王金铎,曾治平,宫亚军,牛靖靖,马 骥,陈 雪
(中国石化胜利油田分公司勘探开发研究院,山东东营 257015)
随着油气勘探向深层高温高压、致密储层等领域的推进,深层有利储集体的发育规律是近年来石油地质科学研究的热点之一[1-5]。侏罗系是准噶尔盆地腹部地区主要勘探层系之一,近80%的储量都位于该层。永进油田侏罗系埋深达5 800 m 以下,是目前盆地发现的深度最大的超压含油气层。研究区侏罗系孔隙度为4%~19%,平均仅为6%,渗透率为0.01~5 mD,平均为0.3 mD,属于特低孔、特低渗透储层,但在埋深近6 000 m 的西山窑组(J2x)油层段,仍有孔隙度为15%的储层发育,试油获日产油量为80 m3/d。深层超压储层发育规律的研究对于油气勘探具有重要意义。
高崇龙等认为深层高孔带的形成受控于沉积条件、异常高压、成岩流体性质、古地温、热循环对流、膏盐效应以及烃类充注等7 类因素[6]。目前对研究区侏罗系的研究较少,而影响深层有利储层的因素众多,各因素之间的相互作用复杂,高孔带发育规律尚不明确。徐国盛等认为侏罗系储层原生孔的贡献高达78%[7],胡海燕等认为受颗粒包壳抑制石英加大、油气充注抑制成岩胶结、大气淡水及有机酸的次生溶蚀等综合作用影响,侏罗系储层孔隙得以保存[8-9],何生等认为次生溶蚀是侏罗系储层发育的主要因素[10],贺振建等认为层理缝发育是J2x储层保持较好物性的主要原因[11]。但对于埋深超过6 000 m 的超压储层而言,高孔带始终处于活跃的水-岩-油相互作用过程中。在深层埋深条件下有利储层的发育可能主要受与成岩有关的因素控制。为此,以成岩、物性、压力及油气充注过程等关键要素演化过程及其时空匹配关系为核心,开展了深层超压背景下有利储层发育机制研究。
永进油田处于准噶尔盆地腹部莫索湾凸起南斜坡,油藏类型以地层-岩性油气藏为主[12],主力含油层段为J2x,沉积相为三角洲前缘亚相,储层主要为三角洲前缘水下分流河道砂体,岩性以细粒岩屑长石砂岩为主,颗粒磨圆为次棱角状—次圆状,分选中等—偏差。石英平均含量约为28%,长石平均含量约为15%,岩屑平均含量高达35%(图1a),其中,火山岩岩屑为砂岩储层最主要的碎屑颗粒,大多数火山岩岩屑由板条状或微晶质的长石斑晶和隐晶质的基质组成;变质岩岩屑主要为变质石英岩、片岩、板岩、变质砂岩及千枚岩岩屑;沉积岩岩屑主要为泥岩和燧石。此外,砂岩杂基主要为泥质。杂基与胶结物含量低,压实作用显著,储层普遍致密。相对于征沙村、沙窝地及莫西庄等邻区,研究区J2x储层中岩屑含量更高,其中以火山岩岩屑含量相对较高(图1b)。
图1 永进油田J2x砂岩储层类型及组分Fig.1 Classification and composition of J2x reservoir in Yongjin Oilfield
基于岩石组构、成岩作用、物性及含油性等差异,将研究区侏罗系砂岩储层分为致密储层和优质储层(油层)。致密储层为高软岩屑-强压实-弱胶结成岩相(图2a),该类型砂岩中,塑性火山岩等岩屑含量高,原生孔基本不发育,次生孔占比为1.1%,微孔占比为0.4%,薄片下零星见岩屑、长石等溶蚀形成的粒内溶蚀孔隙,多呈不规则状和孤立状分布;优质储层为低软岩屑-弱压实-强胶结成岩相(图2b),该类型砂岩中,原生孔占比为1.9%,次生孔占比为4.2%,微孔占比为0.1%。原生粒间孔多为三角状,次生孔以长石和岩屑溶蚀为主,原生孔与次生孔多共生共存。
图2 永进油田J2x储层成岩相特征Fig.2 Diagenetic facies characteristics of J2x reservoir in Yongjin Oilfield
侏罗系地层压力为97.5~113.5 MPa,压力系数为1.69~1.99,处于强超压范畴。从5 500 m 超压界面开始,储层物性相对变好(图3),超压与高孔带的对应性表明超压可能对孔隙度的保存有一定作用[5,10]。J2x储层孔隙度为5.5%~19%,平均为12.4%,明显高于超压幅度基本一致的其他层段,该高孔带内胶结物类型多,但整体胶结物含量低,溶蚀作用较显著,沿层理面发育大量近水平裂缝(图2c),这表明储层中高孔发育受多因素控制。
一般认为,有利储层形成是沉积环境、构造改造及成岩演化等共同作用的结果[13]。研究区J2x储层主要为三角洲前缘砂体,在埋深为5 400 m 时,前缘相带各类岩性的孔隙度已降至6%左右(图3),且腹部地区构造稳定,故研究区有利储层主要受成岩相关因素控制。超压段与高孔带的对应性表明超压延缓作用可能是高孔带发育的原因之一,但超压延缓作用须是在早期阶段,一旦储层致密,超压将极难使孔隙空间回弹,而过高的流体压力产生水力破裂,从而改善储层渗透率。超压延缓作用属于物理过程,当超压流体充注后,储层中水岩化学反应可进一步影响储层物性,且超压油层与超压水层(或干层)多具有差异成岩演化过程。为此,采用包裹体压力恢复技术[14]和物性回剥技术[15],分别恢复了目的层超压充注与储层物性演化过程,明确早期超压对物性的保存作用;其次,分析油层与水层物性差异演化过程,对高孔油层段成岩作用与油气充注过程进行重建,进而明确成岩演化对物性的控制作用;最后,基于宏观及微观破裂特征分析,明确超压水力破裂对渗透性的改善作用。
利用包裹体压力恢复技术对永进油田J2x储层的流体压力进行恢复,包裹体记录了早、晚2 期超压,这与准噶尔盆地腹部地区2 期大规模的油气生排聚过程基本一致[16]。距今105~60 Ma 时,二叠系烃源岩开始大量生排烃,形成J2x第1 期高压含烃流体充注,随烃类的充注,储层流体压力持续增大至80 MPa,压力系数最大达1.46;距今约50 Ma 时,盆地腹部地区南北掀斜,地层南倾,压力泄漏或调整,第1 期超压结束;40 Ma 到现今,受喜马拉雅运动影响,盆地南缘北天山强烈抬升挤压,形成北天山山前带前陆凹陷,研究区地层再次快速沉降,此时,二叠系烃源岩再次生烃的同时侏罗系烃源岩也开始生排烃,双源的超压含烃流体叠加充注,侏罗系储层内压力快速增加,包裹体压力系数为1.5 左右,实测压力系数高达1.99,表明研究区正处于增压过程。
图3 永进油田J2x储层物性、压力与埋深的关系Fig.3 Relationships among formation properties,pressure and depth of J2x reservoir in Yongjin Oilfield
利用物性回剥技术对永进地区4口井的古物性进行恢复。结果表明,距今105~60 Ma,伴随第1 期增压,油层孔隙度基本保持不变;距今60~20 Ma,随地层压力降低,油层平均孔隙度从26%降至18%左右;距今20 Ma 以来,地层压力再次增加,但压实延缓作用有限,以水力破裂为主。在早期增压的作用下,高压流体对颗粒产生有效支撑,减小颗粒有效应力,故油层孔隙度降幅较小或基本保持不变,如永6 井埋深为6 021.13 m 薄片镜下观察发现悬浮式接触,表明超压延缓了正常压实作用,使原生孔隙得以保存。但超压延缓保孔作用是有限的,表现在2 方面:①超压水层物性降低速度比超压油层快,这表明油气充注可能抑制了成岩胶结减孔(图4);②胶结物类型多,但胶结物总体积仅为5%~10%,这说明高孔带有异常活跃的流体活动,溶蚀作用较为显著(图5),具有一定的增孔作用,即伴随超压形成水岩作用对于储层高孔带形成具有一定影响。
2.2.1 胶结物类型及特征
图4 永进油田J2x储层物性演化与压力演化关系Fig.4 Relationship between formation property evolution and pressure evolution of J2x reservoir in Yongjin Oilfield
永进油田J2x储层胶结作用较普遍、胶结物类型多。硅铝酸盐或硅质矿物主要包括高岭石、绿泥石、石英及沸石等。其中,绿泥石薄膜呈包壳状生长在颗粒边缘(图5a);高岭石多为手风琴状充填于原生孔和长石溶蚀孔(图5b);石英2期加大,多位于绿泥石欠发育的颗粒边缘(图5c);沸石为紧贴粒缘的孔隙充填,且有港湾状溶蚀现象(图5d)。碳酸盐矿物主要为铁方解石与铁白云石,多为交代颗粒或孔隙胶结式充填(图5e)。碳同位素组成表明,铁方解石形成与有机质酸有关[10,17]。硫酸盐矿物主要包括硬石膏和黄铁矿,其中硬石膏含量较少,且多被铁方解石胶结,黄铁矿呈立方体晶型(图5f),往往存在于油浸及油斑砂岩中,可能是硬石膏与含烃流体反应的还原产物。
2.2.2 溶蚀与胶结序列
基于成岩作用及类型,结合自生矿物接触关系的系统分析,在统一的区域构造史—埋藏史—热史—流体演化史约束下,重建高孔油层段成岩作用与油气充注过程。将目的层划分为3个主要成岩阶段。总体上发育3 组成岩矿物充填、2 期溶蚀和2 期高压含烃流体充注(图6)。
图5 永进油田J2x储层成岩作用特征Fig.5 Diagenesis feature of J2x reservoir in Yongjin Oilfield
图6 永进油田J2x储层成岩演化-油气充注序列Fig.6 Relationship between diagenetic evolution and hydrocarbon filling of J2x reservoir in Yongjin Oilfield
第1 个成岩阶段发生在距今180~147 Ma,目的层经历首次埋藏—抬升剥蚀过程。埋藏期以压实作用为主,随成岩环境封闭,流体由酸性环境转变为碱性环境,水中悬浮状或絮凝状细粒物开始在颗粒表面堆积,在富Mg2+的偏碱性介质中向绿泥石转变,形成绿泥石薄膜[18],进而抑制了石英加大的生长[19],而SiO2过饱和的流体则开始形成充填状方沸石、浊沸石胶结(图5d)。抬升剥蚀期,大气淡水淋滤形成第1期溶蚀,长石、岩屑及沸石等溶蚀形成粒间、粒内溶孔,并伴随高岭石沉淀。该阶段形成第1组矿物组合:绿泥石薄膜、方沸石、浊沸石及高岭石。
图7 永进油田J2x储层微观特征Fig.7 Microscopic characteristics of J2x reservoir in Yongjin Oilfield
第2个成岩阶段发生在距今105~60 Ma,地层再次埋藏,二叠系烃源岩生排烃[16],目的层经历了第1期高压含烃流体充注,伴随油气充注的有机酸对长石、岩屑等产生第2期溶蚀,形成粒间及粒内溶孔等(图7a),并形成第1期石英加大与高岭石等副产物,石英均一温度为70~90 ℃,该温度范围利于绿泥石、高岭石等向伊/蒙混层转变(图5c),上述过程形成第2组矿物组合:石英加大、高岭石及伊/蒙混层。但该阶段受高压延缓、烃类抑制以及次生溶蚀等作用影响,含油段的孔隙度基本保持不变,而水层中溶蚀和抑制作用有限,物性差。
第3 个成岩阶段发生在距今40~0 Ma,第2 期高压含烃流体充注,石英第2期加大,均一温度为105~135 ℃,见钠长石胶结,普遍伊利石化。该时期地层温度为90~125 ℃,基本处于75~120 ℃有机酸保存的最佳温度区间的上限[20],故有机酸消耗快,溶蚀有限,孔隙中以高温环境下形成的铁方解石和铁白云石充填状胶结为主(图5e),均一温度为90~115 ℃。硬石膏被含铁方解石交代或还原形成黄铁矿。该阶段形成第3 组矿物组合:第2 期石英加大、钠长石、铁方解石及铁白云石。
2.2.3 储层物性演化与油气充注
高岩屑含量的致密储层为压实强烈-弱溶蚀的成岩相,第1 期油气充注时,其孔隙度已降至10%~12%(图4),接近或已经致密。低岩屑含量的相对优质储层为强溶蚀成岩相,流体活跃,胶结物类型多而总含量低,第1 期油气充注时,其孔隙度约为22%~31%,渗透率约为29~364 mD。相同充注动力条件下,高压含烃流体优先充注于物性好的储层中,而很难进入致密层。原生孔保存较好的砂岩溶蚀作用也较强,次生孔发育,物性得以改善,这主要因为连通性好的原生孔为后期流体提供了空间,确保了水岩作用能够顺利进行。油气充注后,受油气充注及成岩抑制等共同作用,储层孔隙度基本保持不变,而水层中溶蚀和抑制作用有限,物性差。第2期油气充注时储层逐步致密,孔隙连通性变差,利于形成高压,故以水力破裂为主,高渗透性的裂缝为流体活动提供通道和空间,次生溶蚀作用进一步改善了储集物性条件。
综上所述,储层物性的差异演化从沉积期开始可以一直持续到现今,原生孔是现今物性较好的基础。成岩过程中,高压流体优先充注物性条件相对较好的高孔带,高压流体反过来延缓了埋藏压实,油气的充注则进一步抑制成岩胶结作用,原生孔提供的流体活动场所和通道,使原生孔保存较好的层段次生溶蚀孔也较发育。通过对水层和油层的物性恢复来看(图4),从沉积期到现今,致密层(水层)孔隙度从46%降至6%,减孔量为40%,而含油高孔带减孔量为33%,总保孔量约为7%。
研究区J2x高产油气层的裂缝十分发育,并有以下特征:①裂缝主要为沿早期沉积层理面张开的倾角近0°水平裂缝(图2c),但依据安德森破裂模型,破裂裂缝倾角均在45°以上[21]。②当地层流体压力大于静岩压力的85%时[22],将形成水力破裂。研究区J2x储层静岩压力约为128 MPa,地层压力为97.5~113.5 MPa,地层压力与静岩压力比值为76%~89%,表明目的层处于水力破裂压力条件下。③穿石英等脆性颗粒的微裂缝较常见,且缝内无变形带、缝边无明显错位,表明水力破裂造成的张裂缝特征,沿裂缝的选择性溶蚀作用较为显著,微裂缝周围长石、碎屑颗粒等溶蚀作用较强(图7b)。④伴随2 期超压含烃流体充注,微裂缝内发育2 期含油气包裹体(图7c),同期盐水包裹体测压表明其为高压捕获。综上分析认为超压水力破裂形成微裂缝,同期或稍后油气充注,后期随压力释放,裂缝愈合,故包裹体记录的压力小于临界破裂压力。
深埋致密背景下,岩石破裂强度大,而沉积层理面是力学薄弱面,其黏连性低,摩擦系数小,在超压作用下易张开。另据最新研究发现,超压是低角度断层(裂缝)活化的重要因素[23],尤其是针对犁式正断层,其底部的水平拆离段发育的位置均处于地层压力接近静岩压力部位[19]。研究区目的层压力系数达2.0,接近静岩压力,这表明超压容易使沉积层理缝活化,超压形成的近水平裂缝显著改善储层的渗透性。
准噶尔盆地深层发育异常高孔带,以永进油田J2x为典型。J2x发育3 组成岩矿物充填、2 期高压含烃流体充注和2期溶蚀,距今180~147 Ma,形成绿泥石薄膜和充填状方沸石、浊沸石胶结,后期抬升剥蚀,大气淡水淋滤形成第1期溶蚀,并伴随高岭石沉淀;距今105~60 Ma,第1期高压含烃流体充注,有机酸产生第2期溶蚀,并伴随石英加大与高岭石沉淀,伊/蒙混层转变;距今40~0 Ma,第2 期高压含烃流体充注,溶蚀有限,以铁方解石和铁白云石充填状胶结为主要特征。
高孔带的形成与低岩屑含量、早期超压充注、成岩抑制、水力破裂及次生溶蚀5 类作用有关。其中,低岩屑含量砂体压实弱,原生孔保存较好,早期超压含烃流体优先充注原生高孔带,超压进一步延缓原生高孔带压实,受烃类流体充注及绿泥石薄膜等成岩抑制作用,高孔带含油层段孔隙度有效保存;2 期超压水力裂缝进一步改善储层渗透性,原生孔或裂缝较发育层段次生溶蚀增孔作用也较显著。