粉垄耕作对平地和坡耕地蔗田土壤有机碳矿化和结构的影响*

2020-05-21 09:11陈仕林胡钧铭黄忠华李婷婷郑佳舜黄俞铭罗维钢何铁光韦翔华
中国农业气象 2020年5期
关键词:坡耕地平地耕层

陈仕林,胡钧铭,黄忠华,李婷婷,郑佳舜,黄俞铭,罗维钢,何铁光,韦翔华

粉垄耕作对平地和坡耕地蔗田土壤有机碳矿化和结构的影响*

陈仕林1,2,胡钧铭1**,黄忠华3,李婷婷1,郑佳舜1,2,黄俞铭1,2,罗维钢3,何铁光1,韦翔华2**

(1.广西农业科学院农业资源与环境研究所,南宁 530007;2.广西大学农学院,南宁 530004;3.南宁市灌溉试验站,南宁 530001)

2018-2019年在广西南宁丘陵山区甘蔗田采用雨养模式,设置粉垄耕作与常规耕作两种耕作方式,开展平地和坡耕地甘蔗田间试验。试验在甘蔗全生育期不进行人工灌溉,收获期采集0-15cm耕层及15-30cm耕层土壤样品,用土壤紧实度仪多点位测定0-45cm深度土壤紧实度,利用湿筛法测定土壤团聚体,应用室内恒温培养-碱液吸收法测定土壤有机碳矿化量,以探索粉垄耕作对坡耕地雨养蔗田土壤有机碳矿化速率、累积矿化量及土壤团聚体与紧实度结构效应的影响。结果表明:(1)平地蔗田土壤有机碳累积矿化量始终高于坡耕地,粉垄耕作处理下,平地0-15cm和15-30cm耕层土壤有机碳矿化量较坡耕地分别提高0.32倍和1.05倍;坡耕地蔗田土壤0-15cm和15-30cm耕层有机碳7日累积矿化量粉垄耕作比常规耕作升高81.7%和降低7.5%,平地上则降低8.4%和升高2.6%;(2)与常规耕作方式相比,粉垄耕作提高了蔗田土壤大团聚体含量,平地和坡耕地分别增加5.53%和2.30%,平地土壤大团聚体含量为坡耕地的1.00~1.03倍,粉垄耕作降低了蔗田土壤中小、微团聚体含量。同时,粉垄耕作提高了土壤水稳性团聚体平均质量直径(MWD)和几何平均直径(GMD),与常规耕作相比,平地和坡耕地MWD分别提高15.6%和58.7%,GMD分别提高31.4%和48.1%。同种耕作模式下平地土壤水稳性团聚体的MWD值和GMD值均高于坡耕地,平地常规耕作和粉垄耕作土壤MWD值较坡耕地分别提高1.19和0.60倍,平地常规耕作和粉垄耕作土壤GWD值较坡耕地分别提高0.99 和0.77倍;(3)粉垄耕作方式对坡耕地蔗田土壤紧实度的影响比平地大,粉垄耕作降低了蔗田土壤紧实度,且15-30cm耕层影响较明显。因此,粉垄雨养甘蔗提高了平地和坡耕地土壤耕层碳存储,可降低土壤紧实度,增加土壤大团聚体形成,优化土壤耕层结构,该模式可作为南方蔗田土壤干旱逆境调控技术措施。

粉垄;坡耕地;土壤矿化;土壤团聚体;蔗田

农业是全球气候变化的主要承受者和受害者[1-2],亚热带地区季节性干旱是制约农业生产的重要气象障碍因素[3-4]。广西地处喀斯特丘陵山区,65%以上旱地属于坡耕地类型[5],旱坡地甘蔗生产中土壤水分多寡是影响甘蔗产量的重要因素,发展坡地雨养适水甘蔗生产对稳定甘蔗生产意义巨大[6]。土壤是陆地生态系统最大的碳库[7],土壤有机碳矿化是土壤碳库动态的核心[8-9]。土壤有机碳矿化和土壤结构优劣影响土壤有机质变化,有机碳矿化速率受土壤水分影响较为敏感,在长期水分亏缺状态下,土壤有机碳微生物呼吸作用减弱[10-11]。不合理的耕作导致土壤耕层变浅,犁底层变厚、上移,通透性变差,蓄水保肥能力下降[12-14]。理想耕作对土壤纳水作用有积极的影响,利于土壤蓄水保墒和耕层营养调控[15],土壤深松耕,可增加土壤含水量,降低土壤容重及紧实度[16]。因此,采用现代农机、农艺耕作耦合技术,发展低碳绿色农业已成为现代高效农业典型特征之一[17-18]。

新型粉垄深旋耕技术在南方红壤地区农业生产上已得到较为广泛的应用[19-20]。粉垄耕作影响稻田土壤结构紧实度和容重[21],对稻田温室气体排放有一定的减排作用[22]。甘秀芹等研究表明,在旱作生产中,粉垄耕作有利于土壤水分存储,促进作物增产[23],但粉垄耕作对土壤耕层碳库环境影响方面研究仍显不足。本研究在粉垄深旋耕技术发源地南宁,选择典型红壤区平地和坡耕地甘蔗园开展试验,全生育期不进行人工灌溉,就粉垄耕作对蔗田土壤有机碳矿化速率、累积矿化量及土壤团聚体与紧实度结构效应进行研究,以期为粉垄雨养甘蔗生产中土壤碳库管理与土壤耕层调控提供科学依据。

1 材料与方法

1.1 试验区概况

试验位于亚热带红壤黏土区南宁市雨养甘蔗种植区,选取典型平地和坡耕地(坡度8°-10°)进行试验,平地位于南宁市灌溉试验站,坡耕地位于南宁市隆安县那桐镇。试验区年均降水量约1300mm,试验地概况及土壤背景值如表1所示。

表1 试验地概况及土壤背景值

1.2 处理设置

2018-2019年甘蔗生长季在平地和坡耕地两种地形上开展试验,设置粉垄耕作和常规耕作两种耕作方式,试验共4个处理,每处理3个重复,每处理小区面积148.5m2。2018年3月15日采用广西产的粉垄深旋耕机进行农田耕作,耕深40cm,对照采用常规拖拉机旋耕20cm犁田整地(表2)。供试甘蔗品种为桂糖42号。甘蔗生长季施用三元复合肥(氮-磷-钾比例为16:16:16),按2250kg·hm−2进行施肥,甘蔗种植前期(耕作时同步施肥)底肥占70%,后期(苗期、伸长期)追施占30%。于2018年3月30日下种,行距80cm,2019年1-2月采收。田间管理按广西双高甘蔗生产进行。

表2 田间试验处理设置

1.3 测试项目

1.3.1 土壤有机碳矿化

在甘蔗收获期2019年1月采集土壤样品,用S形多点法取0-15cm和15-30cm耕层土壤,新鲜土样过10目土筛,用以测定土壤有机碳矿化。土壤有机碳矿化采用室内恒温培养-碱液吸收法,每个样品称取50g新鲜土样放入500mL的大白瓶中,取容量为50mL的小白瓶放入10mL浓度为0.1mol·L−1的NaOH溶液,将小白瓶放入大白瓶内,大白瓶加盖密封。同时,对各样品的重量含水率进行测定。以不含土样的空白瓶为对照。样品均培养7d,3个重复。在培养的第1、2、3、5、7天取出NaOH溶液,加入2mL浓度为1mol·L−1的BaCl2固定碱液中的CO2后,以酚酞为指示剂,即刻用0.1mol·L−1HCl滴定NaOH溶液,用以计算土壤CO2-C释放量、CO2矿化速率和培养期间CO2累积释放量,计算方式为[24]

(1)培养期间释放量MC

式中,MC为培养期间土壤有机碳的矿化释放量(mgCO2·kg−1干土);V0为空白标定时所消耗的盐酸体积(mL),V为标定样品时消耗的HCl体积(mL);CHCl为标准盐酸浓度(mol·L−1),为0.1mol·L−1;m为试验土样质量(g),50g;a为土壤重量含水率(%)。

(2)培养期间CO2的矿化速率

式中,t为最近两次测定间隔的时间(d)。

(3)培养期间CO2的累积释放量

式中,n为CO2释放量的测定次数。

1.3.2 土壤水稳性团聚体

在甘蔗收获期,每个试验小区随机选取3个采样点,3次重复,每次采集土样1kg,将采集到的土样置于便捷式保鲜盒中带回实验室,将大土块用手轻掰成直径约1cm的小土块,清除石块和动植物残体,风干备用。

土壤水稳性团聚体采用Elliott团聚体湿筛法测定[25]:采用土壤团粒分析仪(DM200-V,上海),称取风干土样100g,将土样置于3mm孔径筛上,自上而下放孔径为3.0、2.00、1.00、0.5、0.25、0.125和0.0625mm孔筛,再将整个套筛缓慢放入水中,使水面淹过顶层筛,土样在水中浸泡3min,上下振荡孔筛(上下振幅38mm,每分钟30次),分离出>3mm(I)、2~3mm(II)、1~2mm(III)、0.5~1.0mm(IV)、0.25~0.50mm(V)、0.125~0.250(VI)和<0.125mm(VII)土壤团聚体,共7个粒径组,I级为土壤大团聚体,II-V级为土壤中小团聚体,VI级和VII级为土壤微团聚体。将各粒径团聚体转移至蒸发皿中,在105℃下烘8h,干燥后称重,计算各粒级土壤水稳性团聚体质量百分比、平均质量直径(MWD)和几何平均直径(GMD)。

(1)各级土壤团聚体质量百分比[26]

式中,wi为第i粒级团聚体质量百分比(%),Mi为第i粒级团聚体干重(g),MT为团聚体总重量(g),为100g。

(2)土壤水稳性团聚体平均质量直径[26]

式中,MWD为水稳性团聚体平均质量直径(mm),Ri为相邻两级团聚体的平均粒径(mm),wi为第i粒级团聚体质量百分比(%)。

(3)土壤水稳性团聚体几何平均直径[26]

式中,Mi为第i粒级团聚体干重(g),Ri为相邻两级团聚体的平均粒径(mm)。

1.3.3 土壤紧实度

在甘蔗收获期测定土壤紧实度,每个处理选取3个具有代表性区域,每个区域选取4个点用SC-900便携式土壤紧实度仪测定0-45cm土壤紧实度。

1.4 数据分析和处理

采用IBM SPSS Statistics 19软件分析数据,用LSD法进行多重比较及差异显著性检验,采用Microsoft Excel 2010制图。

2 结果与分析

2.1 粉垄耕作对蔗田土壤有机碳矿化速率的影响

由图1a可见,平地上土壤样品培养初期,有机碳矿化速率不稳定,培养3d后缓慢降低并逐渐趋于稳定。稳定期数据显示,粉垄(SR)与常规(CT)耕作方式在0-15cm层土壤有机碳矿化速率差异显著(P<0.05),培养结束时常规耕作的土壤有机碳矿化速率为28.2mg·kg−1·d−1,而粉垄耕作的有机碳矿化速率低于常规耕作,为常规的89.07%;在15-30cm耕层,两种耕作方式间土壤有机碳矿化速率无显著差异。说明在平坦耕地上,粉垄耕作可明显降低0-15cm耕作层土壤有机碳矿化速率,对15-30cm耕层影响不大。

图1 两种耕作方式下平地和坡耕地土壤培养7d过程中有机碳矿化速率的动态变化

注:CT1和CT2分别表示常规耕作平地和坡耕地处理,SR1和SR2分别表示粉垄耕作平地和坡耕地处理,−1和−2分别表示0-15cm和15-30cm耕层。小写字母表示处理间差异显著性。短线表示标准误。下同。

Note:CT1 and CT2 represent conventional tillage flat land and slope farmland treatment respectively. SR1 and SR2 represent smash ridging tillage flat land and slope farmland treatment respectively. −1 and −2 represent 0-15cm and 15-30cm topsoil respectively. Lowercase indicates the difference significance among treatments at 0.05 level. The bar is standard error. The same as below.

由图1b可见,在0-15cm和15-30cm耕层,粉垄(SR)和常规(CT)两种耕作方式下坡耕地上土壤有机碳矿化速率均低于平地,随培养时间增加其变化趋势与平地一致,后期逐渐趋于稳定或略升高。从数据大小看,在0-15cm耕层,坡耕地上粉垄耕作的有机碳矿化速率显著高于常规耕作(P<0.05),平均为20.23mg·kg−1·d−1,是常规耕作的1.93倍;在15-30cm耕层,两种耕作方式间土壤有机碳矿化速率无显著差异。可见,粉垄耕作可显著提高坡耕地0-15cm耕层土壤有机碳矿化速率。

2.2 粉垄耕作对蔗田土壤有机碳累积矿化量的影响

由图2a可见,平地上土壤样品培养初期,有机碳累积矿化量增长幅度大,3d后增长缓慢。稳定期数据显示,粉垄(SR)与常规(CT)两种耕作方式在0-15cm层土壤有机碳累积矿化量差异显著(P<0.05),培养结束时常规耕作的土壤有机碳累积矿化量为149.60mg·kg−1,而粉垄耕作的有机碳累积矿化量低于常规耕作,仅为常规的92.22%;15-30cm耕层,培养结束时粉垄耕作的土壤有机碳累积矿化量为172.98mg·kg−1,较常规耕作提高了2.7%。说明在平坦耕地上,粉垄耕作可明显降低0-15cm耕作层土壤有机碳累积矿化量,提高15-30cm耕层土壤有机碳累积矿化量。

由图2b可见,在0-15cm和15-30cm耕层,坡耕地上土壤有机碳累积矿化量均低于平地,随着培养时间的延长,其变化趋势与平地一致,后期增长趋缓。从数据大小看,培养7d后,在0-15cm耕层,坡耕地上粉垄耕作的有机碳累积矿化量显著高于常规耕作(P<0.05),平均为104.35mg·kg−1,是常规耕作的1.82倍;在15-30cm耕层,粉垄耕作土壤有机碳累积矿化量低于常规耕作,较常规降低了7.5%。表明粉垄耕作可显著提高坡耕地0-15cm耕作层土壤有机碳累积矿化量,降低15-30cm耕层土壤有机碳累积矿化量。

2.3 粉垄耕作对蔗田土壤水稳性团聚体的影响

由表3可知,CT1、SR1、SR2处理中蔗田土壤水稳性团聚体粒径分布均以>3mm粒级为主,CT2处理团聚体粒径主要集中在0.25~0.50mm。在平地,2~3mm粒径团聚体含量SR1与CT1处理差异达到显著水平(P<0.05)。在0.125~0.250mm粒径范围内,SR1显著低于CT1(P<0.05),其它粒径团聚体差异则不明显;在坡耕地,0.125~0.250mm粒径以及0.125~0.250mm范围内,SR1均显著低于CT1(P<0.05),其它粒径团聚体差异不明显。

不论是平地还是坡耕地,蔗田土壤粉垄耕作大团聚体含量均高于常规耕作,平地和坡耕地分别增加了28.9%、120.6%,表明粉垄耕作能促进土壤大团聚体的形成。同种耕作方式下,平地土壤大团聚体含量均高于坡耕地,其含量为坡耕地的1.06~2.53倍,表明平地对水稳性团聚体的稳定有积极作用。

图2 两种耕作方式下平地和坡耕地土壤培养7d过程中有机碳累积矿化量的动态变化

表3 两种耕作方式下平地和坡耕地土壤水稳性团聚体含量(%)

注:小写字母表示处理间差异显著性。

Note: Lowercase indicates the difference significance among treatments at 0.05 level.

土壤团聚体平均质量直径(MWD)和平均几何直径(GMD)是反映土壤团聚体大小分布状况及其稳定性的重要指标,MWD和GMD值越大表明团聚体的稳定性越强。由表3可知,平地和坡耕地中,MWD和GMD值均表现为SR1>CT1>SR2>CT2。与常规耕作相比,粉垄耕作条件下平地和坡耕地MWD值分别提高15.6%、58.7%,GMD值分别提高31.4%、48.1%,表明粉垄耕作土壤团聚体稳定性相对较好。同种耕作模式下,平地MWD值和GMD值均高于坡耕地,平地常规耕作和粉垄耕作MWD值较坡耕地分别提高1.19和0.60倍,平地GWD值较坡耕地分别提高0.99和0.77倍,表明平地更有利于增加土壤团聚体稳定性。

2.4 粉垄耕作对蔗田土壤紧实度的影响

图3为粉垄甘蔗各处理土壤紧实度与土层深度的关系。由图可见,随着土层深度的增加,各处理土壤紧实度整体呈现先增大后减少再增大的趋势,0-15cm耕层土壤紧实度明显低于15-30cm耕层。采用粉垄耕作后,平地(SR1)和坡耕地(SR2)处理,与常规耕作(CT1、CT2)处理相比,15-30cm耕层土壤紧实度明显降低,说明粉垄耕作可有效降低蔗田15-30cm耕层土壤紧实度。

在常规耕作方式下,平地(CT1)与坡耕地(CT2)相比,0-15cm耕层CT1处理的紧实度低于CT2处理,相反,15-30cm耕层CT1处理的紧实度高于CT2处理;在粉垄耕作方式下,平地(SR1)与坡耕地(SR2)相比,0-15cm耕层SR1处理的紧实度低于SR2处理,相反,15-30cm耕层SR1处理的紧实度高于SR2处理。说明平地对0-15cm耕层土壤紧实度有降低的作用,但升高了15-30cm耕层土壤紧实度。

图3 两种耕作方式下平地和坡耕地土壤紧实度

3 讨论与结论

3.1 讨论

粉垄耕作有利于提高平地蔗田土壤有机碳矿化量。良好的土壤环境有利于土壤微生物活动[27]。保护性耕作能够提高土壤固碳量,减少CO2排放,有利于改善土壤碳库[28]。坡耕地地形结构导致土壤资源重新配置,使土壤养分转化产生空间格局差异,直接影响了地表植被生长、水土养分的分布[29]。本研究发现,粉垄耕作增加了坡耕地蔗田土壤0-15cm耕层累积矿化量,但15-30cm耕层的累积矿化量有所降低,较常规耕作分别升高和降低了81.7%和7.5%;相反,粉垄耕作降低了平地蔗田耕层土壤累积矿化量,提高了15-30cm耕层的累积矿化量,较常规耕作分别降低7.8%和升高2.7%。形成这种差异可能是土壤矿化过程受到影响,平地和坡耕地地形差异导致土壤呼吸强度不同,同时本研究还发现,粉垄耕作平地蔗田土壤有机碳矿化量高于坡耕地,这进一步说明可能因为地形影响了土壤养分分布及微生物的活动,从而影响土壤有机碳矿化过程。有关粉垄雨养甘蔗耕层土壤矿化效应有待进一步研究。

粉垄耕作增强了蔗田土壤团聚体稳定性。合理的耕作措施影响土壤有机质的氧化,降低了土壤容重,增强了作物根际土壤微生物呼吸,有助于团聚体的形成[30]。MWD、GMD越高,土壤团聚体抗侵蚀能力越强[31]。保护性耕作主要影响了0-5cm土层土壤团聚体,增加团聚体含量,提高土壤团聚体稳定性,改善土壤结构[32]。相反,传统耕作措施减少了土壤大团聚体含量,这是因为其对土壤扰动程度大,导致土壤团聚体结构遭到一定程度的破坏[33]。粉垄耕作提高了蔗田土壤水稳性大团聚体含量,平地和坡耕地分别增加了5.53%、2.30%,增加蔗田土壤团聚体形成,本研究结果与上述结论较为一致。本研究还发现,粉垄耕作更有利于增加平地土壤团聚体稳定性,其原因是因为南方地区降雨量大,坡耕地不利于水分的管控,雨水造成坡耕地土壤养分的垂直流失高于平地。在平地和坡耕地中不同粒级土壤团聚体在养分的保持、供应和转化过程中的作用不同,团聚体作为土壤中物质和能量转化与代谢的场所,其数量和质量对协调土壤肥力状况、改善土壤耕性等有重要作用,影响土壤有机碳、生物活性和土壤其它功能的发挥。

粉垄耕作降低了蔗田土壤紧实度,对15-30cm耕层影响明显。作物种植上可采用合理的耕作措施改善土壤结构,协调土壤水、肥、气、热等因素,促进农作物增产增质[34]。土壤紧实度随土层深度的增加呈现出升高的趋势,达到一定深度后趋于稳定[35]。此外,0-15cm耕层与15-30cm耕层土壤紧实度空间分布特征受土壤质地、地形、耕作方式等多种因素的影响[36]。深松耕作能够降低土壤紧实度,增加土壤通透性,改善土壤的物理结构[37],为作物生长提供有利的环境条件。本研究发现,粉垄耕作降低了蔗田土壤紧实度,且对15-30cm土层影响最明显,这与粉垄深旋耕打破土壤耕作层和犁底层,使土粒破碎均匀,增加土壤通透性有关。

3.2 结论

粉垄雨养甘蔗栽培方式能改善蔗田土壤通透性,降低土壤紧实度,增加土壤大团聚体含量,同时对改善蔗田土壤矿化有一定积极作用,提高了平地和坡耕地土壤耕层碳库存储,该模式可作为南方蔗田土壤干旱逆境调控技术措施。

[1] 潘根兴,高民,胡国华,等.气候变化对中国农业生产的影响[J].农业环境科学学报,2011,30(9):1698-1706.

Pan G X, Gao M, Hu G H, et al.Impacts of climate change on agricultural production of China[J].Journal of Agro- Environment Science,2011,30(9):1698-1706.(in Chinese)

[2] 秦大河.气候变化科学与人类可持续发展[J].地理科学进展,2014,33(7):874-883.

Qin D H.Climate change science and sustainable development[J]. Progress in Geography,2014,33(7):874-883.(in Chinese)

[3] 大卫·莫登.水与可持续发展:未来农业用水对策方案及综合评估[M].李保国,等译.天津:天津传媒集团,2014.

David M.Water for food,water for life:a comprehensive assessment of water management in agriculture[M]. Translated by Li B G,et al.Tianjin:Tianjin Media Group, 2014.(in Chinese)

[4] 赵鸿,肖国举,王润元,等.气候变化对半干旱雨养农业区春小麦生长的影响[J].地球科学进展,2007,(3):322-327.

Zhao H,Xiao G J,Wang R Y,et al.Impact of clmiate change on spring wheat growth in semi-arid rain feed region[J]. Advances in Earth Science,2007,(3):322-327.(in Chinese)

[5] 赵其国,黄国勤,马艳芹.中国南方红壤生态系统面临的问题及对策[J].生态学报,2013,33(24):7615-7622.

Zhao Q G,Huang G Q,Ma Y Q.The problems in red soil ecosystem in southern of China and its countermeasure[J]. Acta Ecologica Sinica,2013,33(24):7615-7622.(in Chinese)

[6] 康绍忠,霍再林,李万红.旱区农业高效用水及生态环境效应研究现状与展望[J].中国科学基金,2016,30(3):208-212.

Kang S Z,Huo Z L,Li W H.High-efficient water use and eco-environmental impacts in agriculture in arid regions: advance and future strategies[J].Bulletin of National Natural Science Foundation of China,2016,30(3):208-212.(in Chinese)

[7] Lal R.Soil carbon sequestration impacts on global climate change and food security[J].Science,2004,304(5677): 1623-1627.

[8] Shen H,Yang Y S,Yang Z,et al.The dynamic response of soil respiration to land-use changes in subtropical China[J].Global Change Biology,2010,3:1107-1121.

[9] Rosenzweig C,Hillel D.Soils and global climate change: challenges and opportunities[J].Soil Science,2000,165(1): 47-46.

[10] Xu X F,Schimel J,Thornton P,et al.Substrate and environmental controls on microbial assimilation of soil organic carbon:a framework for Earth system models[J]. Ecology Letters,2014,17(5):547-555.

[11] 巩杰,陈利顶,傅伯杰,等.黄土丘陵区小流域土地利用和植被恢复对土壤质量的影响[J].应用生态学报,2004,(12): 2292-2296.

Gong J,Chen L D,Fu B J,et al.Effects of land use and vegetation restoration on soil quality in a small catchment of the Loess Plateau[J].Chinese Journal of Applied Ecology, 2004,(12):2292-2296.(in Chinese)

[12] Tolon B A,Botta G F,Lastra B X,et al.Soil compaction distribution under tractor traffic in almond (L.) orchard in Almería España[J].Soil &, Tillage Research,2010,107(1):49-56..

[13] Papendick R I,Parr J F.No-till farming:the way of the future for a sustainable dryland agriculture[J].Annals of Arid Zone,1997,36:193-208.

[14] 贺春雄.延安治沟造地工程的现状、特点及作用[J].地球环境学报,2015,6(4):255-260.

He C X.The situation,characteristics and effect of the gully reclamation project in Yan'an[J].Journal of Earth Environment,2015,6(4):255-260.(in Chinese)

[15] 胡钧铭,陈胜男,韦翔华,等.耕作对健康耕层结构的影响及发展趋势[J].农业资源与环境学报,2018,35(2):95-103.

Hu J M,Chen S N,Wei X H,et al.Effects of tillage model on healthy plough layer structure and its development trends[J].Journal of Agricultural Resources and Environment, 2018,35(2):95-103.(in Chinese)

[16] 刘卫玲,程思贤,周金龙,等.深松(耕)时机与方式对土壤物理性状和玉米产量的影响[J].河南农业科学,2018,47(3): 7-13.

Liu W L,Cheng S X,Zhou J L,et al.Effects of time and pattern of deep tillage( subsoiling) on soil physical properties and maize yield[J].Journal of Henan Agricultural Sciences,2018,47(3):7-13.(in Chinese)

[17] 杨勤业,李高社,朱会义.黄土高原主要农作物水分盈亏与雨养农业问题[J].自然资源学报,1990,(1):51-59.

Yang Y Q,Li G S,Zhu H Y.Surplus and deficiency of water for main crops and the rainfed farming in the loess plateau[J].Journal of Natural Resources,1990,(1):51-59.(in Chinese)

[18] 王仕新,刘作新,赵焕胤,等.辽西半干旱地区主要作物耗水规律的初步研究[J].生态学杂志,1997,(3):12-19.

Wang S X,Liu Z X,Zhao H Y,et al.A preliminary study of water consumption of main crops in the semiarid area of west Liaoning[J].Chinese Journal of Eoology,1997,(3): 12-19.(in Chinese)

[19] 韦本辉.旱地作物粉垄栽培技术研究简报[J].中国农业科学,2010,43(20):4330-4330.

Wei B H.A brief report on the technology of Fenlong cultivation for dry land crops[J].Scientia Agricultura Sinica, 2010,43(20):4330-4330.(in Chinese)

[20] Zhai L C,Xu P,Zhang Z B,et al.Effects of deep vertical rotary tillage on dry matter accumulation and grain yield of summer maize in the Huang-Huai-Hai Plain of China[J]. Soil &,Tillage Research,2017,170:167-174.

[21] 陈胜男,胡钧铭,徐宪立,等.绿肥压青粉垄保护性耕作对土壤水分入渗及其后延效应的影响[J].中国农业气象,2018, 39(12):778-785.

Chen S N,Hu J M,Wei X L,et al.Effect of smash ridging conservation tillage with green manure on rice field soil infiltration and its delayed action[J].Chinese Journal of Agrometeorology,2018,39(12):778-785.(in Chinese)

[22] 郑佳舜,胡钧铭,韦翔华,等.绿肥压青粉垄保护性耕作对稻田土壤温室气体排放的影响[J].中国农业气象,2019,40(1): 15-24.

Zheng J S,Hu J M,Wei X H,et al.Effect of conservation tillage with smash ridging under green manure condition on the emission of greenhouse gas in the rice field soil[J].Chinese Journal of Agrometeorology,2019,40(1): 15-24.(in Chinese)

[23] 甘秀芹,韦本辉,刘斌,等.粉垄后第6季稻田土壤变化与水稻产量品质分析[J].南方农业学报,2014,45(9):1603-1607.

Gan X Q,Wei B H,Liu B,et al.Effects of smash-ridging cultivation on soil properties,yield and quality of the sixth season of rice[J].Journal of Southern Agriculture,2014, 45(9):1603-1607.(in Chinese)

[24] 李顺姬,邱莉萍,张兴昌,等.黄土高原土壤有机碳矿化及其与土壤理化性质的关系[J].生态学报,2010,30(5): 1217-1226.

Li S J,Qiu L P,Zhang X C,et al.Mineralization of soil organic carbon and its relations with soil physical and chemical properties on the Loess Plateau[J].Acta Ecologica Sinica,2010,30(5):1217-1226.(in Chinese)

[25] Elliott E T.Aggregate structure and carbon,nitrogen and phosphorus in native and cultivated soils[J].Soil Science Society of America Journal,1986,50(3):627-633

[26] Barreto R C,Madari B E,Maddock J E L,et al.The impact of soil management on aggregation,carbon stabilization and carbon loss as CO2in the surface layer of a Rhodic Ferralsol in Southern Brazil[J].Agriculture,Ecosystems and Environment,2009,132(3):243-251

[27] 姜义亮.黑土区坡耕地土壤侵蚀对土壤有机碳流失的影响研究[D].杨凌:西北农林科技大学,2019.

Jiang Y L.Effect of soil erosion on soil organic carbon liss in sloping farmlands of Chinese mollisol region[D]. Yangling:Northwest A&F University,2019.(in Chinese)

[28] 王健波.耕作方式对旱地冬小麦土壤有机碳转化及水分利用影响[D].北京:中国农业科学院,2014.

Wang J B.Effect of different tillage practices on soil organic carbon transformation and water use in dryland winter wheat[D].Beijing:Chinese Academy of Agricultural Sciences, 2014.(in Chinese)

[29] 孔维波,石芸,姚毓菲,等.水蚀风蚀交错带退耕草坡地土壤酶活性和碳氮矿化特征[J].水土保持研究,2019,26(2):1-8.

Kong W B,Shi Y,Yao Y F,et al.Characteristics of enzyme activity,carbon and nitrogen mineralization of soil in the abandoned sloping cropland in Wind-Water erosion crisscross region[J].Research of Soil and Water Conservation, 2019,26(2):1-8.(in Chinese)

[30] 刘丹,张霞,李军,等.渭北旱塬农田不同耕作模式对土壤性状、玉米产量和水分利用效率的影响[J].应用生态学报,2018,29(2):573-582.

Liu D,Zhang X,Li J,et al.Effects of different tillage patterns on soil properties,maize yield and water use efficiency in Weibei Highland,China[J].Chinese Journal of Applied Ecology,2018,29(2):573-582.(in Chinese)

[31] 韩新生,马璠,郭永忠,等.土地利用方式对表层土壤水稳性团聚体的影响[J].干旱区资源与环境,2018,32(2):114-120.

Han X S,Ma P,Guo Y Z,et al.Effects of surface-layer soil water-stable aggregates under land use patterns[J].Journal of Arid Land Resources and Environment,2018,32(2): 114-120.(in Chinese)

[32] Du Z,Han X,Wang Y,et al.Changes in soil organic carbon concentration,chemical composition and aggregate stability as influenced by tillage systems in the semi-arid and semi-humid area of North China[J].Canadian Journal of Soil Science,2017,98(1):91-102.

[33] 王勇,姬强,刘帅,等.耕作措施对土壤水稳性团聚体及有机碳分布的影响[J].农业环境科学学报,2012,31(7): 1365- 1373.

Wang Y,Ji Q,Liu S,et al.Effects of tillage on soil water stability aggregates and organic carbon distribution[J]. Journal of Agro-Environment Science,2012,31(7):1365-1373. (in Chinese)

[34] 王慧杰,郝建平,冯瑞云,等.微孔深松耕降低土壤紧实度提高棉花产量与种籽品质[J].农业工程学报,2015,31(8): 7-14.

Wang H J,Hao J P,Feng R Y,et al.Microhole subsoiling decreasing soil compaction,and improving yield and seed quality of cotton[J].Transactions of the CSAE ,2015,31(8): 7-14.(in Chinese)

[35] 辛平,黄高宝,张国盛,等.耕作方式对表层土壤饱和导水率及紧实度的影响[J].甘肃农业大学学报,2005,(2):203-207.

Xin P,Huang G B,Zhang G S,et al.Effects of different tillage methods on saturated hydraulic conductivity and compactiveness of the surface soil[J]Journal of Gansu Agricultural University,2005,(2):203-207.(in Chinese)

[36] Hamza M A,Anderson W K.Soil compaction in cropping systems:a review of the nature,causes and possible solutions[J].Soil and Tillage Research,2005,82(2):121-145.

[37] 刘爽,何文清,严昌荣,等.不同耕作措施对旱地农田土壤物理特性的影响[J].干旱地区农业研究,2010,28(2):65-70.

Liu S,He W Q,Yan C R,et al.Effects of different tillage managements on soil physical properties in dryland[J]. Agricultural Research in the Arid Areas,2010,28(2): 65-70.(in Chinese)

Effects of Smash Ridging on Soil Organic Carbon Mineralization and Structure of Sugarcane Field in Flat and Slope Farmland

CHEN Shi-lin1,2, HU Jun-ming1, LI Ting-ting1, HUANG Zhong-hua3, ZHENG Jia-shun1,2, HUANG Yu-ming1,2, Luo Wei-gang3, HE Tie-guang1, WEI Xiang-hua2

(1. Agricultural Resource and Environment Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; 2. Agricultural College, Guangxi University, Nanning 530004, China; 3. Nanning Irrigation Experiment Station, Nanning 530001, China)

It is the main way of rain-fed sugarcane in smash ridging production in hilly areas of south China. In order to explore the effects of slope farmland on the mineralization rate, accumulation of mineralization, soil aggregates and compact-degree structure of rain-raised sugarcane soil. In 2018-2019, smash ridging and conventional tillage were adopted in Nanning, Guangxi. Field positioning experiments were carried out on flat land and sloping farmland with no artificial irrigation during the whole growth period. Soil samples were collected in the 0-15cm topsoil and 15-30cm topsoil during the harvest period of sugarcane, and soil compactness meter was used to measure soil compactness at a depth of 0-45cm at multiple points. Soil aggregates were determined by wet sieve method. The content of soil organic carbon mineralization was determined by indoor constant temperature culture-alkali absorption method. The results showed that, (1)the soil organic carbon accumulative mineralization of rain-fed sugarcane soil in flat land is always higher than that in sloping farmland, the soil organic carbon mineralization in the 0-15cm topsoil and 15-30cm topsoil of the flat land under smash ridging was 0.32 and 1.05 times higher than that in the sloping farmland, respectively. The cumulative mineralization of organic carbon in the 0-15cm topsoil and the 15-30cm topsoil of the sugarcane field increased and decreased by 81.7% and 7.5%, respectively, and decreased and increased by 8.4% and 2.6%, respectively, in the flat land. (2)The content of large aggregates in the soil of rain-fed sugarcane was increased by smash ridging. Flat land and sloping land increased by 5.53 and 5.30 percent respectively. The content of large aggregates in flat soil was 1.00-1.03 times of that in sloping farmland. On the contrary, smash ridging reduced the content of small and micro aggregates in rain-fed sugarcane. The average mean weight diameter (MWD) and geometric mean diameter (GMD) of soil water stable aggregates were improved by smash ridging. Compared with conventional cultivated plain land and sloping farmland, MWD increased 15.6% and 58.7%, respectively, and GMD increased 31.4% and 48.1%, respectively. The MWD and GMD values of soil water stability aggregates in the same tillage mode were higher than those of sloping farmland. The MWD values of flat land conventional tillage and smash ridging tillage were 1.19 and 0.60 times higher than that of slope farmland respectively, and the GWD values of flat land conventional tillage and smash ridging tillage were 0.99 and 0.77 times higher than that of slope farmland respectively. (3)The soil compactness of rain-fed sugarcane was affected by smash ridging more than that of plain field. The soil compactness of rain-fed sugarcane was decreased by smash ridging, and the effect was most obvious at 15-30cm. Therefore, rain-fed sugarcane in smash ridging improves the carbon storage in the topsoil of flat land and slope farmland, reduce soil compactivity, increase the formation of large aggregates, and optimize the topsoil structure. This model can be used as a technical measure to control drought and stress in sugarcane fields in southern China.

Smash ridging; Slope farmland; Soil mineralization; Soil aggregate; Sugarcane field

10.3969/j.issn.1000-6362.2020.05.004

陈仕林,胡钧铭,黄忠华,等.粉垄耕作对平地和坡耕地蔗田土壤有机碳矿化和结构的影响[J].中国农业气象,2020,41(5):299-307

2019−11−15

胡钧铭,E-mail:jmhu06@126.com;韦翔华,E-mail:xhwfd@gxu.edu.cn

广西创新驱动重大专项(桂科AA17204037-3);广西第二十一批“十百千人才工程”专项资金;广西农业科学院创新团队项目(桂农科2018YT08);广西农业科学院科技发展专项(桂农科2017JZ09;桂农科2017ZX01)

陈仕林,E-mail: shilinz1995@163.com

猜你喜欢
坡耕地平地耕层
喀斯特坡耕地块石出露对土壤水分入渗的影响
土壤侵蚀对紫色土坡耕地耕层障碍因素的影响*
轮作制度对敦化市土壤主要理化性状影响的研究
高楼万丈平地起
粉垄深耕对长沙稻作烟区土壤物理特性及烤烟根系发育的影响
秸秆还田对耕层土壤理化性质及冬小麦-夏玉米产量的影响
边走边看
遇到一条蛇
浅谈坡耕地玉米作物根系对土壤侵蚀的影响
坡耕地运输车爬坡性能