董宇超 王明, ** 解超明, 于云鹏 郝宇杰
1. 吉林大学地球科学学院,长春 1300612. 自然资源部东北亚矿产资源评价重点实验室,长春 130061
图1 北拉萨板块拉木那勒地区地质简图及采样位置(a)拉萨板块中-新生代岩浆岩分布简图(据Zhu et al., 2009);(b)研究区地质简图. BNSZ-班公湖-怒江缝合带;SNMZ-狮泉河-纳木错蛇绿混杂岩带;LMF-洛巴堆-米拉山断裂带;IYSSZ-印度-雅鲁藏布缝合带Fig.1 Simplified geological map of Lamunale in North Lhasa Block and the location of sampling(a) simplified Mesozoic-Cenozoic magmatic activity distribution of Lhasa Terrane (after Zhu et al., 2009); (b) simplified geological map of research area. BNSZ-Bangong-Nujiang suture zone; SNMZ-Shiquanhe-Nam Tso Mélange Zone; LMF-Luobadui-Milashan Fault; IYSSZ-Indus-Yarlung Zangbo Suture Zone
拉萨板块夹持于羌塘板块与喜马拉雅板块之间,同时又被洛巴堆-米拉山断裂和狮泉河-纳木错蛇绿混杂岩带分为北、中、南三部分,构造背景十分复杂。拉萨板块上分布着大量从中生代到新生代的岩浆岩(朱弟成等, 2006, 2008; 马国林等, 2010; 吴珍汉等, 2014; 张硕等, 2014)。前人对这些岩浆岩的成因问题上存在较大的争论。在中、南拉萨板块上的中新生代岩浆岩普遍被认为与雅鲁藏布江新特提斯洋的北向俯冲有关,如平板俯冲、板片回返、板片断离、洋脊俯冲等(丁慧霞等, 2015; 王珍珍等, 2017);也有部分学者认为藏东大规模出露的白垩纪岩浆岩可能与澳大利亚同时期的岩浆岩具有亲缘性(朱弟成等, 2013);而学者们对于北拉萨板块上广泛分布的白垩纪岩浆岩的成因问题仍然具有较大的争论,主要争议在于这些岩浆岩究竟是与新特提斯洋板片北向俯冲有关还是与班公湖-怒江洋(后简称班-怒洋)南向俯冲作用有关,亦或是该期岩浆岩是狮泉河-永珠-嘉黎蛇绿混杂岩带闭合的产物(Wenetal., 2008)。本文对北拉萨板块尼玛县西约150km的拉木那勒地区新识别出的晚白垩世埃达克岩开展研究,通过锆石U-Pb同位素定年、全岩地球化学研究,并结合区域上已发表的数据,旨在对北拉萨板块的晚白垩世岩浆岩的成因及构造意义提供约束。
青藏高原位于特提斯构造域的东段,是世界上平均海拔最高的高原之一,具有全球罕见的地质形迹,是地质学研究的理想场所。研究表明,青藏高原是古生代以来冈瓦纳大陆北侧裂解的块体之间洋盆俯冲增生及相互聚敛碰撞形成的巨型拼贴体,后经历新生代(70~40Ma)印度大陆与欧亚大陆碰撞作用的产物,是研究陆-陆碰撞、造山隆升、海陆转换等地质作用的理想场所(Powell and Conaghan, 1973; Molnar and Tapponnier, 1975; 潘桂棠等, 1997; Yin and Harrison, 2000; 徐志琴等, 2013)。拉萨板块位于青藏高原的中南部,南北两侧分别与喜马拉雅板块和羌塘板块相邻,并分别以印度-雅鲁藏布江缝合带和班公湖-怒江缝合带(后简称班-怒带)为界线;拉萨板块从北到南分为北拉萨板块(NL)、中拉萨板块(CL)和南拉萨板块(SL),以洛巴堆-米拉山断裂(LMF)和狮泉河-纳木错蛇绿混杂岩带(SNMZ)为界线(图1a)。拉萨板块之上广泛发育中、新生代的岩浆岩,南拉萨板块地壳大部分为新生地壳且仅有少部分的前寒武纪基底被保留下来(Moetal., 2008; Jietal., 2009; Zhuetal., 2013),以分布广泛的三叠-白垩纪冈底斯岩基为特征(Chuetal., 2006; Moetal., 2008; Wenetal., 2008)。中拉萨板块主要以大范围出露晚侏罗-早白垩世的海陆交互相沉积地层、则弄群火山岩和早白垩世的侵入岩为特征(王珍珍等, 2017)(图1a)。
研究区位于北拉萨板块尼玛县西约150km的拉木那勒地区(图1a, b),区域内出露的地层较为简单,主要由下白垩统朗山组生物碎屑灰岩、含生物碎屑泥晶灰岩和上白垩统马莫勒组砂砾岩组成。区内断裂构造发育,在研究区中部发育两条近东西延伸的逆断层和一条近南北向延伸的断层,分割了晚白垩世的侵入体和朗山组二段生物碎屑灰岩地层。拉木那勒岩体位于研究区的中部,整体出露面积约3km2(图1b),与朗山组灰岩和复理石片岩呈侵入接触关系,在接触边界可见矽卡岩化和角岩化现象(图2a),岩石受后期改造作用明显,风化破碎严重,部分露头可见基岩出露(图2b-d)。
图2 拉木那勒埃达克岩及竟柱山组砾岩野外照片(a)花岗闪长岩(N17T1)与朗山组灰岩的侵入接触界线;(b)二长花岗岩(N17T44)近景照片;(c)花岗闪长岩(N17T1)近景照片;竟柱山组砾岩远景照片(d)和近景照片(e)Fig.2 The field photos of the Lamunale adakites and Jingzhushan conglomerates(a) intrusive boundary between the limestone of Langshan Formation and granodiorite (N17T1); (b) the close-up photo of sample (N17T44); (c) the close-up photo of sample (N17T1); the distant phoot (d) and the close up photo (e) of Jingzhushan Fortmation conglomerate
本次研究我们重点采集了拉木那勒岩体中的花岗闪长岩样品(N17T1、N17T8、N17T9)和二长花岗岩样品(N17T44)。花岗闪长岩较为新鲜,表面呈灰白色或灰黄色,花岗结构,块状构造(图2c),矿物组成为石英(35%~45%)、钾长石(15%~25%)、斜长石(30%~40%)以及少量的角闪石(5%~10%)。石英多呈他形粒状(图3a-c),粒度在0.1~0.2mm;斜长石多呈自形-半自形板状,粒度在0.4~0.6mm,大多数的斜长石发育典型的聚片双晶结构,部分样品(N17T8)的斜长石发育良好的环带结构(图3b);角闪石具有一定的蚀变,自形程度较低,多呈他形板状(图3a-c),粒度在0.3~0.5mm。二长花岗岩整体为灰白色带黄褐色调,岩石表面有一定的蚀变现象(图2b),但岩石内部较为新鲜,矿物组成为石英(30%~40%)、钾长石(25%~35%)、斜长石(25%~35%)以及少量的角闪石(<5%)。钾长石成自形-半自形板状或粒状形态,表面有轻微的高岭土化(图3d),粒度在0.2~0.4mm;斜长石呈灰白色,聚片双晶不明显,粒度在0.3~0.5mm之间。野外共采集4件年龄样品 (样品号及采样坐标分别为N17T1:N31°45′42″、E86°4′10″;N17T8:N31°45′12″、E86°4′35″;N17T9:N31°45′44″、E86°6′15″;N17T44:N31°44′48″、E86°6′48″)和18件地球化学样品。
图3 拉木那勒埃达克岩镜下照片Pl-斜长石;Hb-角闪石;Q-石英;Or-正长石;ZP-环带的斜长石Fig.3 Photomicrographs of the Lamunale adakitesPl-plagioclase; Hb-hornblende; Q-quartz; Or-orthoclase; ZP-zoned plagioclase
样品锆石的分选和收集在河北省地质调查研究院实验室完成,在双目镜下挑选干净透明、无裂隙、无包裹体的锆石颗粒至环氧树胶中,后进行打磨剖光,使锆石的中心位置暴露出来,锆石的阴极荧光图像(CL)在中国地质科学院完成,锆石的LA-ICP-MS原位分析在中国地质大学(北京)地学实验中心进行,ICP-MS采用美国Agilent科技公司的7500a型,剥蚀系统为美国New Wave公司的UP193SS型。激光束斑直径36μm,剥蚀时间为45s,载气为氦气,流速为0.7L/min,锆石91500和QH为外标样进行同位素比值校正,Si为内标计算,更详细的分析步骤参照Yuanetal. (2004),普通Pb元素的校正采用Anderson (2002)。最后使用GLITTER 4.4软件对同位素数据处理,用Isoplot/Ex(version 4.15)软件绘制U-Pb谐和图与计算年龄加权平均值(Ludwig, 2003)。
样品在河北省地质调查研究院实验室无污染碎至200目,之后在中国地质大学(北京)地学实验中心完成全岩主量及微量元素分析。烧失量(LOI)是将1g样品至于熔炉中以980℃加热4~6个小时,随后在干燥器中冷却至常温重新称重计算得来。全岩主量元素分析采用美国Agilent科技公司的7500a型等离子体质谱仪(ICP-MS)测试,测试精度采用国际岩石参考物质AGV-2(USGS)与GSR-3。元素分析仪器为PS-950等离子提光谱仪,实测数据与推荐值具有相对偏差,分析精度通过测量值和推荐值之间的相对差异来估算,对于大部分样品,分析精度优于5%。更详细的实验步骤见参考文献(Huetal., 2013; Zhaietal., 2013)。
本文对3件花岗闪长岩样品(N17T1、N17T8、N17T9)和1件二长花岗岩样品(N17T44)进行了锆石U-Pb定年,分析结果见表1。
样品N17T1和N17T9的锆石自形程度高,整体呈灰白色或浅灰色,表面干净,包体较少,在个别颗粒内部保存有古老的继承核,锆石形态多呈短柱状或长柱状,锆石颗粒较大(75~150μm)且发育良好的岩浆震荡环带(图4a, c),锆石的Th/U比值在0.28~1.10之间,微量元素的稀土配分曲线表现出明显的Ce的正异常(Ce*=1.01~119)和Eu的负异常(Eu*=0.07~0.86),以及富集的重稀土等特征(图5a),我们认为二者为典型的岩浆成因锆石(Barbeyetal., 1995; Belousovaetal., 2002; Hoskin, 2005)。N17T1共进行了20个锆石颗粒的U-Pb同位素年代学分析,所有分析点的年龄结果十分集中,在锆石年龄谐和曲线中表现出良好的谐和性,206Pb/238U年龄在88~89Ma之间,加权平均年龄为88.6±0.4Ma(MSWD=0.26)(图 4a);N17T9共进行20个测试点的分析,其中6个分析点(01, 03, 08, 10, 12, 17)偏离谐和线,另外14个测点表现出较好的谐和性,年龄结果分布非常集中,206Pb/238U年龄在88~89Ma,加权平均年龄为88.4±0.5Ma(MSWD=0.24)(图4c)。
图4 拉木那勒埃达克岩锆石U-Pb年龄谐和图及典型锆石阴极发光图像Fig.4 Zircon U-Pb concordia diagrams and representative CL images of Lamunale adakites
表1拉木那勒埃达克岩锆石U-Pb年龄数据
Table 1 Zircon U-Pb isotopic data of the Lamunale adakites
测点号PbThU(×10-6)Th/U207Pb/206Pb207Pb/235U206Pb/238U207Pb/235U(Ma)206Pb/238U(Ma)比值±1σ比值±1σ比值±1σ年龄±1σ年龄±1σN17T1花岗闪长岩,20个有效测点,206Pb/238U加权平均年龄88.6±0.4Ma(MSWD=0.26)T1-012.483.3148.60.60.04770.00310.09110.00600.01380.0002896891T1-023.463.6229.20.30.04930.00220.09380.00420.01380.0002914881T1-036.0206.0372.60.60.04780.00160.09080.00290.01380.0002883881T1-0410.0444.7601.00.70.04790.00120.09130.00230.01380.0002892891T1-051.233.277.30.40.04740.00510.09060.00970.01390.0002889891T1-064.2137.0263.90.50.04770.00180.09120.00340.01390.0002893891T1-071.837.1116.70.30.04790.00310.09150.00590.01390.0002895891T1-084.3166.7262.90.60.04750.00180.09040.00340.01380.0002883881T1-096.1239.3375.30.60.04900.00170.09310.00320.01380.0002903881T1-102.791.6169.90.50.04780.00230.09130.00430.01390.0002894891T1-114.4110.0285.20.40.04780.00180.09100.00340.01380.0002883881T1-124.8141.6303.10.50.04780.00170.09100.00310.01380.0002883881T1-132.565.8161.10.40.04760.00260.09090.00500.01380.0002885891T1-146.1161.4395.30.40.04780.00150.09160.00280.01390.0002893891T1-159.1283.1580.40.50.04810.00140.09110.00260.01380.0002892881T1-164.9180.3305.60.60.04780.00170.09080.00330.01380.0002883881T1-175.6178.7353.20.50.04790.00150.09140.00280.01380.0002893891T1-183.596.8220.80.40.04780.00220.09140.00420.01390.0002894891T1-193.4102.8215.90.50.04780.00190.09170.00370.01390.0002893891
续表1
Continued Table 1
测点号PbThU(×10-6)Th/U207Pb/206Pb207Pb/235U206Pb/238U207Pb/235U(Ma)206Pb/238U(Ma)比值±1σ比值±1σ比值±1σ年龄±1σ年龄±1σT1-203.5102.3226.60.50.04780.00190.09110.00360.01380.0002883881N17T8花岗闪长岩,1个最小206Pb/238U年龄88MaT8-016.987.9199.00.40.07260.00290.28350.01090.02830.000425391802T8-027.1271.7262.81.00.04860.00160.13700.00450.02040.000313041302T8-037.678.355.11.40.05990.00180.80600.02360.09750.0012600136007T8-045.763.1112.00.60.05180.00160.31200.00980.04360.000627682753T8-0531.760.3215.60.30.06630.00121.23720.02290.13530.0016818108189T8-065.5305.3311.21.00.04780.00170.09050.00310.01370.0002883881T8-0721.6101.2274.70.40.05670.00120.53510.01160.06840.000843584275T8-0836.1178.3284.40.60.07750.00141.05320.01990.09850.0012730106067T8-0915.779.3146.50.50.05900.00120.75070.01570.09220.001156995697T8-1021.393.6203.90.50.05720.00110.72660.01490.09220.001155595687T8-112.225.338.40.70.05270.00440.34160.02810.04700.0007298212964T8-1237.1532.6381.91.40.05540.00110.52720.01040.06900.000843074305T8-1357.8125.1323.90.40.07220.00131.57210.02930.15780.00199591294510T8-1418.892.7130.20.70.06410.00141.07780.02370.12200.0015743127429T8-158.5180.9399.40.50.05680.00170.14750.00440.01880.000214041202T8-168.6226.9352.40.60.04880.00160.13760.00460.02050.000313141312T8-1789.8158.9221.40.70.11240.00205.12760.09490.33080.0040184116184219T8-1810.4356.2402.20.90.04650.00220.13040.00580.02040.000312451302T8-199.3272.3363.30.70.04870.00160.14130.00460.02100.000313441342T8-203.0110.4125.40.90.04840.00280.12460.00710.01870.000311961192N17T9花岗闪长岩,14个有效测点(不包含01, 03, 08, 10, 12, 17),206Pb/238U加权平均年龄88.4±0.5Ma(MSWD=0.24)T9-0135.2141.7344.00.40.06120.00090.74210.01140.08790.001056475436T9-0211.4690.9629.51.10.04780.00140.09070.00260.01380.0002882881T9-0311.1367.2478.10.80.04850.00120.12760.00310.01910.000212231221T9-041.126.968.60.40.04780.00630.09220.01210.01400.00029011891T9-053.6112.9228.90.50.04790.00220.09090.00410.01380.0002884881T9-062.389.7141.00.60.04770.00300.09120.00560.01390.0002895891T9-073.0127.4177.60.70.04790.00290.09100.00550.01380.0002885881T9-0859.851.2114.10.40.04610.00360.08460.00660.01330.000282685.31T9-094.0175.7232.10.80.04970.00220.09430.00420.01380.0002914881T9-105.7265.3356.80.70.04770.00170.08570.00300.01300.0002833831T9-112.268.7133.80.50.04770.00320.09130.00600.01390.0002896891T9-122.685.1127.10.70.04820.00290.11220.00660.01690.000210861081T9-135.8272.4339.80.80.04950.00200.09470.00370.01390.0002923891T9-143.2131.3191.10.70.04780.00240.09090.00460.01380.0002884881T9-151.027.858.70.50.04790.00810.09130.01540.01380.00028914892T9-166.6244.4407.80.60.04790.00140.09160.00280.01390.0002893891T9-174.5166.2173.31.00.04860.00200.13670.00560.02040.000313051302T9-184.0174.0239.10.70.04770.00240.09080.00460.01380.0002884881T9-195.9153.4385.60.40.04780.00180.09110.00340.01380.0002893881T9-201.744.2109.80.40.04780.00370.09100.00700.01380.0002887881N17T44二长花岗岩,1个最小206Pb/238U年龄92MaT44-0197.6298.7451.70.70.08370.00272.07250.06250.17950.0023114021106413T44-0210.3220.2477.10.50.04880.00220.12530.00540.01860.000212051192T44-0344.2234.1903.10.30.06850.00110.43840.00710.04640.000636952933T44-0415.233.2202.30.20.05920.00120.59110.01260.07240.000947284505T44-0533.392.1250.50.40.07560.00131.32390.02310.12690.0015856107709T44-0661.0123.4432.20.30.06930.00101.27570.02020.13350.001683598089T44-0778.5436.1320.11.40.09690.00142.51020.03910.18780.0022127511110912T44-0824.345.2200.40.20.06800.00171.28330.02760.13680.0016838128279T44-097.9233.1480.50.50.05040.00160.09940.00310.01430.0002963921T44-1023.1248.6663.80.40.09480.00160.44970.00800.03440.000437762183T44-119.1158.7435.90.40.05160.00130.13890.00360.01950.000213231252T44-124.492.1250.30.40.04560.00270.10080.00590.01600.00029751021T44-13142.8109.3698.00.20.09330.00132.41820.03630.18790.0022124811111012T44-142.440.0144.10.30.05020.00380.10890.00830.01570.000210581012T44-156.1160.0363.70.40.04860.00200.10000.00400.01490.0002974961
图5 拉木那勒埃达克岩锆石球粒陨石标准化稀土元素配分曲线(a,标准化值据Boynton, 1984)与U/Yb-Y锆石成因判别图解(b,底图据Grimes et al., 2007)Fig.5 Chondrite-normalized REE patterns (a, normalization values after Boynton, 1984) and U/Yb vs. Y genesis discrimination diagram (b, base map after Grimes et al., 2007) of the zircon from Lamunale adakites
图6 拉木那勒埃达克岩岩石类型和系列划分图解(a) R1-R2分类图解(据LeBas et al., 1986);(b) K2O-SiO2图解(据Hastie et al., 2007). 区域数据据余红霞等, 2011; 张硕等, 2014; Sun et al., 2015;图7-图10数据来源同此图Fig.6 Classification and series diagrams of the Lamunale adakites(a) R1 vs. R2 diagram (after LeBas et al., 1986); (b) K2O vs. SiO2 (after Hastie et al., 2007). Regional data according to Yu et al., 2011; Zhang et al., 2014; Sun et al., 2015; also in Fig.7-Fig.10
图7 埃达克岩(La/Yb)N-YbN (a)和Sr/Y-Y (b)判别图解(据Defant and Drummond, 1990)Fig.7 (La/Yb)N vs. YbN (a) and Sr/Y vs. Y (b) discrimination diagrams of adakites (after Defant and Drummond, 1990)
图8 拉木那勒埃达克岩原始地幔标准化微量元素蛛网图(a, 标准化值据Sun and McDonough, 1989)与球粒陨石标准化稀土元素配分曲线图(b, 标准化值据Boynton, 1984)Fig.8 Primitive mantle-normalized trace-element spidergrams (a, normalization values after Sun and McDonough, 1989) and chondrite-normalized REE patterns (b, normalization values after Boynton, 1984) of the Lamunale adakite
样品N17T8和N17T44锆石形态类似,均呈半自形-自形的短柱状或菱形形态,锆石颗粒较N17T1和N17T9略小,长径粒度在60~100μm之间,长宽比在1:1~2:1之间。与另外2件测年样品不同的是,在N17T8和N17T44部分锆石中保留着较大的古老的核部(图4b, d),表现出类似变质成因锆石的核边结构,但与变质锆石不同的是,锆石普遍自形程度高,且Th/U在0.16~1.42之间,锆石轻重稀土分异明显,不具备重稀土亏损的特征(图5a),这都表明了二者为典型的岩浆成因锆石而非变质成因锆石(Hoskin and Schaltegger, 2003; Chenetal., 2010)。这2件样品在锆石U-Pb年龄谐和图上未能形成有效的谐和年龄,一方面由于古老继承核的影响,另一方面也可能是由于Pb丢失的原因导致。可以通过构筑不一致线与谐和线的交点来分析其年龄,就所研究的2件样品而言,由于它们可能形成于相对年轻的时代,因此通过下交点的年龄来判断岩体的形成时代是确定分析样品年龄的有效手段,N17T8的下交点年龄为95Ma,N17T44的下交点年龄为89Ma,所以,通过前文的分析,我们认为这2件样品的结晶年龄也应在晚白垩世时期。
18件地球化学样品整体较为新鲜,烧失量(LOI)在1.01%~2.06%之间,详细分析结果见表2。
拉木那勒花岗闪长岩包括样品整体具有高含量的SiO2(68.56%~72.21%)、Al2O3(12.88%~15.00%)和 Na2O(3.17%~4.67%),低含量的MgO(1.13%~1.86%)和K2O(1.61%~2.65 %)。在R1-R2岩石定名图解中,样品全部落入花岗闪长岩区域(图6a)。微量元素方面,样品表现出高的Sr含量(247.2×10-6~522.0×10-6)、高的Sr/Y比值(26.7~83.8)以及低的Y含量(6.14×10-6~10.03×10-6)和Yb含量(0.46×10-6~0.73×10-6),在YbN-(La/Yb)N和Y-Sr/Y地球化学判别图解中,样品全部落入埃达克岩区域(图7a, b)。另外,样品具有低含量的Co(4.10×10-6~8.91×10-6)和Th(1.94×10-6~5.06×10-6),所有样品都落入了钙碱性系列(图6b);在原始地幔标准化微量元素蛛网图上,拉木那勒花岗闪长岩富集大离子亲石元素(LILES)K、Rb、Ba等,亏损高场强元素Nb、Ta、Ti等(图8a);在球粒陨石标准化稀土配分曲线中,样品整体轻重稀土分异作用较弱((La/Yb)N=17.3~20.6),表现轻微的轻稀土(LREE)富集和重稀土(LREE)亏损以及弱的铕异常(Eu*=0.27~0.30)(图8b)。
拉木那勒二长花岗岩地球化学特征与花岗闪长岩类似,整体表现为高含量的SiO2(68.12%~70.67%)、Al2O3(15.16%~17.02%)、Na2O(6.41%~6.94%)以及极高的Sr(613.2×10-6~683.0×10-6)和Sr/Y比值(134~145),相对低的MgO(0.88%~1.00%)、K2O(0.87%~1.03 %)以及Y(4.58×10-6~4.77×10-6)和Yb(0.33×10-6~0.34×10-6)含量。在R1-R2岩石定名图解中,样品全部落入二长花岗岩区域(图6a)。样品具有极高的Sr含量,高的Al2O3含量和Sr/Y比,低的Y、Yb等地球化学特征与典型的埃达克岩十分相符,并且样品在YbN-(La/Yb)N和Y-Sr/Y地球化学判别图解中也全部落入了埃达克岩的区域(图7a, b)。与拉木那勒花岗闪长岩类似,二长花岗岩在球粒陨石标准化稀土配分曲线中表现较弱的轻重稀土的分异((La/Yb)N=17.6~18.6)以及轻微的铕异常(Eu*=0.35~0.38)(图8b)。另外,在原始地幔标准化微量元素蛛网图上,拉木那勒二长花岗岩同样富集大离子亲石元素(LILES)K、Rb、Ba等,亏损高场强元素Nb、Ta、Ti等(图8a)。
自20世纪70年代以来,地质学界掀起了对花岗质岩石的分类热潮,约有20余种对花岗岩的分类方案被提出(Chappell and White, 1974; Chappell, 1999),而“埃达克岩”的分类方案就是在这种大背景下由Defant and Drummond (1990)最早提出。“埃达克岩”起初被认为是一种由俯冲的年轻且热的洋壳在榴辉岩相条件下熔融形成的一类具特殊地球化学特征的中酸性火成岩(Defant and Drummond, 1990; 王强等, 2008)。这些岩石通常具有以下特征:SiO2>56%,Al2O3>15%,MgO<3%,Sr/Y比值(>20),La/Yb比值(>20),亏损Y(<18×10-6)和重稀土元素(HREE)(Yb<1.9×10-6),高的Sr(>400×10-6或300×10-6),无或正Eu、Sr异常,贫高场强元素(HFSE)等(Martin, 1999; Clemens, 2003; Castillo, 2006, 2012; 王强等, 2008)。拉木那勒侵入体(花岗闪长岩和二长花岗岩)整体上具有高含量的SiO2(68.12%~72.21%)和Al2O3(12.28%~17.02%)和高的Sr/Y比值(26.7~145)、La/Yb比值(24.1~28.4)、低含量MgO(0.88%~1.86%)、Y(4.58×10-6~10.03×10-6)和Yb(0.33×10-6~0.73×10-6),地球化学组成上十分符合埃达克岩的特征,另外在YbN-(La/Yb)N和Y-Sr/Y判别图解中,所有样品都落入埃达克岩的区域(图7a, b),以上特征都表明了拉木那勒花岗闪长岩和二长花岗岩属于埃达克岩。样品N17T8具有更低的Sr含量(247.2×10-6~274.6×10-6),镜下观察样品发现其发育有环带明显的斜长石斑晶,由于斜长石在结晶过程会吸收一定量的Sr,可能会导致样品Sr含量的降低,但与之相悖的是斜长石斑晶的大量结晶作用又会使岩体里的Eu出现负异常,而该样品并未表现出明显的Eu的负异常。因此,我们认为N17T8样品中Sr含量的偏低不是由斜长石结晶作用所致,而是源区的Sr含量偏低导致(Zhuetal., 2009)。
埃达克岩提出伊始被认为是形成于年轻的(≤25Ma)与俯冲大洋岩石圈有关的岛弧环境中的火山岩或侵入岩(Defant and Drummond, 1990)。其不仅具有某些特殊的地球化学特征,还被认定与特定的构造背景相关(洋壳的部分熔融)。随后,越来越多的研究证明,具有与埃达克岩相似地球化学特征的岩石不仅可以出现在岛弧环境,而且在很多陆陆碰撞造山带、板内伸展等构造背景中都发现了埃达克岩的存在(王强等, 2008)。因此,越来越多的地质学者将“埃达克岩”的岩石分类方案仅仅定义为具有某些特定地球化学特征的岩石,而与岩石形成的构造背景无关。最近的研究表明,埃达克岩的成因主要分为以下5种:(1)洋壳部分熔融有或无地幔楔组分的加入(Defant and Drummond, 1990; Rappetal., 1999; Martinetal., 2005; Zhangetal., 2010; Eyubogluetal., 2011);(2)在高压下原始玄武质岩浆的分离结晶与同化混染(Defant and Drummond, 1990; Castilloetal., 1999; 康志强等, 2009);(3)酸性与基性岩浆的混合作用(Guoetal., 2007; Strecketal., 2007);(4)增厚下地壳或拆沉下地壳高温条件下的部分熔融(Wangetal., 2005; 王强等, 2008; Lai and Qin, 2013);(5)俯冲陆壳的部分熔融(王强等, 2008; Lai and Qin, 2013)。
拉木那勒埃达克岩具有高的SiO2含量(68.12%~72.21%),在稀土配分曲线中无明显的铕异常(0.27~0.35),表明了其不是原始玄武质岩浆高压下持续分离结晶与同化混染的产物。由于玄武质岩浆不可能直接形成酸性岩浆岩,地幔岩浆必须经历显著的分离结晶作用才能形成花岗质岩石,因此,这个过程必定会在区域上形成大量的基性岩浆岩(Fanetal., 2016; Wuetal., 2016),然而,区域研究结果表明在研究区附近的基性岩浆岩十分匮乏。另外,在Rb/Nd-Rb、La/Sm-Sm、La-La/Yb和Th/Nb-Th图解中(图9),也表明了拉木那勒侵入体并不是原始基性岩浆分离结晶的产物;拉木那勒侵入体中含有大量古老的继承锆石,研究表明,在俯冲碰撞的构造环境下,一般只有陆壳物质的熔融才会形成大量的继承锆石,而洋壳直接熔融形成的岩浆岩中继承锆石往往也是由于陆壳物质的熔融所致。此外,锆石的微量元素分析表明样品锆石具有相对高的U/Yb比值和低的Y含量,在U/Yb-Y图解中,研究锆石全部落入大陆成因锆石的区域,这也进一步说明了拉木那勒侵入体并不是洋壳直接熔融的产物(Grimesetal., 2007)(图5b)。拉木那勒岩体普遍具有高的SiO2含量,而且在岩石中没有基性岩捕掳体的存在,表明其并非酸性岩浆与基性玄武质岩浆混合形成的产物,这也与区域上基性岩浆岩整体出露十分匮乏相一致。前人研究表明,由于在班-怒洋两侧块体普遍缺失140~130Ma的岩浆活动,班-怒洋在此期间可能已经闭合,北拉萨板块与南羌塘板块发生弧-弧软碰撞(Zhuetal., 2016),拉木那勒侵入体侵位年龄在晚白垩世时期,此时北拉萨板块与南羌塘板块碰撞已过去40~50Ma,即使存在陆壳俯冲过程,陆壳也应该早已发生断离或熔融入地幔楔组分,无法在晚白垩世由熔融作用形成岩浆岩。
图9 拉木那勒埃达克岩岩石成因判别图解(a) Rb/Nd-Rb(据Schiano et al., 2010);(b) La/Sm-La(据Wu et al., 2015);(c) La-La/Yb(据Sun et al., 2015);(d) Th/Nb-Th(据Sun et al., 2015)Fig.9 Discrimination diagrams of petrogenesis of Lamunale adakites(a) Rb/Nd vs. Rb (after Schiano et al., 2010); (b) La/Sm vs. La (after Wu et al., 2015); (c) La vs. La/Yb (after Sun et al., 2015) (d) Th/Nb vs. Th (after Sun et al., 2015)
图10 拉木那勒埃达克岩哈克图解不同埃达克岩成因区域划分据Wang et al. (2005); Lai and Qin (2013)Fig.10 Harker diagrams for the Lamunale adakitesFields representing different genesis of adakite according to Wang et al. (2005); Lai and Qin (2013)
综上所述,我们认为拉木那勒埃达克岩可能是增厚或拆沉下地壳部分熔融的产物,在主量元素与微量元素的哈克图解中,研究样品表现弱的相关性并且全部落入增厚下地壳的区域(图 10)。一般来说,由拆沉地壳部分熔融形成的埃达克岩,在岩浆上涌过程中受地幔组分的作用,往往具有高的MgO、Cr和Ni含量(Smithies, 2000; Prouteauetal., 2001; Martinetal., 2005; 余红霞等, 2011),拉木那勒埃达克质岩具有较低的MgO(0.88%~1.86%)、Ni(4.89×10-6~24.58×10-6)和Cr(6.19×10-6~47.16×10-6)含量,表明其不太可能是拆沉下地壳部分熔融的产物,而是与那些增厚下地壳部分熔融形成的埃达克岩类似,在哈克图解中拉木那勒埃达克岩大部分落入增厚下地壳成因的区域(图10)。另外,前人在藏北尼玛县尼则地区的岩体中发现了89~89Ma的埃达克岩,具有较高的La/Yb比值(12~26.2),被认为可能是下地壳增厚超过30km部分熔融的产物(Liuetal., 2019),相比之下,拉木那勒岩体具有更高的La/Yb值(24.1~28.7),因此,我们认为拉木那勒侵入体可能是地壳增厚超过40km部分熔融的产物(图11)。
图11 北拉萨板块白垩世时期(120~88Ma)地球动力学演化示意图(a,据Zhu et al., 2016)(a)早白垩世时期地球动力学模型;(b)晚白垩世时期地球动力学模型Fig.11 Schematic illustrations showing the geodynamic evolution of the North Lhasa Block during the Cretaceous (120~88Ma) (a, after Zhu et al., 2016)(a) geodynamic model during the Early Cretaceous; (b) geodynamic model during the Late Cretaceous
北拉萨板块分布着大量的晚白垩世岩浆岩(100~79Ma),整体呈近东西条带状分布,延伸超过1000km,如此大规模的岩浆活动很可能是区域上某些构造运动作用的结果,然而有关北拉萨板块晚白垩世地球动力学背景的研究一直没有定论,主要可以归纳为3点:(1)狮泉河-纳木错蛇绿混杂岩带闭合的产物;(2)班-怒洋闭合的产物;(3)雅鲁藏布江新特提斯洋北向平板俯冲的产物。
拉木那勒埃达克岩出露位置夹持于班-怒带与狮泉河-永珠-嘉黎蛇绿混杂岩带之间(图1a),研究表明在晚白垩世时期,两个大洋均已闭合,拉萨板块和南羌塘板块发生碰撞(Chenetal., 2014, 2015; Wangetal., 2014),同时期竟柱山组复成分砾岩(96~88Ma)角度不整合覆盖在朗山组灰岩(113~96Ma)之上,被认为是海陆相转化快速造山的重要证据(Sunetal., 2015; 李华亮等, 2016)。根据报道,在狮泉河-永珠-嘉黎蛇绿混杂岩带出露大量的板内玄武岩(Chenetal., 2014; Suietal., 2013)、A型花岗岩和双峰式火山岩,这表明其明显处于伸展的构造背景,狮泉河-纳木错蛇绿混杂岩带可能是班-怒洋的弧后洋盆,很难形成拉木那勒埃达克岩。Wenetal. (2008)认为冈底斯岩浆带上的晚白垩世埃达克岩是雅鲁藏布江洋北向平板俯冲的产物,而平板俯冲由于在俯冲过程中往往会形成隔热层,一般不会形成岩浆作用(Gutscheretal., 2000),而在拉萨板块南缘发现众多白垩世岛弧成因的岩浆岩(Jietal., 2009),这与平板俯冲的模式相悖。另外,对中、北拉萨板块地壳厚度的研究表明,中冈底斯板块具有比北拉萨板块更大的地壳厚度,反映拉萨板块由北向南陆壳成熟度逐渐变高的特征,暗示岩浆活动南向俯冲的极性(朱弟成等, 2006)。
近些年的研究表明,班-怒洋可能存在双向俯冲过程(Zhuetal., 2016),在羌塘板块南缘和中北拉萨板块分布的大量早白垩世岩浆岩被认为是双向俯冲的重要证据(康志强等, 2009, 2010; Zhangetal., 2017)。Zhuetal. (2016)认为班-怒洋洋壳向南俯冲过程中在120~110Ma发生板片断离,在之后进入陆-陆碰撞阶段,拉萨与羌塘板块持续的拼贴导致了北拉萨板块地壳的加厚与区域显著构造缩减(Kappetal., 2007)。另外,在研究区广泛发育一套晚白垩世的竟柱山组沉积建造,竟柱山组属于典型的磨拉石建造,厚度巨大,前人认为,竟柱山组是班-怒洋闭合后快速造山的产物,是古大洋闭合后转向陆相沉积环境的重要标志(李华亮等, 2016)。最新的研究结果表明,在研究区的竟柱山组砾岩中发现了88Ma的最小锆石U-Pb谐和年龄(数据未发表)(图2e),这与拉木那勒岩体的侵位时代一致,这也进一步佐证了在该时期研究区发育显著的地壳增厚与抬升。因此,综上所述,我们认为拉木那勒岩体是班-怒洋闭合后,陆-陆碰撞加厚下地壳部分熔融的产物(图11),而地壳增厚可能是解释北拉萨板块晚白垩世岩浆岩成因的一个重要形成机制。
(1)西藏尼玛县拉木那勒地区埃达克岩的侵位时代在88Ma左右,可能是北拉萨板块晚白垩世岩浆活动的产物。
(2)拉木那勒埃达克岩具有高SiO2、Al2O3、Sr、Sr/Y比值,低Y、Yb,轻稀土富集,轻重稀土分异明显,无明显负Eu异常等特征,具有埃达克岩的地球化学特征。
(3)拉木那勒埃达克岩可能是班-怒洋壳南向俯冲闭合后,陆-陆碰撞加厚下地壳部分熔融的产物,地壳增厚可能是解释北拉萨板块晚白垩世岩浆岩成因的一个重要机制。
致谢衷心的感谢《岩石学报》副主编俞良军对本文的耐心指导和帮助。感谢中国地质科学院唐菊兴研究员、宋扬副研究员以及中国科学院地质与地球物理研究所兰中伍副研究员对本文的细心指导及提出的宝贵意见。感谢吉林大学西藏科研队的老师及同学们为本文提供的无私帮助。