王星昭 顾海波 马丽娜 陈奕如
摘 要: 研究了Hilbert空間中具有非局部条件的Sobolev型Hilfer分数阶发展方程的有限近似可控性.在控制系统对应的线性系统是近似可控的这一假设下,通过使用分数阶微积分理论、半群理论、变分法和Schaefer不动点定理,得到了控制系统有限近似可控的充分条件.
关键词: Hilfer分数阶导数; 发展方程; 非局部条件; 有限近似可控性
中图分类号: O 231.2 文献标志码: A 文章编号: 1000-5137(2020)04-0371-10
Abstract: We discuss the finite-approximate controllability of Hilfer fractional evolution equations of Sobolev type with nonlocal conditions in Hilbert spaces.With the assumption that the corresponding linear system is approximately controllable,we obtain sufficient conditions for finite-approximate controllability of the control system by using fractional calculus,semigroup theory,variational analysis and Schaefer fixed point theorem.
Key words: Hilfer fractional derivative; evolution equation; nonlocal conditions; finite-approximate controllability
0 引 言
近20年来,分数阶微分方程的定性理论、稳定性和可控性概念,因其在科学和工程等诸多领域的广泛应用,受到越来越多的数学家、物理学家和工程师们的关注.近几年间,有大批学者研究了多种不同类型的线性和非线性动力系统的可控性问题.例如:2013年,KERBOUA等[1]研究了Hilbert空间中一类带有Caputo分数阶导数的Sobolev型随机发展方程的近似可控性,方程具有非局部条件;2015年,MAHMUDOV等[2]研究了Hilbert空间中一类带有Hilfer分数阶导数的发展方程的近似可控性;2016年,GE等[3]用近似法,研究了Banach空间中一类带有Caputo分数阶导数的发展方程的近似可控性,方程具有非局部条件和脉冲条件;2017年,CHANG等[4]利用预解算子的性质,研究了Banach空间中两类Sobolev型发展方程的近似可控性,即一类带有Caputo分数阶导数,一类带有Riemann-Liouville分数阶导数;2018年,MAHMUDOV用近似法和变分法,分别研究了Hilbert空间中一类带有Caputo分数阶导数发展方程的偏近似可控性[5]和有限近似可控性[6],方程具有非局部条件;2019年,HE等[7]研究了Hilbert空间中一类带有Riemann-Liouville分数阶导数的随机波动方程的近似可控性;HUANG等[8]研究了Banach空间中一类带有Caputo分数阶导数的抛物方程的近似可控性.
然而,具有非局部条件的Sobolev型Hilfer分数阶发展方程的有限近似可控性至今还没有被研究.事实上,在线性系统中,若控制系统是近似可控性的,则其一定也是有限近似可控的[9-11],但在非线性系统中,却没有这一结论.由此可见,有限近似可控性是一个比近似可控性更强的性质.
参考文献:
[1] KERBOUA M,DEBBOUCHE A.Approximate controllability of Sobolev type nonlocal fractional stochastic dynamic systems in Hilbert spaces [J].Abstract and Applied Analysis,2013,2013:262191.
[2] MAHMUDOV N,MCKIBBEN M.On the approximate controllability of fractional evolution equations with generalized Riemann-Liouville fractional derivative [J].Journal of Function Spaces,2015,2015:263823.
[3] GE F D,ZHOU H C.Approximate controllability of semilinear evolution equations of fractional order with nonlocal and impulsive conditions via an approximating technique [J].Applied Mathematics and Computation,2016,275:107-120.
[4] CHANG Y K,PEREIRA A.Approximate controllability for fractional differential equations of Sobolev type via properties on resolvent operators [J].Fractional Calculus and Applied Analysis,2017,20(4):963-987.
[5] MAHMUDOV N.Partial-approximate controllability of nonlocal fractional evolution equations via approximating method [J].Applied Mathematics and Computation,2018,334:227-238.
[6] MAHMUDOV N.Finite-approximate controllability of fractional evolution equations:variational approach [J].Fractional Calculus and Applied Analysis,2018,21(4):919-936.
[7] HE J W,PENG L.Approximate controllability for a class of fractional stochastic wave equations [J].Computers and Mathematics with Applications,2019,78(5):1463-1476.
[8] HUANG Y,LIU Z H.Approximate controllability for fractional semilinear parabolic equations [J].Computers and Mathematics with Applications,2019,77(11):2971-2979.
[9] FABRE C,PUEL J P.Approximate controllability of the semilinear heat equation [J].Proceedings of the Royal Society of Edinburgh Section A:Mathematics,1995,125(1):31-61.
[10] LIONS J L,ZUAZUA E.The cost of controlling unstable systems:time irreversible systems [J].Revista Matemaeica UCM,1997,10(2):481-523.
[11] ZUAZUA E.Finite dimensional null controllability for the semilinear heat equation [J].Journal de Mathématiques Pureset Appliquées,1997,76(3):237-264.
[12] PODLUBNY I.Fractional Differential Equations [M].San Diego:Academic Press,1999.
[13] HILFER R.Applications of Fractional Calculus in Physics [M].Singapore:World Scientific,2000.
[14] GU H B,TRUJILLO J J.Existence of mild solution for evolution equation with Hilfer fractional derivative[J].Applied Mathematics and Computation,2015,257:344-354.
[15] ZHOU Y,JIAO F.Nonlocal Cauchy problem for fractional evolution equations [J].Nonlinear Analysis:Real World Applications,2010,11(5):4465-4475.
[16] MAHMUDOV N.Finite-approximate controllability of evolution equations [J].Applied and Computational Mathematics,2017,16(2):159-167.
[17] CURTAIN R F,ZWART H J.An Introduction to Infinite Dimensional Linear Systems Theory [M].New York:Springer-Verlag,1995.
(責任编辑:冯珍珍)