通常选择未经过表面处理的纳米颗粒进行沥青质抑制研究,而通过分散作用来抑制沥青质沉积的研究还比较少,其具体可行性还有待进一步的证实。SETOODEH 等研究了聚噻吩(PT)包覆的磁性纳米颗粒对原油中沥青质沉积的抑制性能,发现由于PT结构中存在多个硫杂环,使得PT 具有较高极性,可以与沥青质分子中N,S和O等杂原子形成更强相互作用,这就使得PT包覆的纳米颗粒抑制沥青质沉积的效果比Fe3O4纳米颗粒更好[44]。张开亮等通过硅烷偶联剂KH550 和十八酸对纳米SiO2进行了复合疏水改性,成功制备出了一种新型纳米KH550-C18/SiO2复合粒子降黏剂,抑制沥青质沉积效果良好[45]。前人研究为纳米颗粒改性的研究提供了理论基础,证实了极性基团引入的可能性[46-50],说明纳米颗粒通过分散作用来抑制沥青质的沉积具有很大的潜力,有待进一步深入研究。
在应用CO2驱提高原油采收率时,纳米颗粒已经逐渐被研究用来缓解低渗透油藏CO2驱过程中产生的沥青质沉积问题,从而降低油藏孔隙堵塞的风险。当前的研究主要集中于室内物理模拟实验,同时也开展了数值模拟研究,但目前这一技术应用于现场试验的研究还处于起步阶段。
近些年来,中外开展了利用多种纳米材料,在不同条件下探究纳米颗粒对低渗透油藏中沥青质沉积的抑制作用,及纳米颗粒类型对抑制作用的影响等相关研究。目前,应用于提高采收率方向的纳米颗粒主要分为3类:金属氧化物纳米颗粒、有机纳米颗粒以及无机纳米颗粒[51]。由表1 可知,当前研究的纳米颗粒种类较为单一,主要采用金属氧化物纳米颗粒来研究对沥青质沉积的抑制作用。受金属元素低电离电位和低电负性特性的影响,金属氧化物表面通常具有较强的极性,其主要通过吸附作用来抑制沥青质沉积[52]。SHOJAATI 等研究表明,金属氧化物纳米颗粒具有酸碱性,能与沥青质分子发生极性相互作用,酸性纳米颗粒与沥青质的极性作用强于两性纳米颗粒,且具有Bronsted 酸位点的酸性纳米颗粒极性作用更强,抑制沥青质沉积的效果更好[53]。NASSAR 等研究指出,金属氧化物对沥青质的吸附具有特异性,氧化物对沥青质的吸附能力依次为CaO>Co3O4>Fe3O4>MgO>NiO>TiO2[54]。其中,Fe3O4纳米颗粒由于具有超顺磁性、易于稳定和易于表面功能化等特性而受到了广泛关注[55]。强顺磁性化合物具有更为突出的吸附作用,这是由于未成对电子自旋产生的强烈电子配对倾向所致。KAZEMZADEH 等研究表明,纳米颗粒的性能随着沥青质在溶液中类型的不同而有很大不同,沥青质在结构上的特性会对纳米颗粒的性能产生较大影响;且Fe3O4纳米颗粒的质量分数越高,沥青质沉积的强度越低[56]。SETOODEH 等比较了Fe3O4纳米颗粒和Fe3O4-聚噻吩纳米复合材料对沥青质的吸附,发现通过在纳米颗粒表面包覆聚噻吩,可以提高磁铁矿表面的吸附能力,沥青质在纳米颗粒和纳米复合材料上的吸附率分别为65.94%和78.98%[57]。REZVANI 等还尝试将其他纳米材料与Fe3O4纳米颗粒进行复配,制备Fe3O4基纳米复合材料,这种复合材料抑制沥青质沉积效果显著[58-59]。复合材料能够兼具多种纳米材料的特点,这也将是未来研究工作的一个重要方向。
图3 纳米颗粒分散抑制沥青质沉积示意Fig.3 Dispersion inhibition of asphaltene deposition by nanoparticles
应用较多的无机纳米颗粒为SiO2纳米颗粒。AGHAJANZADEH 等研究指出,SiO2纳米流体可以有效地抑制沥青质沉积,使得有效渗透率提高,降低了岩心损伤,但矿化度增加会降低纳米流体的稳定性[65]。KAZEMZADEH 等对SiO2,NiO 和Fe3O43 种纳米颗粒进行了比较,三者都可以吸附沥青质,但SiO2纳米颗粒效果更佳[15]。此外,与金属氧化物纳米颗粒不同,SiO2纳米颗粒不仅可以吸附沥青质,还可以通过接枝等手段实现表面功能化,从而通过分散作用抑制沥青质的沉积。
表1 不同类型纳米颗粒对沥青质沉积抑制效果Table1 Effect of asphaltene inhibition by different nanoparticles
研究表明,纳米颗粒抑制沥青质沉积过程复杂,受纳米颗粒类型、浓度、制备方法以及作用温度、时间等多种因素影响。FRANCO 等研究发现沥青质的吸附与纳米颗粒的类型密切相关,且可在相对较短的时间内(约2 min)就达到完全吸附沥青质的状态,有效抑制沥青质的沉积[33,62]。HASSAN⁃POUR 等研究指出,Co3O4纳米颗粒可使沥青质吸附在颗粒表面,并获得更稳定的沥青质纳米团聚体,其作用效果与浓度有关,在相同条件下抑制效果优于Fe3O4纳米颗粒[64]。此外,TARBOUSH 等研究发现在重油中原位制备(in situ prepared)的NiO 纳米颗粒对沥青质有更高的吸附亲和力,原位生长的NiO 纳米颗粒的吸附量约为2.8 g 沥青质/g 纳米颗粒,在相同的实验条件下,相同尺寸范围内的工业NiO纳米颗粒只能吸附上述值的15%[61]。
除了室内物理模拟实验,近些年纳米颗粒抑制沥青质沉积作用的数值模拟研究也在逐渐开展。MOHAMMED 等通过分子动力学模拟研究了沥青质在SiO2表面的吸附行为,模拟结果指出沥青质与SiO2表面间的范德华相互作用和静电相互作用是沥青质得以吸附的主要原因,接近SiO2表面的沥青质分子首先被吸附,然后其他沥青质分子被吸附到这些分子上,在颗粒表面形成二聚体、三聚体或纳米聚集体[66]。MOHAMMADI 等采用响应面方法(RSM)建模,对TiO2/SiO2纳米流体抑制沥青质絮凝过程进行了优化,结果表明使用SiO2纳米颗粒对TiO2纳米颗粒进行表面改性可以形成Ti-O-Si 键,可以提高纳米流体的稳定性,并且能够增加沥青质在颗粒表面的吸附,抑制沥青质沉积效果更加显著[67-68]。BAI 等的数值模拟研究还指出,杂原子的存在能够增强沥青质和二氧化硅之间的相互作用,其作用效果则取决于杂原子的类型和位置[69]。NASSAR 等成功建立了描述不同金属氧化物纳米颗粒吸附过程中沥青质聚集-裂解的群体平衡模型(PBM),结果表明,在所考察的不同条件下,所有纳米颗粒都由于吸附作用而不同程度地减小了沥青质团聚体在溶液中的流体动力学半径[70]。VARAMESH 等采用CPA 状态方程模拟了Fe3O4和NiO 纳米颗粒是否存在条件下油藏模型油中沥青质的沉积过程,结果表明沥青质自缔合能与2 种纳米颗粒表面位的摩尔密度呈指数关系,当纳米颗粒与沥青质的质量比在一定范围内时,能够有效抑制沥青质发生沉积[71]。AHMADI 等采用实验和模拟相结合的方法,研究了CO2存在下CaO 和SiO2纳米颗粒浓度对沥青质沉积的影响,结果表明随着纳米颗粒浓度的增加,沥青质沉积量均呈现先减小后增加的趋势,且CaO 对沥青质沉积的抑制效果更佳[72]。GOLSEFATAN 等基于最小二乘支持向量机(LSS⁃VM)方法建立了不同纳米复合材料对沥青质脱除率影响的模型,预测了不同纳米复合材料类型、温度、pH 值以及纳米复合材料浓度与初始沥青质含量之比(D/C0)对沥青质脱除率的影响,结果表明D/C0和pH值对沥青质的脱除更为敏感[73]。
当挥发性油藏中出现沥青质沉积时,常规类型沥青质抑制剂的抑制效果往往会大幅降低,因为高流速和高压降会阻碍沥青质抑制剂在地层中的滞留。为了减轻哥伦比亚Cupiagua Sur 油田近井筒中的沥青质沉淀问题,对CPSXL4 井进行了纳米吞吐的现场试验,向地层中注入220 bbl 含有Al2O3纳米颗粒的纳米流体。经过8 个月的作业跟踪,发现产出的石油中沥青质含量始终稳定,石油产量超过基线约300 bbl/d。通过测定生产水中纳米颗粒的浓度得出,随着作业时间的增加,沥青质沉积的抑制过程一直有效,且石油产量保持在基线以上[74]。纳米技术在Cupiagua Sur 油田的成功应用,证实了纳米颗粒对沥青质分子吸附作用的有效性。
综上所述,在特定油藏、特定纳米流体浓度条件下,纳米颗粒可以有效地抑制沥青质沉积,有利于进一步提高低渗透油藏的原油采收率。不同类型纳米颗粒对沥青质沉积的抑制效果不同,铁、钴、镍类氧化物类纳米颗粒可以有效吸附沥青质,抑制沥青质沉积的效果更佳。这是因为不同类型的纳米颗粒具有不同的活性表面积,表现出不同的吸附性能[75]。此外,通过对不同类型纳米颗粒进行复合、改性,也可以增强对沥青质沉积的抑制效果。
纳米颗粒抑制沥青质沉积主要有吸附作用和分散作用2种机理:纳米颗粒通过吸附沥青质,使其无法碰撞聚集,避免其沉积;对纳米颗粒进行表面改性,使其在沥青分子表面建立烷基空间稳定层,帮助沥青质稳定分散于原油中。
尽管当前对纳米颗粒抑制沥青质沉积的研究仍主要集中在室内研究阶段,但Cupiagua Sur 油田的成功试验展示了这一技术的应用潜力。但在将该技术广泛应用于现场之前,需要解决以下几个挑战:①纳米颗粒的稳定性不高。由于强相互作用,纳米颗粒容易聚集,造成尺寸变大,会失去预期效果。因此,想要制备均匀的纳米颗粒悬浮液,对其进行表面功能化或利用稳定效果强而经济的表面活性剂来增强其稳定性是非常重要的。②一些室内研究通过表面改性在纳米颗粒上引进有机基团,这进一步增加了驱油成本,而将纳米材料成本进一步低价化是一个难题。③目前缺乏纳米颗粒和有机沥青质抑制剂复合作用的试验研究,对两者在抑制沥青质沉积过程中是否存在协同作用尚不清楚。④纳米驱油技术对于生态环境和人体健康具有不确定性。一方面,像其他化学物质一样,纳米颗粒在注入油藏后会带来一些环境危害;另一方面,由于纳米颗粒的尺寸极小且具有独特的性质,纳米材料和应用所涉及的健康风险还没有得到清楚的认识。
如何开发出适应储层环境且具有较低成本和环境友好性的纳米流体配方(如纳米-表面活性剂、纳米-聚合物、纳米-微生物),是未来应用纳米流体抑制沥青质沉积提高采收率的关键。此外,纳米颗粒与常规沥青质抑制剂复配体系的开发、精确数学模型的建立等也将是下一步发展的重要方向。