绿肥、蚕沙有机肥配施化肥对免耕稻田土壤碳库平衡的影响

2020-02-22 11:20刘顺翱吴昊胡钧铭韦翔华刘开强蒙炎成李婷婷魏宗辉
南方农业学报 2020年11期

刘顺翱 吴昊 胡钧铭 韦翔华 刘开强 蒙炎成 李婷婷 魏宗辉

摘要:【目的】探索免耕稻田綠肥、蚕沙有机肥投入对土壤有机碳积累及CO2和CH4排放的影响,为保护性耕作稻田土壤碳固持及稻田减肥增效的农业有机资源可持续利用提供理论依据。【方法】在前期粉垄与常规耕作基础上,2018—2019年连续开展田间免耕试验,在同等养分投入条件下,设置绿肥、蚕沙有机肥与化肥配施模式,以常规施用化肥为对照,同步设不施肥空白对照,保护性耕作试验第2年,采用分离式静态箱—气象色谱法测定稻田温室气体CO2和CH4排放通量,同时在水稻返青期、分蘖期、齐穗期和收获期采集0~15 cm耕层土壤,测定土壤有机碳含量。【结果】在粉垄免耕模式下,蚕沙有机肥配施化肥处理耕层土壤有机碳含量在返青期和分蘖期较常规免耕模式提高56%和19%;水稻返青期、分蘖期、齐穗期和收获期粉垄免耕稻田绿肥配施化肥处理的土壤有机碳含量较单施化肥处理分别提高111%、30%、74%和31%,较不施肥处理分别提高90%、22%、58%和22%;蚕沙有机肥配施化肥处理较单施化肥处理分别提高148%、90%、48%和39%,较不施肥处理分别提高113%、78%、35%和29%。粉垄免耕模式下,与单施化肥处理相比,绿肥配施化肥处理的CO2累积排放量降低16.9%,蚕沙有机肥配施化肥处理降低15.1%;CH4排放通量出现2个峰值,常规免耕和粉垄免耕模式下,绿肥配施化肥处理的CH4排放通量峰值分别是单施化肥处理的7.69和7.61倍。绿肥和蚕沙有机肥配施化肥降低了稻田土壤CO2累积排放量,增加了CH4累积排放量。【结论】粉垄免耕稻田施用绿肥、蚕沙有机肥利于土壤有机碳积累,减少CO2温室气体排放,可作为一种稻田土壤固碳减排可持续生产应用技术。

关键词: 粉垄;化肥配施;免耕稻田;土壤有机碳;温室气体

中图分类号: S142;S141.9                                  文献标志码: A 文章编号:2095-1191(2020)11-2690-07

Effects of chemical fertilizer combined with green manure and silkworm excrement on soil carbon pool balance

in no-tillage paddy field

LIU Shun-ao1,2, WU Hao3, HU Jun-ming1*, WEI Xiang-hua2, LIU Kai-qiang4,

MENG Yan-cheng1, LI Ting-ting1, WEI Zong-hui1,2

(1Agricultural Resource and Environment Research Institute,Guangxi Academy of Agricultural Sciences, Nanning  530007,China; 2College of Agriculture, Guangxi University, Nanning  530004, China; 3Environmental Protection Research Institute of Guangxi, Nanning  530022, China; 4Guangxi Academy of Agricultural Sciences, Nanning  530007, China)

Abstract:【Objective】Exploring the effects of farmland organic resource input(no-tillage rice paddy green manure and silkworm excrement organic fertilizer) on the accumulation of soil organic carbon and the emission of CH4 and CO2,it could provide a theoretical basis for the sustainable utilization of farmland organic resource of soil carbon sequestration and reduce fertilizer and increase effectunder conservation tillage in paddy fields. 【Method】Based on the earlier stage of smash ridging and conventional tillage,the field non-tillage experiment was carried out continuously from 2018 to 2019. Under the same nutrient input conditions,two regional application modes of green manure,silkworm excrement and formula application of fertilizer were set up. The conventional application of chemical fertilizer was taken as the control,and the non fertilization blank control was set up simultaneously. In the second year of conservation tillage experiment,the se-parated static box meteorological chromatography was used to detect CH4 and CO2 emission fluxes of greenhouse gases in rice field,and 0-15 cm cultivated layer soil was collected in the rice returning to green,tillering,full heading and harves-ting periods. 【Result】Under the condition of no-tillage and smash ridging,the content of soil organic carbon in the ferti-lized layer of silkworm excrement and formula application of fertilizer increased 56% and 19% compared with the same fertilizing method of conventional no-tillage in the period of returning to green and tillering. Compared with the single application of chemical fertilizers,organic carbon content in soil in the green manure formula application treatments increased by 111%,30%,74% and 31% in four periods(regreening stage,tillering stage,full heading stahe and harvest stage) ,and increased by 90%,22%,58% and 22% compared with no fertilizer treatment. The silkworm excrement organic fertilizer and chemical fertilizer increased by 148%,90%,48% and 39% respectively compared with single fertilizer application,and increased by 113%,78%,35% and 29% compared with no fertilizer application. In the conventional no-tillage paddy field,compared with single fertilizer treatment, the CO2 cumulative emission flux of green manure organic fertilizer formula application treatment decreased by 16.9% and that of silkworm excrement organic fertilizer formula application treatment decreased by 15.1%. There were two peaks in CH4 emission flux,among which the highest value of CH4 emission flux of green manure organic fertilizer formula application treatment was 7.69 and 7.61 times as  that of single use of chemical fertilizer in conventional no-tillage cultivation and smash ridging no-tillage cultivation,respectively. The combination of green manure and silkworm excrement and formula application of fertilizer reduced the cumulative CO2 emissions from the paddy soil and increased the cumulative CH4 emissions. 【Conclusion】The application of green manure and silkworm excrement organic fertilizer in paddy field under powder ridge no-tillage is beneficial to soil organic carbon accumulation and reduces CO2 greenhouse gas emissions. It can be used as a sustainable production application technology for paddy soil carbon fixation and emission reduction.

Key words: smash ridging; fertilizer formula application; no-tillage rice field; soil organic carbon; greenhouse gas

Foundation item: National Natural Science Foundation of China(41661074);Guangxi Science and Technology Project(Guikezhong 1598014-4, Guike AA17204087-2, Guike AD18281089)

0 引言

【研究意义】气候变化影响人类可持续发展(秦大河,2014),响应气候变化,管控陆地碳循环变化倍受关注(Yang et al.,2003;Li et al.,2008)。农田生态系统作为土壤生态系统中碳的源和汇双重身份,在陆地碳循环中占有重要地位(孙文娟等,2008)。现代稻作集约化生产中化肥过量施用,土壤环境和生态问题面临严重挑战(潘根兴等,2011;Shen et al.,2018)。转变农业生产方式,研究稻田CH4和CO2的排放规律及土壤有机碳的动态变化,对缓解土壤温室气体排放,促进农业绿色发展具有重要意义。【前人研究进展】土壤有机碳库受“碳输入—碳分解—碳固持”动态平衡影响(孙国峰等,2010;Li et al.,2012;Zhang et al.,2017),作物根茬留田是农田生态系统中有机物归还的主要来源(蔡苗等,2013)。国内外学者围绕农田有机资源投入对土壤的影响进行了广泛研究。陈晓萍等(2011)研究表明,有机肥可提高化肥的利用率,改善土壤质量、提高土壤肥力;Wang等(2012)研究指出,生物碳投入农田后参与土壤养分循环与土壤碳固持;吴建富等(2013)认为秸秆还田影响土壤矿化,改变土壤碳素利用率;高嵩涓等(2015)认为绿肥还田促进了土壤有机物转化;马艳芹和黄国勤(2019)研究指出绿肥还田能影响土壤微生物量碳变化。谭英爱等(2020)研究表明,与冬闲田相比,种植绿肥不仅能增加土壤冬季覆盖面积,还能提高土壤有机碳、氮含量,改善生态环境。本课题组前期研究发现,快腐蚕沙促进了水稻安全生长与营养健康利用(胡钧铭等,2017),绿肥压青还田有助于调控土壤碳库环境(郑佳舜等,2019)。上述研究均表明,农田有机资源投入是影响土壤有机质与碳库环境的重要手段。【本研究切入点】近年来,粉垄深旋耕技术因利于作物增产已得到广泛应用(韦本辉等,2012),但粉垄耕作打破犁底层,影响耕层有机碳变化是业界关注的焦点。而免耕保护性耕作有助于减少土层耕层扰动(Pan et al.,2004),适宜的翻免结合有利于维持较高的农田土壤有机碳储量(胡钧铭等,2018)。因此,需进一步评估粉垄耕作免耕条件下农业有机资源化肥耦合对稻田土壤碳库平衡的影响。【拟解决的关键问题】从土壤有机碳、CO2和CH4排放及温室气体累积和碳源增温潜势角度,探索保护性耕作稻田农业有机资源投入对土壤有机碳积累及CO2和CH4排放的影响,以期为保护性耕作稻田土壤碳固持及稻田减肥增效的农业有机资源可持续利用提供理论依据。

1 材料与方法

1. 1 试验地概况

试验在广西农业科学院典型南方双季籼稻区定位试验基地进行,该区域属于亚热带季风气候,年均气温21.5 ℃,年均降水量1304.2 mm,相对湿度79%。供试土壤为黏性红壤水稻土,在稻田施肥前5点取样采集土壤样品并测定土壤基础理化性质,土壤背景值为有机质24.50 g/kg,全氮1.80 g/kg,全磷0.92 g/kg,全钾7.43 g/kg,水解性氮131.0 mg/kg,有效磷37.9 mg/kg,速效钾97.8 mg/kg。

1. 2 试验材料

试验选用三系籼型超级稻特优582;还田绿肥为紫云英,干基养分2.70%N、0.65%P2O5、2.50% K2O;蚕沙有机肥养分3.20%N、2.65%P2O5、4.91% K2O;化肥包括尿素(含N 46%)、过磷酸钙(含P2O5 15%)、氯化鉀(含K2O 62.7%)和复合肥(15%N-15% P2O5-15%K2O)。

1. 3 试验方法

在前期稻田粉垄耕作与常规耕作试验基础上,2018—2019年连续开展稻田免耕保护性耕作试验(分别记为粉垄免耕和常规免耕),按当地超级稻生产养分需求情况(N 240 kg/ha、P2O5 120 kg/ha、K2O 240 kg/ha)并参考课题组前期农业有机资源田间投入量(胡钧铭等,2017;郑佳舜等,2019),在同等养分投入的基础上,设绿肥、蚕沙有机肥与化肥不同配施处理,分别为100%化肥(复合肥800 kg/ha,尿素261 kg/ha,氯化钾191 kg/ha)、绿肥配施化肥(绿肥35586.56 kg/ha,过磷酸钙414.75 kg/ha,氯化钾28.35 kg/ha)、蚕沙有机肥配施化肥(蚕沙有机肥6543.08 kg/ha,尿素203 kg/ha,氯化钾24 kg/ha);以常规施用化肥为对照(C2和F2),同步设不施肥空白对照(C1和F1),试验共8个处理(表1),每处理3个重复,小区面积46 m2。移栽株行距为12 cm×24 cm,每穴2苗,分2次施肥,水稻移栽前底肥和移栽返青肥各施50%,于底肥施入2 d后移栽水稻,水稻移栽后至分蘖盛期晒田前保持田面3~5 cm水层,其他田间管理按超级稻高产生产规范进行。

1. 4 测定项目及方法

稻田CH4和CO2采集与测定采用静态箱—气相色谱法,分别在水稻移栽后5、8、11、15、20、30、40、50、60、70和80 d进行气体取样,共采集11次,每处理3个重复。耕层土壤样品分别在水稻返青期、分蘖期、齐穗期和收获期采用“S”形五点取样法采集,风干过筛后采用重铬酸钾加热法测定土壤有机碳含量(鲁如坤,1999)。参考郑佳舜等(2019)计算增温潜势(Carbon dioxide equivalent,CDE):

CDE(CO2)=fCO2×1

CDE(CH4)=fCH4×25

TCDE=CDE(CO2)+CDE(CH4)

式中,fCO2、fCH4為整个水稻生长季CO2和CH4的累积排放量,单位为kg/ha,TCDE为CO2和CH4的碳源增温潜势(CO2 kg/ha),即CO2和CH4排放量的总CO2当量。

1. 5 统计分析

采用Excel 2010进行数据整理和制图,以SPSS 19.0对不同处理间土壤有机碳、温室气体排放通量进行显著性方差分析,采用Duncans法进行多重比较。

2 结果与分析

2. 1 绿肥、蚕沙有机肥配施化肥对稻田耕层土壤有机碳的影响

由图1可看出,粉垄免耕模式下,稻田土壤有机碳含量各处理间表现为F4>F3>F1>F2;常规免耕模式下,稻田土壤有机碳含量均为C1处理最低,且水稻分蘖期和收获期的土壤有机碳含量表现为C3和C4处理高于C1和C2处理。说明绿肥、蚕沙有机肥配施化肥能提高土壤有机碳含量。在相同施肥模式下,不同免耕模式的稻田土壤有机碳含量在水稻不同生育期表现不同。在返青期和齐穗期,绿肥配施化肥处理表现为F3>C3,而分蘖期和收获期表现为C3>F3;蚕沙有机肥配施化肥处理返青期和分蘖期表现为F4>C4,齐穗期和收获期表现为C4>F4。单一投入化肥条件下,常规免耕土壤有机碳含量高于粉垄免耕,表现为C2>F2,且在各生育关键时期存在显著差异(P<0.05,下同)。粉垄免耕模式下,水稻生育前期蚕沙有机肥配施化肥处理的土壤有机碳含量最高,返青期和分蘖期分别为18.03和16.67 g/kg,较常规免耕稻田蚕沙有机肥配施化肥处理提高56%和19%。水稻返青期、分蘖期、齐穗期和收获期粉垄免耕稻田绿肥配施化肥处理的土壤有机碳含量较单施化肥处理分别提高111%、30%、74%和31%,较不施肥处理分别提高90%、22%、58%和22%;蚕沙有机肥配施化肥处理较单施化肥处理分别提高148%、90%、48%和39%,较不施肥处理分别提高113%、78%、35%和29%。

2. 2 绿肥、蚕沙有机肥配施化肥对稻田温室气体CO2排放通量的影响

从图2可看出,2种免耕模式不同施肥处理整个水稻生长季土壤CO2排放通量变化趋势基本一致。在水稻移栽初期,CO2排放缓慢,在移栽后15 d出现第1个小高峰,随后开始缓慢下降,在晒田时(移栽后40 d)降至最低,晒田后CO2排放通量快速升高,常规免耕稻田在移栽后50 d CO2排放通量达第2个高峰,粉垄免耕稻田在移栽后60 d CO2排放通量达第2个高峰,然后随着稻田复水,其变化趋势均逐渐下降。

由图2还可看出,相同施肥方式下,水稻移栽后0~15 d粉垄免耕稻田CO2排放通量整体上高于常规免耕稻田,15~40 d粉垄免耕稻田的CO2排放通量下降,常规免耕稻田C2、C3和C4处理的CO2排放通量逐渐下降,而C1处理表现为先上升再下降,且水稻生育早期排放较低时段同种免耕模式不同施肥处理的CO2排放通量差异不明显。水稻移栽后50 d,C2处理的CO2排放通量[48.04 mg/(m2·h)]是F2处理CO2排放通量[26.54 mg/(m2·h)]的1.2倍。水稻生长后期(移栽后60 d),此时CO2排放通量虽均已下降,但不同免耕模式下同一施肥处理CO2排放通量表现为F2处理[26.84 mg/(m2·h)]

2. 3 绿肥、蚕沙有机肥配施化肥对稻田温室气体CH4排放通量的影响

由图3可看出,常规免耕和粉垄免耕稻田的CH4排放通量变化趋势相似,其中绿肥配施化肥(C3和F3)处理的CH4排放通量明显高于其他处理,所有处理的CH4排放通量在整个水稻生长季基本呈2个高峰,即在移栽后15或20 d出现第1个小高峰,随后开始下降,至第40 d晒田时降至最低点,之后又逐渐上升,在移栽后70 d达第2个高峰,70 d后CH4排放通量开始转为下降。对比图3-A与图3-B可知,粉垄免耕稻田在收获前第80 d仍有CH4排放,而此时常规免耕稻田的CH4排放通量几乎为零。在CH4排放通量达峰值时,常规免耕稻田CH4排放通量表现为C3>C4>C1>C2,C3处理是C2处理的7.69倍;粉垄免耕稻田CH4排放通量表现为F3>F4>F2>F1,F3处理是F2处理的7.61倍。相同施肥处理下,CH4排放峰值表现为C3处理[6.62 mg/(m2·h)]>F3处理[6.47 mg/(m2·h)]、C2处理[0.86 mg/(m2·h)]>F2处理[0.85 mg/(m2·h)]。

2. 4 绿肥、蚕沙有机肥配施化肥对稻田碳源温室气体排放及增温潜势的影响

由图4可看出,水稻生育期内稻田CO2累积排放量高于CH4累积排放量,CO2在稻田土壤温室气体排放中处于主导地位。图4-A显示,同种施肥处理下,不同免耕模式的CO2累积排放量差异不显著(P>0.05,下同)。常规免耕模式下,C2处理的CO2累积排放量(385.77 kg/ha)最高,显著高于C1(177.07 kg/ha)和C3(137.31 kg/ha)处理;粉垄免耕模式下,不同施肥处理的CO2累积排放量表现为F1>F2>F4>F3,但差异不显著。图4-B显示,F3处理CH4累积排放量最高(41.28 kg/ha),其次为C3处理(24.09 kg/ha),其余处理的CH4累积排放量相对较低且均差异不显著;常规免耕稻田的CH4累积排放量表现为C3>C4>C2>C1,粉垄免耕稻田的CH4累积排放量表现为F3>F4>F2>F1。可见,绿肥、蚕沙有机肥的投入会降低CO2累积排放量,但同时会增加CH4累积排放量。

由表2可知,水稻生育期同种免耕模式不同处理稻田碳源增温潜势(TCDE)表现为C3>C2>C4>C1,F3>F4>F2>F1,粉垄免耕稻田碳源增温潜势与CH4的累积排放量规律基本一致。与C2和F2处理相比,C3和F3的CO2增温潜势分别降低64.4%和16.9%,C4和F4的CO2增温潜势分别降低34.2%和15.1%。粉垄免耕模式下,与F2处理相比,F3处理的CO2累积排放量降低16.9%,F4处理降低15.1%。

3 讨论

3. 1 绿肥、蚕沙有机肥配施化肥对免耕稻田土壤有机碳含量的影响

施用有机肥能促进土壤微生物生长,增强土壤酶活性,提高土壤保水保肥能力,同时提高土壤有机碳含量(Tong et al., 2009)。适当施用无机化肥也可促进植物生长并增加碳在根系和根际分泌物中的传递,但过量化学氮肥投入会消耗土壤有机和无机碳,影响土壤碳库变化(Bhattacharyya et al.,2012)。而保护性耕作有利于提高0~10 cm表层土壤有机碳含量(姬强等,2014)。本研究发现,在粉垄免耕稻田水稻的返青期、分蘖期、齐穗期和收获期,蚕沙有机肥配施化肥处理的土壤有机碳含量较对照耕层土壤有所提高,与李苹等(2015)研究认为的蚕沙有机肥可提高土壤有机质含量的结果相似,说明蚕沙有机肥与化肥配施既能提高稻田土壤肥力,又利于增加土壤有机碳含量。同时在水稻返青期,绿肥与化肥配施下粉垄免耕稻田土壤有机碳含量为15.41 mg/kg,是常规免耕稻田土壤有机碳含量(10.41 mg/kg)的1.48倍,可能与前期粉垄深旋耕土壤上、下层交互作用有关,粉垄免耕下土壤耕层矿化微生物含量低,减少了有机碳矿化,使稻田耕层土壤有机碳含量增加。可见,绿肥、蚕沙有机肥与化肥配施有利于提高免耕保护性耕作稻田土壤固碳能力。

3. 2 绿肥、蚕沙有机肥配施化肥对免耕稻田CO2排放的影响

土壤有机碳是影响土壤呼吸强度的重要因素(谢军飞和李玉娥,2002;张蕾等,2015)。本研究发现,在2种免耕模式下,绿肥、蚕沙有机肥配施化肥较单施化肥处理稻田CO2排放量均有所降低,蚕沙有机肥配施化肥处理常规免耕稻田的CO2累积排放量(253.9 kg/ha)稍高于粉垄免耕稻田(239.33 kg/ha),而绿肥配施化肥处理常规免耕稻田的CO2累积排放量(137.31 kg/ha)明显低于粉垄免耕稻田(234.22 kg/ha) 。稻田免耕保护性耕作能减缓土壤微生物降解,减缓CO2的排放(谢立勇等,2011)。常规免耕在CO2减排方面优于粉垄免耕,可能是因为前期粉垄耕作增加了土壤扰动,减缓了植物根系在土壤中的机械阻力,使其后茬免耕稻田土壤耕层深度及结构疏松度高于常规免耕,有利于作物根系生长和代谢,进而增加了稻田CO2排放。本研究同时发现,粉垄免耕稻田CO2排放峰值滞后,可能与绿肥、蚕沙有机肥在稻田稳定转化后对粉垄免耕稻田土壤微环境产生影响有关,也可能受降水等气候条件影响,温度变低减缓了CO2排放。因此,绿肥、蚕沙有机肥与化肥配施能降低温室气体CO2增温潜势,达到减排效果。

3. 3 绿肥、蚕沙有机肥配施化肥对免耕稻田CH4排放的影响

土壤有机碳提供的电子是甲烷菌重要的底物和能量来源(Kazunori et al.,2005;傅志强等,2009),农业有机物料提供的外源有机碳和土壤有机碳是稻田CH4排放的主要来源(丁维新和蔡祖聪,2002)。本研究发现,粉垄免耕稻田CH4呈双峰排放,在水稻移栽第15~20 d达第1次排放高峰,第70 d达第2次排放高峰。从CH4排放的总体趋势看,随着稻田土壤有机碳含量的下降,其排放量也越来越少,而土壤有机碳含量在整个水稻生育期内也逐渐减少,说明土壤有机碳可能是影响CH4排放的重要因素之一。本研究还发现,与单施化肥处理相比,绿肥配施化肥处理促进了稻田CH4的排放,可能是因为绿肥腐解为稻田甲烷菌产生提供丰富的基质养分,进一步降低了土壤的氧化还原电位,利于CH4产生。同时,绿肥和蚕沙有机肥处理也增加了稻田碳源增温潜势,提高了CH4累积排放量。

4 结论

与单施化肥相比,施用绿肥、蚕沙有机肥利于粉垄免耕稻田土壤有机碳的积累,同时可减缓CO2温室气体的排放,是管控粉垄免耕稻田土壤碳库的有效手段,可作为一种稻田土壤固碳减排绿色生产应用技术。

参考文献:

蔡苗,董燕婕,李佰军,周建斌. 2013. 不同施氮处理玉米根茬在土壤中矿化分解特性[J]. 生态学报,33(14):4248-4256. [Cai M,Dong Y J,Li B J,Zhou J B. 2013. Decomposition characteristics of maize roots derived from different nitrogen fertilization fields under laboratory soil incubation conditions[J]. Acta Ecologica Sinica,33(14):4248-4256.]

陈晓萍,谢亚军,罗光恩,石伟勇. 2011. 蚕沙有机肥的养分特性及其肥效[J]. 应用生态学报,22(7):1803-1809. [Chen X P,Xie Y J,Luo G E,Shi W Y. 2011. Silkworm excrement organic fertilizer:Its nutrient proper ties and application effect[J]. Chinese Journal of Applied Ecology,22(7):1803-1809.]

丁維新,蔡祖聪. 2002. 土壤有机质和外源有机物对甲烷产生的影响[J]. 生态学报,22(10):1672-1679. [Ding W X,Cai Z C. 2002. Effects of soil organic matter and exogenous organic materials on methane production in and emission  from wetlands[J]. Acta Ecologica Sinica,22(10):1672-1679.]

傅志强,黄璜,谢伟,何保良. 2009. 高产水稻品种及种植方式对稻田甲烷排放的影响[J]. 应用生态学报,20(12):3003-3008. [Fu Z Q,Huang H,Xie W,He B L. 2009. Effects of high-yielding rice cultivar and cultivation pattern on me thane emission from paddy field[J]. Chinese Journal of Applied Ecojogy,20(12):3003-3008.]

高嵩涓,曹卫东,白金顺,高菊生,黄晶,曾闹华,常单娜,志水胜好. 2015. 长期冬种绿肥改变红壤稻田土壤微生物生物量特性[J]. 土壤学报,52(4):902-910. [Gao S J,Cao W D,Bai J S,Gao J S,Huang J,Zeng N H,Chang D N,Shimizu K. 2015. Long-term application of winter green manures changed the soil microbial biomass properties in end paddy soil[J]. Acta Pedologica Sinica,52(4):902-910.]

胡鈞铭,陈胜男,韦翔华,夏旭,韦本辉. 2018. 耕作对健康耕层结构的影响及发展趋势[J]. 农业资源与环境学报,35(2):95-103. [Hu J M,Chen S N,Wei X H,Xia X,Wei B H. 2018. Effects of tillage model on healthy plough layer structure and its development trends[J]. Journal of Agricultural Resources and Environment,35(2):95-103.]

胡钧铭,夏旭,张野,李婷婷,陆冰梅,吕相沛,何丹,韦翔华,何铁光,李忠义. 2017. 快腐蚕沙对水稻生境及安全生长的影响[J]. 广西植物,37(8):993-999. [Hu J M,Xia X,Zhang Y,Li T T,Lu B M,Lü X P,He D,Wei X H,He T G,Li Z Y. 2017. Effects of silkworm excrement fast-rotting on rice habitat and security growth[J]. Guihaia,37(8):993-999.]

姬强,孙汉印,Taraqqi A K,王旭东. 2014. 不同耕作措施对冬小麦—夏玉米复种连作系统土壤有机碳和水分利用效率的影响[J]. 应用生态学报,25(4):1029-1035. [Ji Q,Sun H Y,Taraqqi A K,Wang X D. 2014. Impact of di-fferent tillage practiceson soil organic carbon and water use efficiency under continuous wheat-maize binary cropping system[J]. Chinese Journal of Applied Ecology,25(4):1029-1035.]

李苹,付弘婷,张发宝,逢玉万,黄巧艺,唐拴虎. 2015. 蚕沙有机肥对作物产量、品质及土壤性质的影响[J]. 南方农业学报,46(7):1195-1199. [Li P,Fu H T,Zhang F B,Feng Y W,Huang Q Y,Tang S H. 2015. Effects of silkworm excrement-derived organic fertilizer on yield and quality of crops and soil property[J]. Journal of Southern Agriculture,46(7):1195-1199 .]

鲁如坤. 1999. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社. [Lu R K. 1999. Soil argrochemistry analysis protocoes[M]. Beijing:China Agriculture Science Press.]

马艳芹,黄国勤. 2019. 紫云英还田配施氮肥对稻田土壤碳库的影响[J]. 生态学杂志,38(1):129-135. [Ma Y Q,Huang G Q. 2019. Effects of combined application of Chinese milk vetch(Astragalus sinicus L.)and nitrogen fertilizer on paddy soil carbon pool[J].Chinese Journal of Ecology,38(1):129-135.]

潘根兴,高民,胡国华,魏钦平,杨晓光,张文忠. 周广胜,绉建文. 2011. 气候变化对中国农业生产的影响[J]. 农业环境科学学报,30(9):1698-1706. [Pan G X,Gao M,Hu G H,Wei Q P,Yan X G,Zhang W Z,Zhou G S,Zou J W. 2011. Impacts of climate change on agricultural production of China[J]. Journal of Agro-Environment Scien-ce, 30(9):1698-1706.]

秦大河. 2014. 气候变化科学与人类可持续发展[J]. 地理科学进展,33(7):874-883. [Qin D H. 2014. Climate change science and sustainable development[J]. Progress in Geography,33(7):874-883.]

孙国峰,徐尚起,张海林,陈阜,肖小平. 2010. 轮耕对双季稻田耕层土壤有机碳储量的影响[J]. 中国农业科学,43(18):3776-3783. [Sun G F,Xu S Q,Zhang H L,Chen F,Xiao X P. 2010. Effects of rotational tillage in double rice cropping region on organic carbon storage of the arable paddy soil[J]. Scientia Agricultura Sinica,43(18):3776-3783.]

孙文娟,黄耀,张稳,于永强. 2008. 农田土壤固碳潜力研究的关键科学问题[J]. 地球科学进展,23(9):996-1004. [Sun W J,Huang Y,Zhang W,Yu Y Q. 2008. Key Issues on soil carbon sequestration potential in agricultural soils[J]. Advance in Earth Sciences,23(9):996-1004.]

谭英爱,赵秋,田秀平,周丽平,宁晓光,张新建,岳露. 2020. 冬绿肥覆盖翻压对土壤碳、氮含量的影响[J]. 河南农业科学,49(5):81-87. [Tan Y A,Zhao Q,Tian X P,Zhou L P,Ning X G,Zhang X J,Yue L. 2020. Effect of winter green manure overturning on soil carbon and nitrogen content[J]. Journal of Henan Agricultural Sciences,49(5):81-87.]

韦本辉,刘斌,甘秀芹,申章佑,胡泊,李艳英,吴延勇,陆柳英. 2012. 粉垄栽培对水稻产量和品质的影响[J]. 中国农业科学,45(19):3946-3954. [Wei B H,Liu B,Gan X Q,Shen Z Y,Hu P,Li Y Y,Wu Y Y,Lu L Y. 2012. Effect of fenlong cultivation on yield and quality of rice[J]. Scientia Agricultura Sinica,45(19):3946-3954.]

吴建富,曾研华,潘晓华,石庆华,李涛,王苏影. 2013. 稻草还田方式对双季水稻产量和土壤碳库管理指数的影响[J]. 应用生态学报,24(6):1572-1578. [Wu J F,Zeng Y H,Pan X H,Shi Q H,Li T,Wang S Y. 2013. Effects of rice straw returning mode on rice grain yield and soil carbon pool management index in double ricecropping system[J]. Chinese Journal of Applied Ecology,24(6):1572-1578.]

谢军飞,李玉娥. 2002. 农田土壤温室气体排放机理与影响因素研究进展[J]. 中国农业气象,23(4):48-53. [Xie J F,Li Y E. 2002. A review of studies on mechanism of greenhouse gas(GHG)emission and its affecting factors in arable soils[J]. Chinese Journal of Agrometeorology,23(4):48-53.]

謝立勇,叶丹丹,张贺,郭李萍. 2011. 旱地土壤温室气体排放影响因子及减排增汇措施分析[J]. 中国农业气象,3(4):481-487. [Xie L Y,Ye D D,Zhang H,Guo L P. 2011. Review of influence factors on greenhouse gases emission from upland and relevant adjustment practices[J]. Chinese Journal of Agrometeorology,3(4):481-487.]

张蕾,尹力初,易亚男,高德才,付薇薇,王泽浩. 2015. 改变施肥管理后不同肥力稻田土壤CO2排放特征[J]. 生态学报,35(5):1399-1406. [Zhang L,Yin L C,Yi Y N,Gao D C,Fu W W,Wang Z H. 2015. Effects of fertilization reforming on the CO2 flux in paddy soils with different fertilities[J]. Acta Ecologica Sinica,35(5):1399-1406.]

郑佳舜,胡钧铭,韦翔华,黄太庆,李婷婷,黄嘉琪. 2019. 绿肥压青粉垄保护性耕作对稻田土壤温室气体排放的影响[J]. 中国农业气象,40(1):15-24. [Zheng J S,Hu J M ,Wei X H,Huang T Q,Li T T,Huang J Q. 2019. Effect of conservation tillage with smash ridging under green manure condition on the emission of greenhouse gas in the rice field soil[J]. Chinese Journal of Agrometeorology,40(1):15-24.]

Bhattacharyya P,Roy K S,Neogi S,Adhya T K,Rao K S,Manna M C. 2012. Effects of rice straw and nitrogen fertilization on greenhouse gas emissions and carbon stora-ge in tropical flooded soil planted with rice[J]. Soil & Tillage Researc,124:119-130.

Kazunori M,Naoki S,Hisayoshi H. 2005. The effect of ammonium sulfate application on methane emission and soil carbon content of paddy field in Japan[J]. Agriculture Ecosystem and Environment,107(4):371-379.

Li J H,Jiao S M,Gao R Q,Bardgett R D. 2012. Differential effects of legume species on the recovery of soil microbial communities,and carbon and nitrogen contents,in abandoned fields of the Loess Plateau,China[J]. Environmental Management,50(6):1193-1203.

Li L,Wu F L,Zhang H L,Chen F. 2008. Organic carbon and carbon pool management index in soil under conversation till agein two-croppaddy field area[J]. Journal of Agro-Environment Science,27(1):248-253.

Pan G X,Li L Q,Wu L S,Zhang X U. 2004. Storage and sequestration potential of topsoil organic carbon in Chinas paddy soils[J]. Global Change Biology,10(1):79-92.

Shen J B,Zhang F S,Siddique K H M. 2018. Sustainable resource use in enhancing agricultural development in China[J]. Engineering,4(5):588-589.

Tong C L,Xiao H A,Tang G Y,Wang H Q,Huang T P,Xia H A,Keith S J,Li Y,Liu S L,Wu J S. 2009. Long-term fertilizer effects on organic carbon and total nitrogen and coupling relationships of C and N in paddy soils in subtropical China[J]. Soil and Tillage Research,106:8-14.

Wang J Y,Pan X J,Liu Y L,Wang J Y,Pan X J,Liu Y L,Zhang X L,Xiong Z Q. 2012. Effects of biochar amendment in two soils on greenhouse gas emissions and crop production[J]. Plant and Soil,360:287-298 .

Yang J C,Han X G,Huang J H,Pan Q M. 2003. The dyna-mics of soil organic matter in cropland responding to agricultural practices[J]. Acta Ecologica Sinica,23(4):787-795.

Zhang,M,Cheng,G,Feng H,Sun B H,Zhao Y,Chen H X,Chen J,Dyck,M,Wang X D,Zhang J G,Zhang A F.  2017. Effects of straw and biochar amendments on aggregate stability,soil organic carbon,and enzyme activities in the Loess Plateau,China[J]. Environmental Science & Pollution Research,24 (11):10108-10120.

(责任编辑 王 晖)

收稿日期: 2020-01-16

基金项目:国家自然科学基金项目(41661074);广西科技计划项目(桂科重1598014-4,桂科AA17204087-2,桂科AD18281089)

作者简介:*为通讯作者,胡钧铭(1974-),博士,研究员,主要从事农业有机资源利用与生境调控研究工作,E-mail:jmhu06@126.com。刘顺翱(1993-),研究方向為农业土壤环境生态,E-mail:lsa1966469905@163.com