边缘计算对于工业物联网的重要性

2020-03-30 04:00
中国信息化周报 2020年6期
关键词:云端数据处理边缘

随着物聯网的发展,工业制造设备所产生的数据量将越来越多。如果这些数据都要放到云端处理,就需要无穷无尽的频谱资源、传输带宽和数据处理能力,“云”难免不堪重负,此时就需要边缘计算来分担云计算的压力。

“我们采集到的数据,90%都是垃圾,”位于江苏昆山的某工厂老板感叹道,“去年365天的每时每刻,我们几乎都进行了数据采集,采集到的数据却不知道该如何利用。与投入到采集数据的各种费用相比,我认为并不值得。”

一年的数据采集经历让这位老板对工业互联网丧失了最初的热情,甚至产生了这样的疑问:我们当前真的需要大量工业数据吗?

“只要增加几个工人就能解决的问题,我为什么要费力去采集数据,去搞工业互联网?还不一定有效果!”

的确,无论概念炒得多么热,如果不能解决企业核心问题,都是纸上谈兵。虽然数据本身很重要,但能直接解决问题的服务应用对企业才更有价值。当前,除了如何采集数据之外,绝大部分企业面对的关键问题是什么数据值得采集?确切地说,就是如何运用数据产生价值!

我们知道,工业数据的采集和传输基本都是“端-管-云”的模式。在应用的现场,“端”负责收集数据、执行指令,“管”打通数据的传输路径,而“云”负责所有的数据分析和控制逻辑功能。整套流程能否顺利打通,对数据采集、分析、应用能力至关重要。

然而,随着物联网的发展,工业制造设备所产生的数据量将越来越多。如果这些数据都要放到云端处理,就需要无穷无尽的频谱资源、传输带宽和数据处理能力,“云”难免不堪重负,此时就需要边缘计算来分担云计算的压力。比如一个公司,在规模小的时候,董事会可以对公司的管理达到事无巨细的程度,但是当公司发展到一定规模时,就需要给予一线员工必要的自主权力。所以,在工业现场的边缘侧进行数据采集、处理及传输的边缘计算网关承担着打通工业数据传输“任督二脉”的重任,再与云平台进行融会贯通——边云一体化,最后利用大数据分析,赋能生产,才能发挥工业数据的真正价值。

由此产生的两个关键问题是我们不得不面对的:第一,在大量工业数据下沉的情况下,数据的有效性该如何保证?第二,“边-云”一体化能给工业物联网带来什么价值?

随着工业物联网的发展,必然会出现更多的本地就近控制和现场数据,面对这些逐渐增多的现场数据,该如何处理才能在保证其有效性的同时又减少云计算的压力?

工业世界任何微小的提升都会带来很大的优势,工业世界任何微小的故障也可能带来很大的损失——工业现场的很多数据“保鲜期”很短,一旦处理延误,就会迅速“变质”,数据价值呈断崖式跌落,工业现场的数据处理可以称之为“走钢丝”。

此时,“边缘计算”便发挥了不可替代的作用。

如果把大脑比作云端,那么边缘计算就是神经末梢,对简单的刺激进行自处理并将处理的特征信息反馈给云端大脑。

尽管当前工业企业追求的核心问题是如何让数据赋能生产,产生价值。但是也不能忽视该进程中困扰工业企业多年的普遍性问题,数据处理的前置关键环节——如何采集数据?对于任何工业企业来说,挖掘数据金矿的第一步都是采集数据,不谈数据采集的大数据分析是空中楼阁,没有数据的工业云平台相当于无本之木。

在不同的工业生产过程中,由于自动化产品品牌众多,工业接口多样化、工业协议不统一,所以看似简单的数据采集并没有那么容易。

除了数据采集,在数据处理运用方面,由于工业现场的数据面临着“保鲜期”很短,以及大量“垃圾”数据并不需要传递到云端。虽然从产业角度来看,边缘计算发展如火如荼,但从应用角度来看,它还处于落地的前期。边缘计算与云计算的融合才能真正体现工业数据的价值。那么怎么理解边云协同呢?边云协同处理数据的关键在于数据的融合。

在工业场景中,一方面通过边缘计算直接运行实时分析算法,另一方面则利用边缘与云的协同,实现模型不断成长和优化,从而让边缘分析技术增强了平台实时分析能力。

当然,边云协同的能力与内涵落地到各应用场景时其具体能力与关注点又会有所不同,因为每种边缘计算业务形态对于与云计算协同的业务需求不尽相同。边缘计算对采集的数据有更强大的洞察和分析力。边缘计算的应用,即边缘计算网关的部署则会使数据产生的收益清晰可见,得以打消工厂老板对工业数据的疑虑,工业互联网才能真正落实到“一线”中去。

猜你喜欢
云端数据处理边缘
认知诊断缺失数据处理方法的比较:零替换、多重插补与极大似然估计法*
ILWT-EEMD数据处理的ELM滚动轴承故障诊断
云端之城
美人如画隔云端
一张图看懂边缘计算
行走在云端
云端创意
基于希尔伯特- 黄变换的去噪法在外测数据处理中的应用
基于POS AV610与PPP的车辆导航数据处理
在边缘寻找自我