陈艳萍 刘晶婕 吴凤平
摘要 跨境河流水量分配不均极易引发流域国间的冲突,如何在沿岸国之间实现公平合理的水量分配是流域国达成共识机制的关键。在总供给水量无法满足各沿岸国用水需求的前提下,使用破产理论分析具有明显优势,其合作博弈的性质和对个体关注的特点使其具有较好的应用前景。本文在比较评估10种已有破产规则的有效性和局限性基础上,对破产理论下的跨境河流水量分配方法进行优化改进。首先,依照破产理论的“清偿顺序”,确定有限水量进行破产分配的顺序,优先保证最基本人类生活用水和生态需水。其次,结合国际水法提出的“公平合理”和“不造成重大损害”原则,综合考虑其他因素,增设水资源贡献量、人口自然增长量、水资源开发落后地区倾斜系数和最低供水保障率四个参数,分别对PRO、CEL、AP三种传统破产规则进行改进,构建加权破产模型,探讨更加公平合理的跨境河流水量分配方法。最后,以澜沧江—湄公河流域旱季为例,测算不同破产规则下各沿岸国的分水量及满意度,在采用Borda计数法对各国偏好排序的基础上,综合考虑话语权的CPBSI(compromise programming based stability index)指数,定量判断各分配方法的稳定性。结果表明:①改进后的R_PRO、R_CEL、R_AP三种破产模型平均CPBSI指数值较低,整体稳定性较高,特别是相较于原分配方法均有较大幅度的降低,稳定性显著增强,可见本文提出的改进水量分配方法具有较好的适用性;②在改进后的模型中,R_PRO方法下的CPBSI指数最低,其次是R_AP,两者相对来说是比较稳定的水量分配方案,最有可能为流域成员国所接受,这对未来流域一体化相关协议的签订和谈判具有重要意义。
关键词 跨境河流;水量分配;破产理论;公平合理
中图分类号 TV213.4
文献标识码 A 文章编号 1002-2104(2020)12-0066-09 DOI:10.12062/cpre.20200624
近年来,气候的多变和经济的快速发展使得沿岸国对水资源的需求量逐渐超过跨境河流的可分配水资源量,各国都想争取到最大利益,因此极易产生利益主体之间的冲突。水量的分配不均和管理不善正是沿岸国之间冲突的根源,实现跨境河流水资源的公平合理分配是解决跨境水冲突的核心[1]。
1文献综述
Wolf[2]回顾了跨境河流水资源共享研究的发展历程,并提出流域利益相关者参与的跨境水资源共享思路和可行方法;何大明等[3]和陈海燕[4]先后研究了国际河流水资源分配的特点、模式、原则、指标体系和影响;Kilgour和Dinar[5]、Bhagabati等[6]、黄德春等[7]从合作博弈和非合作博弈角度提出了解决复杂条件下跨境水资源分配问题的方法;Kucukmehmetoglu和Guldmann[8]通过建立多目标线性规划模型来实现分水后的社会效益最大化;陈陆滢和黄德春[9]建立了基于TOPSIS法和熵权集成法的国际河流水权分配模型,致力使分配结果让不同国家能够普遍接受;李奔等[10]在注重可持续性、效率性并兼顾公平性的原则下,运用层次分析法定性和定量分析水量分配的影响因素,为澜沧江—湄公河的水量分配提供了一种量化方法。可见,学者对跨境水资源共享问题已有系统性的研究,从不同角度提出多种跨境水量配置方法,其中寻找帕累托最优解,为每个成员国提供最佳解决方案同时不损害他国利益是最常见的配置目标。但是这种目标下的最优解决方案并不意味着公平与合理,往往过于注重总体收益及效率,忽视了个体,很大程度上会导致公平的缺失[11-12]。跨境水资源的分配主体是拥有独立主权的国家,流域内国家敏感于获得、维系或失去某种水权利[13-14],“公平”被普遍认为是跨境水资源配置的关键[2, 15-16],破产理论由于其合作博弈的性质和对个体关注的特点而具有较好的应用前景[17]。
破产理论是指资产不足以满足所有债权人的索赔情况下,在债权人(利益相关者)之间重新分配可用资产[18]。为了将有限的资产公平地分配给每个债权人,研究人员发展了大量的破产分配规则[18-20],包括同比例(PRO)、约束等额奖励(CEA)、约束等额损失(CEL),比例调整(AP),Talmud(Tal)和Piniles(Pin)等。当可分配水量无法满足各沿岸国需求而造成水资源分配不均时,破产理论为跨境河流水量分配提供了新思路。
Ansink和Weikard[21]考虑到自然地理位置及水流流向,将顺序共享规则应用到破产理论,把水资源按地理位置线性排序重新分配至各流域国;Mianabadi等[22]将各指标因素的权重与支流水量贡献相结合,对约束等额损失规则(CEL)进行改进;Madani等[23]考虑到流域间水资源的时空分布不均,提出非线性网络流量优化模型,在规划范围内根据河网不同位置输水的时间敏感性进行配水;李深林等[24]新增用水效率和最低供水保障等参数改进CEL规则,并应用于我国广东省东江流域;袁亮等[25]基于破产理论和讨价还价博弈,将议价能力运用到破产博弈模型中;孙冬营等[26]基于折中规划法提出一种新的带权重的评价跨行政区河流水资源配置冲突解决稳定性的指标CPBSI(compromise programming based stability index),用来评价不同破产规则结果的稳定性。
可见,破产理论是水资源配置问题中进行冲突管理的一种有效方法,但目前应用于跨境水量配置研究方面仍存在以下两点不足:①忽略破产分配程序的顺序性,将破产理论应用在水量配置时仅强调同一顺序下的债权如何进行分配;②忽视流域内各成员国其他水资源属性,在评估各国需求时,考虑到的属性越充足合理,分配的结果就越能为利益相关者所接受以推进水谈判。
作者在评估已有破产规则的基础上,首先提出跨境河流水量破产分配程序的顺序性,结合国际水法确定“公平合理”“不造成重大损害”原则及指标,分别对PRO、CEL、AP三种破产规则进行改進,构建基于破产理论的多参数跨境河流水量配置模型,尝试更加公平合理地实现跨境河流水量配置。
2 基于传统破产规则的跨境河流水量配置模型评估
在跨境河流水量配置问题中,当流域可分配水量无法满足各沿岸国的需求时,便可将其看作一个破产问题,一个传统的跨境河流破产问题满足以下关系:
其中,N为沿岸国成员i的集合,N={1,2,…,i,…,n},E为分水基数,C为沿岸国总需水量,ci为沿岸国i的需水量,xi为沿岸国i分配到的水量。公式(1)确保所有的可分配水量已完全分配,公式(3)约束每个沿岸国最终分得水量不能超过其需求量,且分配值非负。
2.1 基于传统破产规则的水量配置模型
综合国内外学者的经典破产规则,包括同比例(PRO)、约束等额奖励(CEA)、约束等额损失(CEL)、比例调整(AP)、Talmud(Tal)和Piniles(Pin)等6种规则。此外,Ansink和Weikard[21]还将顺序共享规则(SSR)应用在4种经典破产规则之上,形成4种基于SSR的破产规则。这10种破产规则的具体定义如下。
(1)PRO规则。即同比例规则,按照相同比例将流域内可使用水资源分配给各沿岸国,则沿岸国i分配到的水量为x.PROi,计算方法如下:
其中,比例系数μ为总供给与总需求之比,μ=EC。
(2)CEA规则。即约束等额奖励规则,规定每个沿岸国能够享有同等的水资源量μ,在各沿岸国分得水量不超过其需求量情况下保证可用水资源量的完全分配,则沿岸国i分配到的水量为x.CEAi,计算方法如下:
(3)CEL规则。即约束等额损失规则,使各成员国承担等量的损失μ,在确保各成员国最终分配到的水量非负情况下,使最终可用水资源量完全分配,则沿岸国i分配到的水量为x.CELi,计算方法如下:
(4)AP规则。即调整比例规则,共分为两个步骤,首先分给每个沿岸国由其他沿岸国需水量决定的一个最小水量vi=max{0,E-∑ctt∈N,t≠i},剩余水量按PRO规则继续分配,则沿岸国i分配到的水量为x.APi,计算方法如下:
(5)Tal规则。即Talmud规则,结合了CEA和CEL方法,当流域内可分配水量小于总需水量的一半时,使用CEA方法进行分配,且每个国家分得水量不超过其自身需水量的一半;当流域内可分配水量大于总需水量的一半时,先分给各沿岸国需水量的1/2,剩余部分使用CEL规则。则沿岸国i分配到的水量为x.Tali,具体计算方法如下:
(6)Pin规则。即Piniles规则,同Talmud规则的不同之处在于,无论可分配水量和需水量之间的大小关系如何,都使用CEA方法。则沿岸国i分配到的水量为x.Pini,具体计算方法如下:
(7)基于SSR的4种破产规则。Ansink和Weikard[21]考虑到资源禀赋的差异性以及各沿岸国上下游地理位置的不同,提出代理人的索赔具有顺序结构,以地理位置的优先顺序将河流共享问题与破产问题联系起来。把河流水量配置过程看作“双代理”问题,在每一阶段河流分配问题中,所有下游沿岸国看作单个债权人Di,可分配水量在沿岸国i和其下游国Di之间分配,Di的需求量为沿岸国i的下游国的超额索赔量,即总需求量与可贡献量之差。分别将SSR应用在PRO、CEA、CEL和Talmud方法上,形成SSR_PRO、SSR_CEA、SSR_CEL和SSR_Tal等4种规则。
2.2 10种传统破产规则的满意度分析
为定量评估上述10种破产规则,将以上破产规则应用于Ansink和Weikard[21]提出的假设案例。其中,i依次代表上游至下游的沿岸国,上游国1和2贡献量远超需求量,国家3的贡献量低于需求量,而下游国4的贡献量最少,需求量最大。使用上述破产规则可得到10种基本水量配置方案,如表1所示。其中,ei为各国贡献量,ci为各国需求量。表2为各国对不同分水方案的满意度,其中满意度为各国分得水量与所需水量之比,衡量各沿岸国对水资源配置方案的满意程度。
表2显示,PRO规则下各国满意度相同,CEA规则使需求量低的国家得到较高满足,而CEL规则偏好需求量较高的国家,甚至会使得某些需求量较低的国家最终分得水量为0。AP、Tal与Pin规则下所得结果较为折中,看似合理,但是这6种传统破产规则下各沿岸国获得的分配量仅与自身需求量有关,完全忽略其他要素,未能根据各成员国特点而分配,因此分配结果难以为各国所接受。
此外,横向对比4种基于SSR的破产规则和对应的经典破产规则,上游满意度有所下降,而下游满意度均在提高,可见SSR规则较偏好下游国,与上游国相比,下游国易获得更大比例的索赔。这是因为在SSR规则下,上游国的分配需考虑下游国的需求,而下游国的分配无须考虑上游国需求,易损害上游国用水的合法权益。
3 基于破产理论的多参数跨境河流水量配置模型改进
3.1 破产理论下水量分配程序的顺序性
破产财产的分配是将财产按照法定顺序和程序对全体债权人进行分配的过程,在前一顺序的债权得到全部清偿前,后一顺序的债权不予分配[27]。这种传统破产规则应用在跨境水量配置时,忽略了分水的顺序性,使得部分国家甚至出现分得水量为0的现象。因此,可借鉴破产理论,结合国际水法衡量各因素的重要性,制定分水优先顺序,按照顺序依次进行配水。
跨境河流水资源的用途主要为人类生活用水、生态用水、工业用水和农业用水[28]。首先,人的基本需求是一个社会应当为最贫穷阶层规定的最低生活标准[29],而水是人类最基本的生存资源,人类的生存权应当作为根本,毫无疑问,人类的基本生活用水S1必须作为第一顺序被优先满足。当水量无法满足人类基本生活用水时,可根据人口比例分配,后一顺序的需求不予满足。
其次,如果对水资源的利用超过了河流的承载能力,不仅会造成生态系统的退化,甚至会危害到人类的生存[30]。在张瑞金等[31]统计的17个跨境河流水量分配案例中,仅有2个案例考虑了生态用水,众多跨境河流的生态面临着极大的威胁,未来满足河道最低生态需水、维持一定的生态环境水量是跨境河流水量分配时需考虑的重点。故扣除人类最基本用水后,河道内最基本生态需水S2应当作为第二顺序被优先满足,当剩余水量無法满足河道内最低生态需水时,可根据各国河道径流比例依次配水,同时后一顺序的需求不再予以满足。
为满足人类基本生存、保证跨境水资源的可持续性和生态多样性,按照第一、第二顺序依次扣除人类基本生活用水S1、河道内最基本生态需水量S2,剩余水量方可在各沿岸国之间根据其他需求进行第三次分配[32-33],该剩余水量称为可再分配水量E′。由于跨境河流水量基本能满足前两个顺序的需求,本文主要考虑可再分配水量E′在第三顺序间的分配,其中:
其中,E为分水基数(本文为全流域多年平均径流量),x′i为沿岸国i在剩余水量中分得水量,C′为沿岸国扣除基本生活用水和河道内基本生态需水量之外的总需求量,c′i为相应各国需水量。
3.2 基于公约原则的参数选取
传统破产规则只依据各国当下需水量来进行分配,未考虑公平性以及可能影响未来需水量的潜在因素。对于国际河流水量分配这一复杂问题过于简单化处理是不现实的[34],很难得到一个让各流域国接受度较高的分配结果,因此在扣除人类基本生活用水和河道内最基本生态需水量后,综合考虑多种因素才能实现剩余水量的相对公平合理分配[35]。《国际水道非航行使用法公约》和《赫尔辛基规则》等国际公约提出一系列指标因素,强调每项因素的分量要根据该因素与其他有关因素的相对重要性加以确定,要求开发利用国际水道时要遵循“公平合理”和“不造成重大损害”原则[36],在进行基本的水量分配时亦需遵守这些原则。
(1)公平合理原则。“公平性”在不同情况下很难被定义,一般包括代内公平和代际公平。代内公平指每个人、每个国家都享有平等使用水的权利,但并不意味着每个国家都会分到等量的水。社会心理学的“公平理论”指出,每个人的分配应该取决于贡献(投入)和利益(结果)之间的关系[37],沿岸国对流域的水量贡献越大,其需水量就应该更大程度的被满足。因此,在水量配置过程中,应考虑各国对流域的贡献量ei。代际公平指不仅当代人享有用水的权利,后代人也享有同等的用水权。未来变化的人口数会影响沿岸国的需水量,为保证后代人的合法权益,在水量分配时应考虑未来人口自然增长量gi。
“合理性”可体现在发展潜力方面。每个国家都有发展的权利,有些沿岸国水资源开发利用较早,已经达到较高水平。而有些沿岸国由于地势陡峭险峻、开发难度较大等原因,一直以来开发速度缓慢。因此,为保证一些开发缓慢国家的潜在发展权利,增设水资源开发落后地区倾斜系数fi。
(2)不造成重大损害原则。在开发利用国际水道时,需防止对其他国家造成重大损害。水资源作为最基本的生存和生产资源,首先应依据第一、二分水顺序优先保障人类最基本生存用水和生态用水需求。在第三顺序分水过程中,为防止根据其他因素计算得到某些国家的供水满意度出现极低(甚至为0)的情况,严重危害这些国家的用水及社会发展权利,分配过程需考虑成员国社会发展对水量的最低要求,增设最低供水保障率s。综上,在本文构建的破产模型中将增设水资源贡献量ei、人口增长量gi、水资源开发落后地区倾斜系数fi以及最低供水保障率s等四个指标参数。
3.3 加权破产模型构建
在PRO、CEL和AP三种经典破产规则的基础上,将各国水资源需求量、贡献量、人口增长量和水资源开发落后地区倾斜系数等参数加权作为各国的综合指数vi,以此衡量各流域国可用水份额,而最低保障率用来约束每个国家分得最低水量。具体计算步骤如下。
(1)主客观综合赋权。为减少决策者赋权的主观随意性,同时兼顾到决策者对属性的偏好,使参数的赋权达到主观与客观的统一,本文采取主客观综合赋权法进行赋权[38]。
首先,采用有序二元比较量化法主观赋权。根据上述四个参数给出两两比较的判断矩阵,通过二元对比模型来判断确定主观权重,经过一致性检验判断与调整得到排序一致性二元对比标度矩阵,求得主观赋权法下的权向量xj。
其次,采用熵值法客观赋权。对决策矩阵R=(rij)m×n进行非负处理,计算第j项指标下第i个方案指标值的比重为fij=rij/∑mi=1rij,其中i=1,2,…,m;j=1,2,…,n。然后得到第j个评价指标输出的熵值Hj=-k∑mi=1fijlnfij,其中k=1/ln(m),客观赋权法下各属性的熵权系数yj=1-Hjn-∑nj=1Hj。
最后,线性加权组合赋权。由于决策者对不同赋权方法存在偏好,故使用加法集成法来进行综合赋权,则第j指标权重wj计算如下:
(2)构建加权破产模型。求得各参数权重后,将权重融入破产规则,分别对PRO、CEL和AP三种模型进行改进得到相应的R_PRO、R_CEL和R_AP规则。
首先,计算得到改进后的PRO规则。R_PRO使各国最终满意度并不相等,具体分得水量由i国的综合指数vi来决定,而不是仅由需求量来决定,具体计算过程如下:
其中,wj为各参数所占權重,j=1,2,3,4,c′max、emax、gmax和fmax分别为各参数的最大值,vi值越高,对应国分得水量比例越大。公式(16)保证各国配水有最基本的保障率,且分得水量不能超过该国的需求量,另外可再分配水量E′需得到完全分配。
其次,计算得到改进后的CEL模型。R_CEL引入超额索赔量D=C′-E′,表示全流域无法被满足的需水量。从每个代理人的需水量中减去他们应承担的份额即为最终分得水量,vi是i国对超额索赔量的综合指数,其中,需求量低,而贡献率、人口增长量以及开发落后地区倾斜系数较高的国家应承担份额较少。计算方法如下:
最后,计算得到改进后的AP模型。R_AP仍然分为两个步骤,首先分给每个沿岸国由其他沿岸国需水量决定的一个最小水量mi=max{0,E-∑t∈N,t≠ic′t},剩余水量再按各国的综合指数vi分配,其中(c′i-mi)表示各国剩余所需水量,(c′-m)max表示各国剩余所需水量最大值,具体如下:
4 实例分析:以澜沧江—湄公河为例
4.1 澜沧江—湄公河简介
澜沧江—湄公河是流经我国西南最重要的跨境河流,被誉为“东方多瑙河”,由北向南依次流经中国、缅甸、老挝、泰国、柬埔寨和越南6个国家。随着“湄公河委员会”“澜沧江—湄公河次区域经济合作”“东盟—湄公河流域区域开发建设”和“中、日、韩+东盟10国区域合作”等重大战略的实施[39],该流域的水资源合作取得了历史性的进展,然而目前还没有一个针对该流域的水量分配机制。
全河总长按4 880 km,在我国河道里程长为2 161 km,流域总面积81.1万km.2,为典型的南北狭长型河流,主要依靠降水补给,受季风影响,存在明显的雨季(5~10月)和旱季(11月~次年4月)。近10年(2007—2017年)多站平均流域内降水量为1 365 mm,旱季为173 mm[40],仅占年平均降水量的12.7%,旱季流域内可用水量明显不足,故本文提出的改进破产模型适合该流域的旱季水量分配。流域内各国旱季基础数据如表3所示。其中最小生态需水量依照河道内年均径流量的10%来计算,而20%的年均流量可提供保护水生生物栖息地的适当标准[41]。按照分配顺序依次扣除人类基本生活用水和最小河道内生态用水,整理得到相关参数数据如表4所示,其中可再分配水量为各国可贡献水量之和,开发落后地区倾斜系数由专家结合流域特点商讨打分给出。
4.2 改进破产模型下的水量分配结果
首先,依照上文二元比较量化法和熵权值法分别确定各参数的主观权重xj=(0.168,0.686,0.054,0.091),客观权重yj=(0.387,0.243,0.358,0.012),设决策者的偏好程度α为0.8。为满足流域国基本的生产和发展需求,令最低保障率s=60%,将各参数数据分别带入R_PRO、R_CEL和R_AP三种模型中,各国分水量和相应满意度如表5所示。
由表5可知,改进后三种分配方式下分得水量较高的依次是越南和泰国,符合沿岸国需水量排序。两国均位于流域下游,水资源开发已趋于成熟,潜在开发权利不大,但是巨大的灌溉用水需求使得两国总需水量远超他国。且越南水资源贡献量较大,故三种分配方式下越南分得水量绝对值都是最高。而泰国水资源贡献量相对于其需求量极低,虽在R_CEL规则下可达到68.68%的满意度,但是在另外两种分配方式下并不乐观,这种情况下,60%的最低保障率一定程度上维护了该国在原需水情况下的相对用水权利。由于中国和柬埔寨的水资源贡献量远超需求量,因此三种分配方式下,虽然分得水量绝对值不是最高,但都有较高的满意度。
在三种分配方式下,考虑到所有沿岸国的投票权,可采用Borda计数法对各国偏好排序并赋值[26],发现R_PRO规则分水获得票数最高,其次是R_CEL、R_AP。说明R_PRO规则相对来说更能为多个国家接受,但是表5结果显示R_CEL规则在改进后一定程度上仍然倾向于需水量较大的国家,如越南、泰国等,而对需水量较小的国家缅甸抑制性强烈,因此,R_CEL规则虽获票数高于R_AP规则,其极强的偏好性使其易遭到需水量偏小国家的强烈反对,不利于国家间的稳定,而R_PRO和R_AP既没有偏袒需水量大的國家也没有偏袒需水量小的国家。
4.3 稳定性分析
投票法在某些利益主体的妥协下可得到总体的偏好方向,但忽略了各个利益主体在决策过程中的话语权,考虑话语权的稳定性评价规则能更加清晰的衡量各分配方法的稳定性和可接受性。一个区域对河流水量贡献比例越高、其声明水量占各区域声明水量之和的比例越低,那么该区域理论上应该具有最大话语权。孙冬营等[26]基于折中规划法提出一种带权重的衡量使用破产法分配河流水量所得结果稳定性的指数CPBSI,建立CPBSI的计算公式如下:
公式(21)中,wi为各个区域的话语权权重,ei为各区域的贡献量,ci为各区域需水量,wi值越大,该区域话语权权重越高,相应的CPBSI值越小,说明水量分配结果越稳定。将上述13种破产方法分别应用在澜沧江—湄公河案例中,各规则相应的稳定性指数值具体如下:PRO(0.075),CEA(0.063),CEL(0.253),AP(0.080),Tal(0.134),Pin(0.053),SSR_PRO(0.178),SSR_CEA(0.119),SSR_CEL(0.385),SSR_Tal(0.119),R_PRO(0.058),R_CEL(0.094),R_AP(0.061)。
从结果可见,Pin规则下的CPBSI指数值最低,稳定性最高,但是由于该规则只考虑各国的需水量,忽略了其他因素,缺乏足够的合理性和可解释性,较难为各国所接受。而改进后的R_PRO、R_CEL、R_AP三种破产规则平均指数值较低,整体稳定性较高,特别是较于对应的传统破产规则(PRO、CEL和AP)下的CPBSI指数,改进后的R_PRO、R_CEL、R_AP分配结果的CPBSI指数都有较大幅度的降低,说明改进后的规则具有更高的稳定性。在改进后的三种分配方式中,R_PRO方法的CPBSI指数最低,其次是R_AP,最高的是R_CEL,进一步印证了Borda计数法下的结果和推断,R_PRO和R_AP规则稳定性较好,最有可能为流域成员国所接受,是相对来说比较稳定的水量配置方案。
5 结 语
本文评估已有破产规则在跨境水量分配应用中的有效性及局限性,在破产理论基础上提出破产分配程序的顺序,结合国际水法一般原则对PRO、CEL和AP三种规则进行改进,构建基于破产理论的多参数跨境河流水量分配模型。具有以下特点:①重视破产分配程序的顺序性,确保生活生态用水优先。在确定跨境流域各国水资源可再分配量时,首先扣除人类基本生活用水和河道内基本生态需水,剩余水量再进行分配,保障最基本的生活生态用水。②更加注重公平合理性。与其他分水更加注重效率性相比,从公平合理的角度出发,结合国际水法的“公平合理”和“不造成重大损害”原则来保障跨境分配主体的权益。③与传统的破产规则相比,考虑到更多属性。综合各国当下需水量以及影响未来可能需水量的潜在因素,增设水资源贡献量、人口自然增长量、水资源开发落后地区倾斜系数以及最低供水保障率等四个参数,使得分配结果更具合理性和可解释性。④通过Borda计数法和CPBSI指数定性定量判断各规则的稳定性。结果表明改进后的破产规则稳定性均有提升,其中R_PRO规则下的分配结果稳定性最高,在实际跨境水量分配方案中有较强的可实施性。但是本文的研究仍存在一定的局限性,仅适用于当水资源供给量无法满足需求量的情况,并建立在各国水资源数据公开透明的基础上,未来跨境水资源数据的详细透明是解决水纠纷的关键。
復杂的多方参与属性使得未来流域一体化发展成为跨境水资源开发和利用的必然趋势,改进后的破产分配方法从更加公平合理的角度来分配公共水资源,与大多数分配问题追求福利最大化不同,本文寻求一众能够在利益主体间取得协商一致意见的切实可行的办法。通过形成可行的初始水量分配方案,可以促进沿岸国家之间的协商,进而达成一种共识的超额分配机制,为未来流域一体化相关协议的签订和谈判打下基础。但是初始分配结果未必能适用所有沿岸国家的需求,可再结合各国实际情况通过水权交易、生态补偿等形式进行二次分配,以适应各沿岸国自身发展需求,这也是未来研究工作的重点。
参考文献
[1]何大明. 全球变化下跨境水资源国内外研究进展[J]. 地理教育, 2017 (4): 1-1.
[2]WOLF A T. Criteria for equitable allocations: the heart of international water conflict[J]. Natural resources forum, 1999, 23(1):3-30.
[3]何大明, 冯彦, 陈丽晖, 等. 跨境水资源的分配模式、原则和指标体系研究[J]. 水科学进展, 2005, 16(2): 255-262.
[4]陈海燕. 可利用水量变化影响国际河流分水的实例及其启示[J]. 水利发展研究, 2006, 6(7): 53-56.
[5]KILGOUR D M, DINAR A. Flexible water sharing within an international river basin[J]. Environmental and resource economics, 2001, 18(1): 43-60.
[6]BHAGABATI S, KAWASAKI A, BABEL M, et al. A cooperative game analysis of transboundary hydropower development in the lower Mekong: case of the 3S sub-basins[J]. Water resources management, 2014, 28(11): 3417-3437.
[7]黄德春, 陈陆滢, 吴祠金. 基于演化博弈的国际河流水量调整策略分析[J]. 中国农村水利水电, 2015 (4): 90-93.
[8]KUCUKMEHMETOGLU M, GULDMANN J M. Multiobjective allocation of transboundary water resources: case of the Euphrates and Tigris[J]. Journal of water resources planning and management, 2010, 136(1): 95-105.
[9]陈陆滢, 黄德春. 国际河流开发项目中初始水权分配模型研究[J]. 项目管理技术, 2013, 11(12): 34-38.
[10]李奔, 张坤, 程天矫. 基于层次分析法的澜沧江:湄公河可消耗水量分配[J]. 武汉大学学报 (工学版), 2018, 51(5): 389-393.
[11]OSRIO A. A sequential allocation problem: the asymptotic distribution of resources[J]. Group decision & negotiation, 2016, 26(2):1-21.
[12]ARJOON D, TILMANT A, HERRMANN M. Sharing water and benefits in transboundary river basins[J]. Hydrology & earth system sciences, 2016, 20(6): 2135-2150.
[13]吴凤平, 谭东升. 构建 “水安全命运共同体”:从博弈到共享的跨境水资源分配[J]. 经济与管理评论, 2018, 34(6): 143-150.
[14]罗贤, 倪广恒, 孔令杰, 等. 全球变化下的跨境水资源科学调控与利益共享研究[J]. 中国基础科学, 2019(4):28-34.
[15]ZAAG P V D , SEYAM I M , SAVENIJE H H G . Towards measurable criteria for the equitable sharing of international water resources[J]. Water policy, 2002, 4(1): 19-32.
[16]MIANABADI H, MOSTERT E, PANDE S, et al. Weighted bankruptcy rules and transboundary water resources allocation[J]. Water resources management, 2015, 29(7):2303-2321.
[17]JARKEH M R , MIANABADI A , MIANABADI H . Developing new scenarios for water allocation negotiations: a case study of the Euphrates River Basin[J]. Proceedings of the International Association of Hydrological Sciences, 2016, 374:9-15.
[18]O'NEILL B. A problem of rights arbitration from the Talmud[J]. Mathematical social sciences, 1982, 2(4): 345-371.
[19]AUMAN R, MASCHLER M. Game theoretic analysis of a bankruptcy problem from the Talmud[J]. Journal of economic theory, 1985, 36(2): 195-213.
[20]HERRERO C, VILLAR A. The three musketeers: four classical solutions to bankruptcy problems[J]. Mathematical social sciences, 2001, 42(3): 307-328.
[21]ANSINK E, WEIKARD H P. Sequential sharing rules for river sharing problems[J]. Social choice and welfare, 2012, 38(2): 187-210.
[22]MIANABADI H, MOSTERT E, ZARGHAMI M, et al. A new Bankruptcy Method for conflict resolution in water resources allocation[J]. Journal of environmental management, 2014, 144: 152-159.
[23]MADANI K, ZAREZADEH M, MORID S. A new framework for resolving conflicts over transboundary rivers using Bankruptcy Methods[J]. Hydrology and earth system sciences, 2014, 18(8): 3055-3068.
[24]李深林, 陈晓宏, 何艳虎, 等. 破产理论在区域水量分配中的应用[J]. 南水北调与水利科技, 2017, 15(5): 22-28.
[25]袁亮, 沈菊琴, 何伟军, 等. 基于主体不平等的跨国界河流水资源分配的破产博弈研究[J]. 河海大学学报 (哲学社会科学版), 2018, 20(2): 65-69.
[26]孙冬营, 王慧敏, 褚钰. 破产理论在解决跨行政区河流水资源配置冲突中的应用[J]. 中国人口·资源与环境, 2015, 25(7): 148-153.
[27]尹正友, 张兴祥. 中美破产法律制度比较研究[M]. 北京:法律出版社, 2009: 220-229.
[28]王旻, 尹少华, 卢丽帆. 缺水型城市水资源供需匹配的模拟和预测:以甘肃省兰州市为例[J]. 经济地理, 2020, 40(2):89-96.
[29]COBBE J H. Employment growth and basic needs: a one-world problem[R]. Geneva:The Director-Generai of the International Labour Office,1976.
[30]李芳, 吴凤平, 陈柳鑫,等. 非对称性视角下跨境水资源冲突与合作的鹰鸽博弈模型[J]. 中国人口·资源与环境, 2020, 30(5): 157-166.
[31]张瑞金, 张欣, 刘博,等. 跨界河流水量分配模式研究[J]. 边界与海洋研究, 2018, 3(6): 82-91.
[32]赵志轩, 刘艳丽, 王怡宁, 等. 跨境水资源多级权属体系构建:以澜沧江—湄公河流域为例[J]. 水利发展研究, 2018, 18(10): 9-15.
[33]戴长雷, 王佳慧. 国际河流水权初探[J]. 水利发展研究, 2003, 3(12):59-62.
[34]郭思哲. 国际河流水权制度构建与实证研究[D]. 昆明: 昆明理工大学, 2014: 90-98.
[35]LI F, WU F P, CHEN L X, et al. Fair and reasonable allocation of trans-boundary water resources based on an Asymmetric Nash Negotiation Model from the satisfaction perspective: a case study for the Lancang-Mekong River Bain[J]. International journal of environmental research and public health, 2020, 17:7638-7653.
[36]刘艳丽, 赵志轩, 孙周亮, 等. 基于水利益共享的跨境流域水资源多目标分配研究:以澜沧江—湄公河为例[J]. 地理科学, 2019,39(3):387-393.
[37]ADAMS, STACY J. Towards an understanding of inequity[J]. Journal of abnormal and social psychology, 1963, 67(5): 422-436.
[38]張彧瑞, 马金珠, 齐识. 人类活动和气候变化对石羊河流域水资源的影响:基于主客观综合赋权分析法[J]. 资源科学, 2012, 34(10):1922-1928.
[39]王思涵. 澜沧江—湄公河跨界水污染防治机制研究[D]. 武汉:武汉大学, 2019:17-19.
[40]Mekong River Commission Regional Flood Management and Mitigation Centre. Dry situation report[DB/OL]. (2014-12)[2019-08-05]. http://ffw.mrcmekong.org/bulletin_wet.php.
[41]张强, 崔瑛, 陈永勤. 基于水文学方法的珠江流域生态流量研究[J]. 生态环境学报, 2010, 19(8): 1828-1837.
[42]Mekong River Commission. Assessment of basin-wide development scenarios[R]. 2011.
[43]UNEP, GIWA. Global international waters assessment: Mekong River-GIWA regional assessment 55[R]. 2006.
[44]SMAJGL A , WARD J R , FORAN T , et al. Visions, beliefs, and transformation: exploring cross-sector and transboundary dynamics in the wider Mekong Region[J]. Ecology and society, 2015, 20(2): 1-16.
[45]Global Environment Facility. Transboundary water assessment program river basins[DB/OL]. (2016-06-04)[2019-08-05].http://twap-rivers.org/indicators/.
(责任编辑:王爱萍)