薛鑫 周心智 决登伟
摘 要:WRKY转录因子在植物的生长发育和逆境胁迫响应中起着重要作用。前期研究发现,部分WRKY基因(比如DlWRKY52)参与了龙眼的成花诱导和逆境胁迫响应过程。为进一步研究龙眼WRKY基因的功能,以‘四季蜜龙眼叶片cDNA为模板克隆得到DlWRKY52基因,并对其序列特征、组织表达模式、花果发育过程表达模式及亚细胞定位进行研究。结果表明:DlWRKY52基因的开放阅读框(open reading frame, ORF)全长为918 bp,编码306个氨基酸,具有典型的WRKY结构域和锌指结构,属于Ⅱc型WRKY蛋白。qRT-PCR结果表明,DlWRKY52基因在叶片、茎和果实器官中高表达;在花后80 d的果肉中显著上调表达;特异在‘四季蜜成花诱导中下调表达。拟南芥原生质体瞬时表达结果显示,荧光信号主要集中在细胞核。上述结果表明,作为典型的转录因子,DlWRKY52编码的蛋白定位于细胞核。DlWRKY52可能参与了龙眼成花诱导及果实早期发育调控。
关键词:龙眼;WRKY;转录因子;表达分析;蛋白亚细胞定位
中图分类号:S188 文献标识码:A
Abstract: WRKY transcription factors plays an important role in plant growth, development and stress response. Based on a previous study, we found several WRKY genes, such as DlWRKY52, were participated in the process of floral induction and stress response. To further reveal the function of longan WRKY genes, DlWRKY52 was cloned using the leave cDNA of ‘Sijimi longan as the template. Meanwhile, the sequence characteristics, tissue expression patterns, flower and fruit development process expression patterns and subcellular localization were also studied. Bioinformatics analysis indicated that the complete open reading frame (ORF) box of DlWRKY52 was 918 bp, encoding 305 amino acid residues. The amino acid sequence alignment analysis showed that DlWRKY52 contained a typical WRKY domain and a zinc finger structure, belonging to Group Ⅱc. The result of qRT-PCR showed that DlWRKY52 was highly expressed in leave, stem and fruit organs, significantly up-regualted in the pulp 80 days post-anthesis. The transient expression of Arabidopsis protoplasts demonstrated that DlWRKY52 protein was localized to the nucleus, indicating that DlWRKY52, as a typical transcription factor, is localized to the nucleus, and might participate in the regulating of longan floral induction and early fruit development.
Keywords: Dimocarpus longan; WRKY; transcription factor; expression analysis; protein subcellular localization
DOI: 10.3969/j.issn.1000-2561.2020.04.014
龍眼(Dimocarpus longan Lour.)原产于中国华南地区,是无患子科(Sapindaceae)一种重要的热带经济果树。世界上许多热带和亚热带国家均有龙眼的种植和生产,比如澳大利亚及越南、泰国等东南亚国家[1]。中国龙眼的栽培面积和产量一直稳居世界首位,并且在整个世界龙眼产业经济中占有极重要的地位。
龙眼在中国已有2000年以上的栽培历史,我国拥有丰富的龙眼种质资源,同时也积累了先进的栽培、管理技术[2]。然而,实际生产中仍然有很多问题限制着龙眼产业的发展。其中,成花难所导致的产量不稳定是最主要的问题[3]。龙眼成花诱导需要合适的外界环境条件,比如一段时间的低温(春化作用),合适的土壤盐度及干燥条件等。若成花诱导关键时期出现高温,即便花原基已经形成,龙眼花芽也会转变成为叶芽,即“成花逆转”,从而造成减产,出现龙眼生产的“大小年”现象,严重打击果农的生产积极性和龙眼产业的健康发展。在实际生产中,人们常利用一些化学试剂(比如KClO3)来实现龙眼花期调控。然而,这些化学试剂的效果因施用地区和品种的不同而差异很大[4-5]。因此,解析龙眼成花调控分子机制才是解决该问题的根本途径。前人对不断成花的‘四季蜜和正常开花的‘石硖龙眼进行了对比转录组测序,初步解析了‘四季蜜龙眼特异成花诱导机制,同时发现一些转录因子特异参与该过程,比如WRKY等[6]。
1.4 亚细胞定位分析
根据克隆所得的DlWRKY52基因序列设计引物(去除终止子)(表1),扩增带有酶切位点(E?co-RⅠ)的DlWRKY52的ORF全长,PCR反应程序如上。PCR产物经1%琼脂糖凝胶电泳检测、纯化后连接pMD18-T载体上,转化DH5α。挑取单菌落,经PCR检测后提质粒测序。然后分别对pBWA(V)HS-osgfp DlWRKY52质粒用EcoRⅠ进行酶切,回收后进行酶连。将酶连后的质粒转入大肠杆菌DH5α,阳性检测后挑选正确的菌株测序,然后提取得到pBWA(V)HS-DlW?RK?Y52-osgfp質粒。接着通过PEG介导法转入拟南芥的原生质体中[20]。28 ℃暗培养24~48 h用激光共聚焦显微镜观察。同时以pBWA(V)HS-osgfp空载作为对照。
2 结果与分析
2.1 DlWRKY52基因的克隆及生物信息学分析
以龙眼cDNA为模板,用W52-S/W52-A(表1)引物扩增出1000 bp左右的片段(图1)。测序结果显示。该片段与龙眼(‘红核子)基因组数据库中的目的序列(Dlo_001658.1)完全一致,大小为918 bp,编码305个氨基酸,其分子量为33.96 kDa,理论等电点为6.26。根据龙眼WRKY家族基因组的定位信息,命名为DlWRKY?52。氨基酸序列分析表明,DlWRKY52含有1个WRKY结构域及C2H2型锌指结构(C–X4–C–X23– H–X–H),属于WRKY家族中的 Group IIc(图2)。
利用BLASTp对DlWRKY52的氨基酸序列进行同源性检索,然后利用MEGA 6.0软件构建系统进化树(图3)。结果表明,DlWRKY52与双子叶植物的WRKY聚类到一起,其中与柑橘(Citrus sinensis)的CsWRKY23(XP_00649235?9.1)亲缘关系最近,而与单子叶植物的WRKY亲缘关系较远,比如水稻(Oryza sativa)的OsWR?KY23 (DAA-05088.1)。
2.2 DlWRKY52基因组织表达特性分析
qRT-PCR结果表明DlWRKY52基因在被检测的9种龙眼组织中都有表达,其中在叶片中表达量最高,在幼果、茎和果皮中的表达次之(图4)。
2.3 DlWRKY52基因在花、果发育过程中的表达模式
利用qRT-PCR技术,本研究分析了DlWR?K?Y52在‘四季蜜和‘石硖龙眼3个成花阶段的表达。结果表明,DlWRKY52在‘四季蜜龙眼成花诱导早期呈下调表达,T2时期仅为T1时期的1/5。而在‘石硖龙眼成花诱导过程中DlWR?KY52的表达水平未出现显著性差异表达(图5)。
同时,本研究也分析了DlWRKY52在‘四季蜜龙眼中与果实发育的关系。花后60~80 d的2个取样时间段果肉的重量呈显著上升趋势,而80~100 d果肉重量未出现显著性变化(图6A)。与果肉重量变化相似,DlWRKY52的表达量在花后70 d和80 d分别上调了1.77倍和4.35倍。花后90 d和100 d DlWRKY52的表达水平没有再出现显著变化(图6B)。该结果表明,DlWRKY52可能在早期阶段正调控果肉器官发育。
2.4 DlWRKY52亚细胞定位分析
为检测DlWRKY52蛋白在细胞中的定位,本研究构建了含有增强型绿色荧光蛋白(GFP)的融合蛋白表达载体(35S:DlWRKY52-GFP),通过PEG介导法转入拟南芥叶肉原生质体细胞里,并用激光共聚焦显微镜进行观察。如图7所示,在480 nm波长的激化下,35S:DlWRKY52- GFP只在细胞核里有荧光信号,细胞质和细胞膜中均无GFP信号,而35S:GFP对照组则在整个细胞中都能观察到GFP信号,没有明确的定位。该结果表明,DlWRKY52蛋白可能定位于细胞核上。
3 讨论
成花是植物生命进程中的一个重要事件,直接决定着作物的种子或果实产量[21]。研究成花诱导的遗传机制、挖掘成花相关基因,对于果树的花期调控和增产具有重要意义。
目前,植物的成花分子遗传机制研究多集中在模式植物上,而在果树中还未取得突破性进展。拟南芥中至少存在5条主要的成花通路,包括光信号途径、春化途径、自花途径、赤霉素途径及年龄途径[22]。通过FT(FLOWERING LOCUS T)、FLC(FLOWERING LOCUS C)和CO (CO?NS?TANS)等成花相关基因以及MADS-domain、NACs、MYBs等转录因子的介导,这些通路形成一个复杂的调控网络,最终实现对成花转变的激活或抑制。作为成花植物的一类重要转录因子,WRKY可以通过保守结构域(WRKYGQK)结合下游基因启动子中的W-box核心序列(T)TGACC(A/T)特异性结合来激活或者抑制植物的成花[6]。比如,AtWRKY71可通过直接与FT、LFY和AP1启动子区域的W-boxes结合来影响植物的成花[9]。AtWRKY12和AtWRKY13则通过调控FUL表达在短日照下调控拟南芥开花[12]。AtWRKY75也是通过直接激活FT来促进拟南芥开花[23]。有趣的是,这些模式植物的基因均属于WRKY转录因子的Group IIc。本研究的DlWRKY52含有典型的WRKY结构域及C2H2型锌指结构,与AtWRKY71等基因一样也属于Group IIc。表达分析表明,DlWRKY52只在‘四季蜜龙眼成花诱导早期呈下调表达,而在‘石硖龙眼成花诱导过程中未出现显著性表达差异,说明DlWRKY52特异参与了‘四季蜜龙眼成花诱导早期调控过程,并起到负调控的作用。与其他WRKY转录因子一样[24-27],DlWRKY52蛋白定位于细胞核上,说明DlWR?KY52蛋白对龙眼成花诱导调控发生在细胞上。但DlWRKY52究竟是通过与哪些成花基因互作及哪些成花通路来调控‘四季蜜的成花诱导?还需要进一步研究。
果實是果树最重要的器官,高产、稳产是果树育种家的一个最要选育目标。筛选、鉴定与果实发育相关的基因具有重要意义。本研究中,D?l??W?R?KY52在幼果中呈高表达水平,同时该基因在发育早期阶段的龙眼果肉中呈上调表达模式,与果实发育模式呈正相关。该结果表明,DlWR?KY52基因可能参与了龙眼果实的早期发育,并起正调控作用。与本研究的结果类似,野草莓(Fragaria vesca)的59个FvWRKY基因中,8个在果实发育和成熟过程中上调表达[28]。过表达OsWRKY47和GsWRKY20都会增加转基因植株的产量和干旱胁迫的耐受性[18, 29]。
参考文献
[1] Matsumoto T K. Genes uniquely expressed in vegetative and potassium chlorate induced floral buds of Dimocarpus longan[J]. Plant Science, 2006, 170(3): 500-510.
[2] Wang B, Tan H W, Fang W, et al. Developing single nucleotide polymorphism (SNP) markers from transcriptome sequences for identification of longan (Dimocarpus longan) germplasm[J]. Horticulture Research, 2015, 2: 14065.
[3] You X, Wang L, Liang W, et al. Floral reversion mechanism in longan (Dimocarpus longan Lour.) revealed by proteomic and anatomic analyses[J]. Journal of Proteomics, 2012, 75(4): 1099-1118.
[4] Jia T, Wei D, Meng S, et al. Identification of regulatory genes implicated in continuous flowering of longan (Dimocarpus longan L.)[J]. PLoS One, 2014, 9(12): e114568.
[5] Zhang H N, Shi S Y, Li W C, et al. Transcriptome analysis of ‘Sijihua longan (Dimocarpus longan L.) based on next-generation sequencing technology[J]. The Journal of Horticultural Science and Biotechnology, 2016, 91(2): 180-188.
[6] Jue D, Sang X, Liu L, et al. Identification of WRKY Gene Family from Dimocarpus longan and its expression analysis during flower induction and abiotic stress responses[J]. International Journal of Molecular Sciences, 2018, 19(8): 2169.
[7] Chen F, Hu Y, Vannozzi A, et al. The WRKY transcription factor family in model plants and crops[J]. Critical Reviews in Plant Sciences, 2017, 36(5-6): 311-335.
[8] Eulgem T, Rushton P J, Robatzek S, et al. The WRKY superfamily of plant transcription factors[J]. Trends in Plant Science, 2000, 5(5): 199-206.
[9] Yu Y, Liu Z, Wang L, et al. WRKY 71 accelerates flowering via the direct activation of FLOWERING LOCUS T and LEAFY in Arabidopsis thaliana[J]. The Plant Journal, 2016, 85(1): 96-106.
[10] Cai Y, Chen X, Xie K, et al. Dlf1, a WRKY transcription factor, is involved in the control of flowering time and plant height in rice[J]. PLoS One, 2014, 9(7): e102529.
[11] Yu Y, Hu R, Wang H, et al. MlWRKY12, a novel Miscanthus transcription factor, participates in pith secondary cell wall formation and promotes flowering[J]. Plant Science, 2013, 212: 1-9.
[12] Li W, Wang H, Yu D. Arabidopsis WRKY transcription factors WRKY12 and WRKY13 oppositely regulate flowering under short-day conditions[J]. Molecular Plant, 2016, 9(11): 1492-1503.
[13] Li S, Fu Q, Chen L, et al. Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance[J]. Planta, 2011, 233(6):1237-1252.
[14] Han C, Lai Z, Shi J, et al. Roles of Arabidopsis WRKY18,WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress[J]. BMC Plant Biology, 2010, 10(1): 281.
[15] Kilian J, Whitehead D J, Wanke D, et al. The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses[J]. The Plant Journal, 2007, 50(2): 347-363.
[16] Seki M, Narusaka M, Ishida J, et al. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full‐length cDNA microarray[J]. The Plant Journal, 2002, 31(3): 279-292.
[17] Qiu Y, Jing S, Fu J, et al. Cloning and analysis of expression profile of 13 WRKY genes in rice[J]. Chinese Science Bulletin, 2004, 49(20): 2159-2168.
[18] Raineri J, Wang S, Peleg Z, et al. The rice transcription factor OsWRKY47 is a positive regulator of the response to water deficit stress[J]. Plant Molecular Biology, 2015, 88(4-5): 401-413.
[19] Jue D, Sang X, Liu L, et al. Comprehensive analysis of the longan transcriptome reveals distinct regulatory programs during the floral transition[J]. BMC Genomics, 2019, 20(1): 126.
[20] Yoo S D, Cho Y H, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis[J]. Nature Protocols, 2007, 2(7): 1565.
[21] Shabala S, Bose J, Hedrich R. Salt bladders: do they matter?[J]. Trends in Plant Science, 2014, 19(11): 687-691.
[22] Turnbull C. Long-distance regulation of flowering time[J]. Journal of Experimental Botany, 2011, 62(13): 4399-4413.
[23] Zhang L, Chen L, Yu D. Transcription factor WRKY75 interacts with DELLA proteins to affect flowering[J]. Plant Physiology, 2018, 176(1): 790-803.
[24] 張远嬿. 苹果MdWRKY33基因的克隆与功能分析[D]. 沈阳: 沈阳农业大学, 2018.
[25] 张 旭, 凌 辉, 刘 峰, 等. 一个甘蔗Ⅱd类WRKY转录因子基因的克隆和表达分析[J]. 中国农业科学, 2018, 51(23): 4409-4423.
[26] 陈彩慧, 伍艳芳, 肖 蓉, 等. 樟树WRKY转录因子的克隆与表达分析[J]. 分子植物育种, 2018, 16(15): 4872-4879.
[27] Zhu D, Hou L, Xiao P, et al. VvWRKY30, a grape WRKY transcription factor, plays a positive regulatory role under salinity stress[J]. Plant Science, 2019, 280: 132-142.
[28] Zhou H, Li Y, Zhang Q, et al. Genome-wide analysis of the expression of WRKY family genes in different developmental stages of wild strawberry (Fragaria vesca) fruit[J]. PloS One, 2016, 11(5): e0154312.
[29] Ning W, Zhai H, Yu J, et al. Overexpression of Glycine soja WRKY20 enhances drought tolerance and improves plant yields under drought stress in transgenic soybean[J]. Molecular Breeding, 2017, 37(2): 19.