王征帆 万曾培 高小鹏
摘要:CpG ODN是人工合成的具有非特异性免疫刺激的DNA序列,模拟细菌DNA在体内的应答过程,诱发细胞和体液免疫。CpG ODN作为新型免疫增强剂在兽医临床上的应用展现出了巨大的潜力,并在免疫学、药物学和药效学等领域备受关注。然而CpG ODN并不稳定且易被核酸酶酶解,其自身带负电荷,不易结合到细胞表面。因此,CpG ODN如何高效传递并能有效摄取成了新的挑战。纳米传递系统的研究使CpG ODN单独或协同疫苗免疫取得显著疗效,为改善CpG ODN在疫苗研究中的应用拓宽了思路。从CpG ODN纳米佐剂的作用机制、免疫活性、安全性及临床应用等方面进行综述,并对该领域未来的研究方向进行展望,为后续工作提供有益参考。
关键词:CpG ODN;纳米佐剂;作用机制;免疫活性;安全性
Abstract: CpG ODN is a synthetic DNA sequence with non-specific immunostimulation which simulates the response process of bacterial DNA in vivo, inducing cellular and humoral immunity. CpG ODN has shown great potential as a novel immunopotentiator in veterinary clinical applications, and has attracted much attention in the fields of immunology, pharmacology and pharmacodynamics. However, CpG ODN is unstable and easily digested by nucleases, which are negatively charged and do not easily bind to the cell surface. Therefore, how to efficiently transfer CpG ODN and effectively ingest it becomes a new challenge. The study of nano-transmission system has achieved significant efficacy for CpG ODN alone or in combination with vaccine immunization, and broadened the thinking for improving the application of CpG ODN in vaccine research. The mechanism of action, immunological activity, safety and clinical application of CpG ODN nanoadjuvant were summarized, and future research directions in this field was prospected, to provide useful reference for follow-up work.
Key words: CpG ODN; nano adjuvant; mechanism of action; immunological activity; safety
CpG ODN是人工合成的具有免疫刺激活性的非甲基化胞嘧啶-鸟嘌呤二核苷酸的DNA重复序列,能诱导强烈的细胞免疫和体液免疫,增强机体免疫应答。CpG ODN的早期研究源于对癌症的治疗,Tokunag等[1]通过对牛减毒分枝杆菌提取结核素(Mycobacterium,BCG),研究证实了细菌DNA具有抗肿瘤和提高NK活性的功能,能够诱导Ⅰ、Ⅱ型干扰素的产生。之后的研究发现非甲基化的CpG DNA(即CpG基序)也具有免疫刺激作用[2]。大量的研究表明,CpG ODN能够增强多种免疫细胞的成熟、分化和增殖,诱导其分泌多种细胞因子和趋化因子[3,4]。游离的CpG ODN不易粘附细胞、极易被核酸酶酶解,因而使CpG ODN的免疫增强效应大打折扣。纳米传递系统为CpG ODN的高效传递和摄取提供了通道,增强了CpG ODN对机体的细胞免疫,进而提高机体的免疫应答。目前CpG ODN纳米佐剂在病毒、细菌和肿瘤等疾病研究方面效果显著,并在临床上得到初步应用。
1 CpG ODN
皮肤和黏膜是机体的第一道防线,黏膜免疫系统为机体提供了最初的免疫保护。CpG ODN是一种新型的高效低毒、具有促进Th1免疫应答特点的疫苗佐剂,能够显著提高疫苗的免疫原性且有较好的安全性,在黏膜免疫中预防和治疗由病毒、细菌、肿瘤等诸多因素引起的疾病中取得了显著成效。非甲基化CpG DNA广泛存在于原核生物如细菌基因组中,人和脊椎动物的CpG DNA绝大多数被甲基化,只有非甲基化的CpG DNA具有免疫刺激效应。然而不同的CpG DNA作用于不同物种引起的免疫刺激效应有所差异,CpG DNA具有种属特异性,如体外试验发现对小鼠和兔具有最佳免疫刺激序列的CpG基序是GACGTT,对人和其他脊椎动物具有最佳免疫刺激效应的CpG基序为GTCGTT,同时CpG ODN的ISS、回文结构等都对其活性有显著影响[5]。CpG ODN作为一种“危险信号”,被机体内toll样受體9(TLR-9)识别并特异性结合,引发免疫调节来增强机体清除病原体的能力[6,7]。有关研究表明CpG ODN可能通过两条途径即K基因结合核因子(NF-κB)和激活蛋白-1等发挥免疫效应,如CpG ODN纳米递送系统明显提高了CpG ODN的粘附能力和内化作用,促使CpG ODN对NF-κB活性的调节诱导促炎细胞因子(包括IL-12、IL-6和TNF-α)的显著增加[8,9]。TLR-9与MyD88作用激活TRAF6、TRAF6与转化生长因子β相关酶1结合蛋白 TAB1与TAB2作用,激活下游NF-κB与AP-1[10]。CpG ODN是人工合成的具有免疫刺激效应的CpG基序,同时具有稳定、低成本、易合成、高效低毒等的优点[11],已经开始应用于人医和兽医临床。
2 CpG ODN纳米佐剂的作用机理
CpG ODN模拟细菌在体内的免疫过程是TLR-9的特异性配体。CpG ODN为非甲基化的DNA序列,在体内并不稳定,而纳米递送系统能显著提高CpG ODN在机体内的传递效率、靶向效应和免疫刺激能力[12]。目前CpG ODN纳米递送系统主要有:无机纳米材料的输送系统如BNNS-based运载系统、基于碳纳米材料的传递系统及金纳米颗粒为基础的传递系统;基于脂质/聚合物的输送系统和自组装基于DNA结构的递送系统[13]。纳米递送系统的研究为新型免疫增强剂的研发开辟了新途径,在病毒性疾病、细菌性疾病及肿瘤性疾病等方面体现出极高的应用价值。
纳米材料为阳性高分子,对细胞膜具有强烈的粘附作用。纳米材料结合CpG ODN免受酸、核酸酶及肝脏的首过效应,极易粘附并被细胞内化,促进了其在细胞内的富集,增强了与TLR-9的结合能力[14]。CpG ODN纳米佐剂在机体内发挥免疫效应具有严谨的作用机理。CpG ODN的半衰期很短,严重限制了其在体内的局部免疫作用,纳米佐剂延长了CpG ODN的半衰期,使其在局部效应更持久,如脂质体CpG-DNA诱导了OVA特异性的Th1偏向免疫,延长半衰期并增强细胞毒性记忆T细胞分化,明显减慢肿瘤的生长[15];CpG ODN通过粘附细胞膜,进入细胞并激活溶酶体上的TLR-9,相对于游离的CpG ODN,CpG ODN納米佐剂显著增强了细胞摄取的能力和效率[16]。然而细胞内的CpG ODN很难保证准确递送并激活TLR-9受体,因此利用核内受体阻断剂提高CpG ODN与TLR-9的结合能力,增强其免疫效应。CpG ODN也是TLR-9的激动剂,TLR-9的免疫调节系统是CpG ODN发挥免疫效应的有效途径,通过增加细胞内溶酶体上的TLR-9来增强机体免疫。Ebrahimian等[17]研究发现CpG ODN纳米传递系统产生了平衡的Th1和Th2免疫反应,且更偏向于Th1反应。CpG ODN纳米佐剂延迟了CpG ODN的半衰期,提高了细胞的内化作用和在溶酶体上的缓释能力,减少了CpG ODN的丢失并增强了免疫效应。
3 CpG ODN纳米佐剂的免疫活性及安全性
CpG ODN纳米佐剂具有较游离CpG ODN更强的免疫增效作用,其安全性问题备受关注。纳米传递系统增强CpG ODN的粘附性、细胞内化和免疫反应的同时,有可能产生局部的自身免疫原性或导致宿主的应激能力增强。目前有很多评估CpG ODN纳米佐剂的免疫活性和安全性研究,大多数研究表明,CpG ODN纳米佐剂在免疫治疗方面有较游离CpG ODN更好的治疗作用,尚未发现其副作用。如金纳米颗粒有效刺激免疫细胞释放促炎因子,显著延迟了肿瘤的生长并延长了荷瘤小鼠的存活[18];脂质体CpG DNA较游离CpG DNA溶液更容易传递到TLR-9表达的DC中,促进了DC产生细胞因子和共刺激分子,并诱导抗原特异性免疫反应,表现出强大的抗肿瘤作用[19];内溶酶CpG ODN纳米颗粒方法简单、方便且有效,增强细胞反应并且未显示出明显的毒性[20];壳聚糖CpG ODN纳米颗粒(NPs)能够激发细胞介导的细胞和黏膜免疫,而对HTLV-1没有炎症反应[21],并且在体外试验中浓度比游离CpG ODN低99.9%的情况下对细胞仍有免疫效应,且毒性更小[22]。CpG ODN纳米佐剂是一种预防和治疗多种疾病的希望佐剂,仍需长期而深入的临床研究。
4 CpG ODN纳米佐剂的临床应用
4.1 病毒性疾病
CpG ODN纳米佐剂已经开始应用于病毒疫苗新型佐剂的研究,并取得了突破性进展。据最新研究发现,CpG ODN纳米传递系统增强REV亚单位疫苗抗病毒作用[23],促进细胞免疫对HBsAg的应答并诱导更高水平的特异性抗体滴度[24]。CpG ODN纳米佐剂为机体黏膜免疫提供了强大助力,增强了机体抵抗力,最终提高了机体的免疫保护功能。如CpG ODN纳米佐剂经鼻黏膜免疫增强感染A型流感疫苗的免疫活性[25],产生较高的黏膜抗体和细胞免疫应答[26]。纳米传递系统为CpG ODN的免疫刺激提供了捷径,为CpG ODN纳米佐剂应对暴发重大动物病毒性疾病的紧急预防和治疗提供了广阔的前景。
4.2 细菌性疾病
机体面对周围数以万计的细菌威胁,免疫系统势单力薄,先天性免疫缺乏特异性,获得性免疫后劲不足。CpG ODN被誉为“基因治疗”药物,备受研究界关注。研究表明,CpG ODN纳米佐剂比游离CpG ODN更具优势,有较高的递送效率和免疫效应。如CpG ODN纳米佐剂诱导细胞因子和抗菌肽的表达,减少人类弯曲杆菌病发病率[27],增强体液免疫预防金黄色葡萄球菌引起的牛乳腺炎[28],促进双歧杆菌的生长并提高上皮细胞和免疫细胞共培养模型中IFN-?、IL-10等的浓度[29],从而增强机体抵抗力。可见CpG ODN纳米佐剂对细菌引起的疾病具有较明显的治疗效果。
4.3 肿瘤性疾病
CpG ODN作为新型免疫增效剂被认为是治疗肿瘤性疾病的希望疫苗佐剂。通过对CpG ODN的单独或联合免疫治疗肿瘤以诱发保护性免疫反应试验,发现CpG ODN有良好的抗肿瘤作用,但其自身易受环境因素的影响。CpG ODN纳米佐剂在治疗肿瘤性疾病较游离的CpG ODN效果更明显,其治疗肿瘤的特点主要有2个方面。①细胞摄取和胞浆定位。如CpG ODN纳米佐剂的药物靶向性提高了肿瘤(TME)的治疗效果[30],其粒径优势,几乎完全阻止了E.G7-OVA肿瘤的生长[31],增加肿瘤细胞疫苗的细胞摄取和胞浆定位,更大程度地激活机体的固有免疫和适应性免疫,增加抗肿瘤免疫效应[32]。②有效递送和延长半衰期。如CpG ODN纳米佐剂比游离CpG ODN在肿瘤和引流淋巴结中的保留时间更长[33],增强了CpG ODN对免疫细胞的传递和启动抗肿瘤免疫反应[34,35],能显著抑制肿瘤的生长,可作为治疗和预防HER2 +乳腺癌的候选疫苗[36]。
CpG ODN纳米佐剂的应用除了以上发现外,在其他领域也开始被研究,如寄生虫感染、过敏性疾病、损伤性心脏功能紊乱、老年病等的治疗[17,37,38]。随着人们对CpG ODN纳米佐剂的探索和认识的不断深入,CpG ODN纳米佐剂在临床上将体现更高的应用价值。
5 小结与展望
CpG ODN作为一种新型的高效低毒免疫增效剂,在病毒、细菌及肿瘤等方面的研究取得了突破性进展,但其在体内极易受影响而限制了其局部免疫反应;纳米粒传递系统的研究使CpG ODN在吸附、内吞、递送等过程得到优化,增强了CpG ODN的免疫原性,并且更安全、更经济[39]。目前CpG ODN纳米佐剂的临床试验正在积极地进行,但仍然存在一些问题,如CpG ODN存在明显的种属特异性,最佳免疫剂量和安全性不明确,最佳给药途径的选择以及在体内如何释放、限于局部免疫[40]等。CpG ODN纳米佐剂的研究目前仍处于初步阶段,在未来的高效低毒新型疫苗增强剂的研究与开发中定能大放异彩。
参考文献:
[1] TOKUNAG A T,YAMAMATO H,SHIMADA S,et al. Antitumor activity de-oxyribonucleic fraction from mycobacterium bovid BCG. isolation,physicochemical characteri zation, and antitumor activity[J]. Nail cancer hast,1984,72(4):955-962.
[2] HEMMI H,TAKEUCHI O,KAWAI T,et al. A Toll-like receptor recognizes bacterial DNA[J]. Nature,2000,408(6813):740-745.
[3] 李潔琼,纪玉强,杨 威,等. CpG ODN对Treg细胞及Th17细胞分化的影响[J]. 华中科技大学学报(医学版),2015,44(4):383-389.
[4] 秦宏超,芮程磊,陈文艳,等. TLR9激动剂CpG ODN对B细胞分泌细胞因子的影响[J]. 扬州大学学报(农业与生命科学版),2016(2):17-21.
[5] 唐 丽,张贺秋,许立博,等. CpG ODN作为黏膜免疫佐剂的研究进展[J]. 军事医学科学院院刊,2009,33(1):91-94.
[6] 闫江泓,李淑英,朱武洋. CpG ODN疫苗佐剂的研究进展[J]. 中华微生物学和免疫学杂志,2017,37(3):235-239.
[7] MICHAEL L,ARUNIMA B,BLUM J S,et al. Application of nanotechnologies for improved immune response against infectious diseases in the developing world[J]. Advanced drug delivery reviews, 2010,63(4/5):378-393.
[8] HE X Y,LIU B Y,AI S L,et al. Functional polymer/inorganic hybrid nanoparticles for macrophage targeting delivery of oligodeoxynucleotides in cancer immunotherapy[J]. Materials today chemistry, 2017(4):106-116.
[9] ZHANG H J,YAN T,XU S,et al. Graphene oxide-chitosan nanocomposites for intracellular delivery of immunostimulatory CpG oligodeoxynucleotides[J]. Materials science and engineering C,2017,73(4):144-151.
[10] 张庆勇,罗春华,朱武飞. CpG-ODN疫苗佐剂的研究进展[J]. 中国免疫学杂志,2014,30(10):1416-1418.
[11] 杜晓岩,刘春秀,满大鹏,等. CpG ODN的特点及其在疾病中的最新应用进展[J]. 中国免疫学杂志,2013,29(8):893-896.
[12] SEPIDEH P,SEYED M M,MEYSAM A. Multifunctional nanoparticle developments in cancer diagnosis and treatment[J]. Sensing and bio-sensing research,2017(13):81-87.
[13] ZHANG H J,GAO X D. Nanodelivery systems for enhancing the immunostimulatory effect of CpG oligodeoxynucleotides[J]. Materials science & engineering,C. materials for biogical applications,2017,70(2):935-946.
[14] YU C S,AN M,LI M,et al. Immunostimulatory properties of lipid modified CpG oligonucleotides[J]. Molecular pharmaceutics,2017,14(8):2815-2823.
[15] BAYYURT B,TINCER G,ALMACIOGLU K, et al. Encapsulation of two different TLR ligands into liposomes confer protective immunity and prevent tumor development[J]. Journal of controlled release,2017,247:134-144.
[16] 陳 磊,仲从浩,蔺智兵,等. 葡聚糖-精胺作为CpG ODN输送载体效果的初步探究[J]. 基因组学与应用生物学,2016(7):1738-1742.
[17] EBRAHIMIAN M,HASHEMI M,MALEKI M,et al. Induction of a balanced Th1/Th2 immune responses by co-delivery of PLGA/ovalbumin nanospheres and CpG ODNs/PEI-SWCNT nanoparticles as TLR9 agonist in BALB/c mice[J]. International journal of pharmaceutics,2016,515(1/2):708-720.
[18] TOMOYA Y,YUKI T,TAN M M,et al.DNA nanotechnology-based composite-type gold nanoparticle-immunostimulatory DNA hydrogel for tumor photothermal immunotherapy[J]. Biomaterials,2017,146(11): 136-145.
[19] YUTA Y,EIJJ Y,NAOKI S,et al. pH-sensitive polymer-modified liposome-based immunity-inducing system: Effects of inclusion of cationic lipid and CpG-DNA[J]. Biomaterials,2017,141(10):272-283.
[20] DUAN F,FENG X C,YANG X J,et al. A simple and powerful co-delivery system based on pH-responsive metal-organic frameworks for enhanced cancer immunotherapy[J]. Biomaterials,2017,122(4):23-33.
[21] MOJTABA S,KAYYAN S,MOHSEN T,et al. Robust mucosal and systemic responses against HTLV-1 by delivery of multi-epitope vaccine in PLGA nanoparticles[J]. European journal of pharmaceutics and biopharmaceutics,2018,133:321-330.
[22] JASON T,JAMILLE M,HEER B A,et al. Carbon nanotubes significantly enhance the biological activity of CpG ODN in chickens[J]. International journal of pharmaceutics,2019,561(4):135-147.
[23] YUAN F,CHU Y,QI L H,et al.Immunoprotection induced by CpG-ODN/Poly(I:C) combined with recombinant gp90 protein in chickens against reticuloendotheliosis virus infection[J]. Antiviral research, 2017,147(11):1-10.
[24] JESUS S,SOARES E,BORCHARD G,et al. Adjuvant activity of Poly-ε-caprolactone/Chitosan nanoparticles characterized by mast cell activation and IFN-γ and IL-17 Production[J]. Molecular pharmaceutics,2018,15(1):72-82.
[25] TAO W Q,HURST B,SHAKYA A K,et al. Consensus M2e peptide conjugated to gold nanoparticles confers protection against H1N1,H3N2 and H5N1 influenza A viruses[J]. Antiviral research,2017,141: 62-72.
[26] DHAKAL S,GHIMIRE S,RENU S,et al. Evaluation of CpG-ODN-adjuvanted polyanhydride-based intranasal influenza nanovaccine in pigs[J]. Veterinary microbiology,2019,237:108401.
[27] KHALED T A,TAMIRU N A,DOUGLAS C,et al. Gene expression profiling of chicken cecal tonsils and ileum following oral exposure to soluble and PLGA-encapsulated CpG ODN, and lysate of Campylobacter jejuni[J]. Veterinary microbiology,2017,212(12): 67-74.
[28] IVANA G R,CECILIA C,GUILLERMO A,et al. Liposomal and CpG-ODN formulation elicits strong humoral immune responses to recombinant Staphylococcus aureus antigens in heifer calves[J]. Veterinary immunology and immunopathology,2019,212(6):1-8.
[29] MUKHERJEE R,KAAM V,GARSSEN J,et al. Lactulose synergizes with CpG-ODN to modulate epithelial and immune cells cross talk[J]. Food & function,2019,1:33-37.
[30] LIU Y J,DOU X Q,WANG F,et al. IL-4Rα aptamer-liposome-CpG oligodeoxynucleotides suppress tumour growth by targeting the tumour microenvironment[J]. Journal of drug targeting,2017,25(3):275-283.
[31] 钱 源. 靶向抗原提呈细胞的多肽-脂质纳米疫苗/药物及其肿瘤免疫治疗研究[D]. 武汉:华中科技大学,2017.
[32] 斯潘思生命科技(武汉)有限公司. 一种杂交纳米肿瘤疫苗的制备方法及其应用[P]. 中国:CN109865134A,2019-06-11.
[33] MA Q,ZHOU D P,DELYRIA E S,et al. Synthetic poly(L-Glutamic Acid)-conjugated CpG exhibits antitumor efficacy with increased retention in tumor and draining lymph nodes after intratumoral injection in a mouse model of melanoma[J]. Journal of immunotherapy,2017,40(1):11-20.
[34] NIKOOFAL-SAHLABADI S,RIAHI M M,SADRI K,et al. Liposomal CpG-ODN: An in vitro and in vivo study on macrophage subtypes responses, biodistribution and subsequent therapeutic efficacy in mice models of cancers[J]. European journal of pharmaceutical sciences,2018,190:159-170.
[35] 孫梯业,颜 伟,周宁新. CpG-ODN免疫活性及其抗肿瘤作用的研究进展[J]. 实用癌症杂志,2009,24(6):668-671,677.
[36] NASTARAN B,AMIN R N,ATEFEH R,et al. Nanoliposomes carrying HER2/neu-derived peptide AE36 with CpG-ODN exhibit therapeutic and prophylactic activities in a mice TUBO model of breast cancer[J]. Immunology letters,2017,190(10):108-117.
[37] WAGNER I,GEH K J,HUBERT M,et al. Preliminary evaluation of cytosine-phosphate-guanine oligodeoxynucleotides bound to gelatine nanoparticles as immunotherapy for canine atopic dermatitis[J]. The veterinary record,2017,181(5):118.
[38] GIVENS B E,GEARY S M,SALEM A K. Nanoparticle-based CpG-oligonucleotide therapy for treating allergic asthma[J]. Immunotherapy,2018,10(7):595-604.
[39] GAO F L,MA Y B,LIU C B,et al. Encapsulation of Poly I:C and the natural phosphodiester CpG ODN enhanced the efficacy of a hyaluronic acid-modified cationic lipid-PLGA hybrid nanoparticle vaccine in TC-1-grafted tumors[J]. International journal of pharmaceutics,2018,553(1/2):327-337.
[40] NESLIHAN K,JULIA S,W. GREGORY A,et al. Klinman. effect of calcium carbonate encapsulation on the activity of orally administered CpG oligonucleotides[J]. Molecular therapy-nucleic acids,2017,8(12):243-249.