无网格法求解分段连续型延迟偏微分方程

2020-08-31 14:50钟霖马淑芳莱蒙
关键词:网格法连续型算例

钟霖 马淑芳 莱蒙

摘  要: 考虑了一类分段连续型延迟偏微分方程.首先分析了方程的解析解,给出了级数形式的解.其次采用无网格法求解了该类方程的数值解.利用θ-加权有限差分法对方程的时间变量进行离散,并利用Multiquadric(MQ)径向基函数和配点法建立了全离散格式.采用傅里叶分析法给出了数值方法稳定的条件.通过数值算例给出了方法的误差及验证了方法的有效性.

关键词: 分段连续型延迟偏微分方程; 无网格插值法; Multiquadric(MQ)径向基函数; 稳定性

中图分类号: O 241    文献标志码: A    文章编号: 1000-5137(2020)04-0381-06

Abstract: We consider a class of delay partial differential equation with piecewise continuous arguments in this paper.First,we analyze the analytical solution of the equation and give the solution in the series form.Second,we solve the numerical solution of the equation by meshless interpolation method.The time variable of the equation is discretized by the θ-weighted finite difference method,and the full dispersion scheme is established by the multiquadric(MQ) radial basis function and the collocation method.Fourier analysis gives stability conditions of the numerical method.We also compute the errors and check the validity of the numerical method by concrete examples.

Key words: delay partial differential equation with piecewise continuous arguments; meshless interpolation method; multiquadric(MQ) radial basis function; stability

0  引 言

1977年,許多学者开始了对分段连续型延迟微分方程的研究.MYSHKIS等[1-3]做了奠定性的基础工作.该类方程同时具有微分方程和差分方程的性质,与自动控制类问题是密不可分的,因此受到学者的高度重视.众所周知,延迟微分方程的解析解是不易获得的,因此,发展该类方程数值解的研究是十分必要的.人们在该类方程数值解的稳定性、收敛性的研究上已取得显著成果.例如,YANG等[4]利用Runge-Kutta法给出了滞后型分段连续型微分方程数值解的稳定性分析,确定了Runge-Kutta法的稳定域,给出了在数值稳定区域中包含解析稳定域的条件.XIE等[5]利用θ-法求解了多维分段连续型延迟微分方程数值解的稳定性.LIANG等[6]应用Runge-Kutta法讨论了复线性系统u'(t)=Lu(t)+Mu([t])的稳定性.

3  结  论

本文作者分析了一类分段连续型延迟偏微分方程,该类方程有微分方程和差分方程的性质,其精确解不易获得,因此发展该类方程的解法是十分必要的.首先,给出了方程解析解的级数形式.然后,采用无网格法求解了该类方程的数值解.采用傅里叶分析法给出了数值方法稳定的条件.最后,给出数值算例验证了方法的有效性.

参考文献:

[1] MYSHKIS A D.On centain problems in the theory of differential equations with deviating argument [J].Russian Mathematical Survey,1977,32(2):181-213.

[2] COOKE K L,WIENER J.Retarded differential equations with piecewise constant delays [J].Journal of Mathematical Analysis and Applications,1984,99(1):265-297.

[3] SHAH S M,WIENER J.Advanced differential equations with piecewise constant argument deviations [J].International Journal of Mathematics and Mathematical Sciences,1983,6(4):671-703.

[4] YANG Z W,LIU M Z,SONG M H.Stability of Runge-Kutta methods in the numerical solution of equation u'(t)=au(t)+a_0 u([t])+a_1 u([t-1]) [J].Applied Mathematics and Computation,2003,162(1):37-50.

[5] 谢钰程,王琦.多维分段连续型延迟微分方程的稳定性 [J].岭南师范学院学报,2016,37(6):20-27.

XIE J C,WANG Q.The stability of high-dimensional differential equations with piecewise continuous arguments [J].Journal of Lingnan Normal University,2016,37(6):20-27.

[6] LIANG H,LIU M Z,YANG Z W.Stability analysis of Runge-Kutta methods for systems u′(t)=Lu(t)+Mu([t]) [J].Applied Mathematics and Computation,2014,228:463-476.

[7] WANG Q,WEN J.Analytical and numerical stability of partial differential equations with piecewise constant arguments [J].Numerical Methods for Partial Differential Equations,2014,30(1):1-16.

[8] LIANG H,LIU M Z,LYU W.Stability of θ-schemes in the numerical solution of a partial differential equation with piecewise continuous arguments [J].Applied Mathematics Letters,2010,23(2):198-206.

[9] LIANG H,SHI D,LYU W.Convergence and asymptotic stability of Galerkin methods for a partial differential equation with piecewise constant argument [J].Applied Mathematics and Computation,2010,217(2):854-860.

[10] WIENER J.Generalized Solutions of Functional Differential Equations [M].Singapore:World Scientific,1993.

[11] 劉桂荣,顾元通.无网格法理论及程序设计[M].王建明,周学军,译.济南:山东大学出版社,2007.

LIU G R,GU Y T.An Introduction to Meshfree Methods and Their Programming [M].WANG J M,ZHOU X J,Transl.Jinan:Shandong University Press,2007.

[12] 杜珊,李风军.新变参MQ拟插值函数的性质及其逼近性能研究 [J].应用数学学报,2019,42(5):655-669.

DU S,LI F J.Study on the properties and approximation capability with a new variable shape parameter [J].Acta Mathematicae Applicatae Scienca,2019,42(5):655-669.

[13] 李荣华,刘播.微分方程数值解法 [M].4版.北京:高等教育出版社,2009.

LI R H,LIU B.Numerical Solutions of Differential Equations [M].4th ed.Beijing:Higher Education Press,2009.

(责任编辑:冯珍珍)

猜你喜欢
网格法连续型算例
自变量分段连续型Volterra积分微分方程的配置法
雷击条件下接地系统的分布参数
连续型美式分期付款看跌期权
角接触球轴承的优化设计算法
基于遗传算法的机器人路径规划研究
基于GIS的植物叶片信息测量研究
基于振荡能量的低频振荡分析与振荡源定位(二)振荡源定位方法与算例
互补问题算例分析
基于晶圆优先级的连续型Interbay搬运系统性能分析
基于CYMDIST的配电网运行优化技术及算例分析