郭乃豪,王静轩,向 霞*
(1.电子科技大学 物理学院,成都 610054; 2.中国工程物理研究院 激光聚变研究中心,绵阳 621900)
溶胶-凝胶SiO2薄膜广泛应用于强激光系统作为减反射薄膜,但溶胶-凝胶薄膜具有疏松多孔的纳米结构,孔内充满丰富的悬挂键,因此很容易吸纳各类污染物[1-3]。在大型高功率固体激光装置中,污染物主要成分为SiO2颗粒[4]。光学元件在受到其污染后,不仅降低了光学元件的损伤阈值,还会严重影响激光的最终输出通量[5]。激光清洗作为一种新型清洗技术,可在不损伤基底的情况下,有效清洗基底表面的微米及亚微米尺寸的污染颗粒[6-7],并可广泛地应用到油脂、薄膜等各类污染物以及各种材料的清洗[8-9]。激光清洗具有可控性好、清洗效率高、设备寿命长、运行成本低、安全性强、非接触性等诸多优点[10],在电子线路、除锈、脱漆、轮胎模具和文物保护等领域都有广泛的应用前景和市场[11-14]。
目前,国内外激光清洗技术发展迅速,国外相关机构如新加坡国立大学,系统性开展了干式激光清洗的机理研究,提出热致脱附模型,并基于模型开展多种表面多种附着物的精密去除控制技术研究,处于国际领先地位[15]。国内有中国工程物理研究院激光聚变研究中心、华中科技大学、江苏大学以及大批科研单位院所在多类材料激光清洗机理、工艺研究、检测技术、装备研发等方向进行了大量的研究工作与探索[16-18]。
激光清洗是复杂的光物理化学过程,多场耦合作用机理复杂,仍缺乏系统的激光清洗机理与工艺研究,国内外在该方面均处于蓬勃发展阶段[19]。本文中通过对镀溶胶-凝胶SiO2薄膜的熔石英光学元件进行激光清洗工艺研究,获得了影响激光清洗效果的关键因素,掌握了激光清洗对SiO2颗粒污染物的相关清洗工艺参量,提出了气流置换系统辅助激光清洗的方法。
对于粒径小于50μm吸附于基底表面的干燥颗粒,可近似认为颗粒的吸附力为范德华力。颗粒的吸附力还会使颗粒产生形变,从而导致颗粒与基底表面之间存在接触面,根据Hamaker理论[20],对于上述SiO2球状颗粒,其吸附力可表示为:
(1)
式中,F1,F2分别表示未发生形变的范德华力与形变所引起的范德华力,A为Hamaker常数,r为颗粒的半径,h为颗粒与表面之间的距离,rc为形变导致的颗粒与基底表面的接触半径。根据DERJAGUIN的理论[21],颗粒半径与接触半径之间的关系有:
(2)
式中,σ1和E1表示颗粒的泊松系数和杨氏模量,σ2和E2表示基底的泊松系数和杨氏模量。
干式激光清洗的主要原理是利用热膨胀机理,激光直接照射在待清洗物基底和表面颗粒上,光能转换为热能,造成基底热膨胀、颗粒物自身热膨胀或两者同时吸收热膨胀,产生位置变化Δz,从而产生加速度使颗粒脱离基底。这3种方法原理相似,清洗模型基本相同,因此以普适性较强的基底膨胀模型为例,根据能量转换关系以及基底的1维温度场分布可得到:
(3)
式中,I(t1)为激光能量,T(z,t)为基底的1维温度场分布,c为基底的比热容,ρ为基底的密度,Rs为表面的反射率,将激光器产生的高斯型脉冲的脉冲形状等参量代入,可得基底的位移的表达式:
(4)
式中,αT为基底材料的热膨胀系数,Φ为激光通量,τ为激光的脉宽,t是时间变量。基于上述公式即可得基底与颗粒的位移速度与加速度。基底的加速度为:
(5)
颗粒的移除条件可表述为在热膨胀很短的时间内,产生的颗粒的动能与弹性势能克服吸附力所做的功,将此过程化简、近似,可得颗粒移除过程的简化式:
(6)
式中,ρ0为颗粒的密度,v是颗粒的速度。
以实验中所用数据为例进行计算,单发激光清洗未镀膜熔石英光学元件表面粒径为10μm的SiO2颗粒,取激光能量密度为2J/cm2,激光波长为355nm,脉宽为10.7ns,此模型下在激光作用的短时间内,颗粒的瞬间温度最高可达8000K,瞬间加速度可达109m/s2量级,从而使得颗粒能够脱离基底表面。
实验样品为30mm×30mm的未镀膜熔石英元件、镀溶胶-凝胶SiO2薄膜的三倍频增透熔石英元件。制备典型污染物的光学元件样品时,以洁净实验样品作为基底,将粒径为1μm~50μm 的SiO2粉末放入酒精中,震荡溶液以达到分散的目的,静置2h获得均匀的悬浊液后涂覆于基底,待酒精挥发后获得所制备样品。制备颗粒污染时使用溶液分散法,配置不同浓度的溶液,以定性的控制污染密度。获得低污染密度的未镀膜与镀膜熔石英样品,及高污染密度的镀膜熔石英样品。
使用波长为355nm,脉宽为10.7ns的Nd∶YAG脉冲激光器,针对熔石英元件表面的SiO2颗粒污染物进行在大气环境中的单发干式激光清洗,于基底下侧平行夹持放置真空度为18kPa、流速为15m/s的气流置换系统,所使用的气体种类为洁净空气。分析选取典型激光参量、污染密度进行实验。实验方案示意图如图1所示。
选取单点作用模式,激光能量为40mJ~240mJ,光斑面积为7mm2(椭圆形,长、短轴为3.4mm×2.6mm@1/e2),计算得实验中所用激光能量密度为0.57J/cm2~3.42J/cm2。清洗过程中使用原位检测对比方法,将污染区域栅格化并进行标记,保证清洗前后的表征区域相同。首先分别对低污染密度的未镀膜熔石英、镀膜熔石英样品,以及高污染密度的镀膜熔石英样品进行3组单发激光清洗实验,并使用尘埃粒子计数器对镀膜熔石英在清洗过程中的脱附颗粒数量进行统计。然后对高污染密度的镀膜熔石英样品进行不同激光能量密度的气流置换辅助激光清洗的对照实验。对清洗样品上残留的污染颗粒以0μm~1μm,1μm~5μm,5μm~15μm,15μm~25μm,25μm~50μm 5种颗粒粒径范围分类统计。
Fig.1 Schematic diagram of the proposed system
使用Nikon光学显微镜观察清洗前后基底表面的洁净状况。使用暗场显微成像方法获得污染状态图像,二值化处理后使用数据平台软件分析,得到目标区域的颗粒数量与尺寸分布,并针对不同的粒径范围分布进行统计与计算。
图2是单发次激光清洗时不同激光能量密度对低污染密度的未镀膜/镀膜熔石英样品的激光清洗效果的影响。如图2a所示,在正常清洗未产生损伤的情况下,未镀膜熔石英中,0.57J/cm2处即产生激光清洗效果,但对污染颗粒的移除率较低。在1.72J/cm2的能量密度下清洗效果最佳。如图2b所示,对于镀膜熔石英样品,可见2.29J/cm2处清洗效果最佳。两种样品的激光清洗最佳工艺参量存在一定差异。
Fig.2 Effect of different laser densities on cleaning effeciency of low contamination density samples a—uncoating fused silica b—coating fused silica
图3是单发次激光清洗时不同激光能量密度对高污染密度的镀膜熔石英样品的移除率。不同激光能量密度对污染颗粒的移除率在20%~74%之间,移除率最低的1.18J/cm2组为21.51%,最高的3.01J/cm2组移除率为73.58%。但在3.01J/cm2处,基底表面出现大量损伤。污染密度变高会导致基底的损伤阈值变低。因此有效清洗下,清洗效果最好的是1.72J/cm2组,其污染颗粒的移除率为57.96%。
Fig.3 Relationship between laser fluence and removal rate of high contamination coating fused silica
图4是分别在最佳激光能量密度下单点作用后的3组样品的暗场图。图4a、图4c、图4e与图4b、图4d、图4f分别表示对应样品的清洗前后的暗场图。由图4a、图4c可见,在最佳激光通量下,低污染密度的未镀膜与镀膜熔石英样品单发次激光清洗效果良好,且并未产生损伤。但由图4f高污染密度的镀膜熔石英样品可知,当光学元件表面污染颗粒密度较高时,采用单发次的激光清洗方法总是成比例的去除污染颗粒。因此,当污染密度过高时,上述激光清洗的方式不足以取得最佳的清洗效果,应考虑其它辅助工艺手段。
Fig.4 Dark field of samples before and after laser cleaning under optimum laser energy density a,b—low contamination uncoating fused silica c,d—low contamination coating fused silica e,f—high contamination coating fused silica
实验过程中发现,激光清洗的能量密度越大,清洗过程中脱离颗粒数量越多。颗粒脱附现象非常明显,各个尺寸的脱离颗粒数量总计可达105量级。大量的脱附颗粒可能会对激光清洗的效果造成影响。因此,在单发激光清洗的基础上加入气流置换系统进行实验。
图5为两种清洗方式的清洗后污染颗粒数量对比图。图5a为单发次激光清洗,图5b为使用真空度18kPa、流速约为15m/s的气流置换系统辅助的激光清洗,所使用的气体种类为洁净空气。经前期实验证明,单独的气流置换系统无法产生清洗效果。而气流置换系统辅助单发激光清洗后能够有效的提高其清洗效果。激光能量密度为1.15J/cm2时,相对于单发次激光清洗,气流置换系统的加入可减少21.82%的污染颗粒(残留颗粒的数量对比是692和451);1.72J/cm2组处的减少率最高,达到66.29%(残留颗粒的数量对比是717和241),存在最佳工艺区间。
图6为在最佳激光能量密度1.72J/cm2组下的清洗效果暗场图。图6a为单发激光清洗时的暗场图,图6b为气流置换系统辅助单发激光清洗的暗场图。由图可知,气流置换系统辅助带来的清洗效果提升明显,并能够在单发次激光清洗的基础上有效地减少粒径为0μm~5μm的污染颗粒的残留数量。
Fig.5 Residual polluted particles after laser cleaninga—with single laser cleaning b—with airflow displacement system
Fig.6 Dark field after laser cleaning under optimum laser energy densitya—with single laser cleaning b—with airflow displacement system
本研究使用波长为355nm的Nd∶YAG脉冲激光器,对镀溶胶-凝胶膜熔石英元件表面的SiO2颗粒污染物进行单发次激光干式清洗与气流置换系统辅助的激光清洗,使用暗场显微成像和数据分析平台对清洗效果进行了量化分析。对于未镀膜与镀溶胶-凝胶膜熔石英样品,单发次激光清洗对于粒径1μm以上的SiO2颗粒清洗效果明显,移除率最高可达82.96%。此外,提出了一种气流置换辅助的激光清洗方法,结果表明,此方法可进一步增强对光学表面颗粒污染的去除效果。