陈 浩,高欣宝,张 倩,李天鹏,杨 洋
(1.陆军工程大学石家庄校区,河北 石家庄 050003;2.陆军装备部驻北京地区代表局,北京 100166)
随着复合探测技术的发展,复合制导武器大量应用,战场目标的生存能力受到巨大威胁和挑战。为保护己方目标,发展与之对抗的烟幕干扰技术,成为当今世界的一大发展趋势。
近年来,为实现烟幕的多频谱干扰,研究人员采用组合装药技术、材料改性技术、复合配药技术对干扰弹进行了研究。如Varmo 等[1]发明了一种内外腔的装药结构,内部装填燃烧型发烟剂干扰可见光,外部装填铜粉等干扰剂,实现对红外和毫米波材料的干扰,通过爆炸分散方式,在空中起爆形成多频谱烟幕云团。Koch等[2]将玻璃纤维、碳纤维,通过磷或硫化磷进行表面包覆改性,再将易燃金属、氧化剂和粘合剂包覆在外层,通过切割确保改性后的材料长度在1~30 mm,可同时干扰可见光、红外和毫米波。Schulz 等[3]将石墨、金属粉和可膨胀石墨按照一定比例进行有效混合,采用爆炸分散方式形成多频谱烟幕,可同时干扰红外和毫米波。目前,国内主要围绕材料改性和复合配药技术进行了研究[4-5]。如郭晓铛等[6]通过钴铁磁体/碳与镍钴铜铁磁体/碳进行复合,制备了复合纳米材料。通过焙烧处理,使复合材料的红外消光性能得到提高。毕鹏禹等[7]通过水热合成法和表面改性技术,制备了层状超分子烟幕材料,通过表征与分析,得到7~10 μm 的材料具有良好的中远红外遮蔽性能。陈泽等[8]通过化学侵浸法,将含能材料填充到二氧化硅气凝胶的孔隙中,制备了气凝胶基复合材料。将其作为发烟剂的组分,通过复合配药技术,通过对比试验,复合材料含量为7%,其对8~14 μm 远红外的透过率小于4%。
上述文献针对干扰材料的制备与改性、复合药剂的最佳配比进行了分析与研究,但仍存在以下问题:(1)单一材料实现对可见光、红外、毫米波多波段有效干扰的难度较大;(2)单一的组合装药技术、材料改性技术及复合配药技术,不同程度受限于结构设计、材料分散性及制备工艺的难度,无法满足多波段和长时间的有效遮蔽。基于以上问题,本研究采用材料改性技术,制备碳纳米管/石墨烯/碳复合材料。通过高温焙烧除胶,提高碳纤维的分散性,采用复合配药技术,将碳纳米管/石墨烯/碳复合材料与碳纤维进行混合,制备多频谱复合干扰剂。基于正交试验法,利用烟箱实验,对比分析不同粒径的碳纳米管/石墨烯/碳复合材料、不同状态的碳纤维、不同配比及不同混制工艺对复合干扰剂综合遮蔽性能的影响,得到多频谱干扰剂的最佳制备条件。
试剂:KNG-150 石墨烯(平均粒径为15 μm)、碳纳米管(平均粒径为20 nm)、T700 上浆短切碳纤维,(直径为5 μm,长度为2 mm),深圳市德方纳米科技股份有限公司;煤沥青,工业级,保定中油沥青有限公司;无水乙醇、甲苯,分析纯,国药集团化学试剂有限公司;氩气,纯度≥99.999%,石家庄特种气体有限公司。
仪器:磁力搅拌器,CJJ78-1,大地仪器厂;恒温水浴槽,HHS-4S,宜昌仪器纱筛厂;真空干燥箱,DZF-6030A,上海一恒科技有限公司;气氛箱式炉,KBF-16Q,南大仪器厂;超声波清洗器,KQ5200E,昆山市超声仪器有限公司;电子天平,FA2004N,上海天平仪器厂;行星式球磨机,QM-3B,南大仪器厂;扫描电子显微镜,JSM-6700F,日本电子公司。
基于前期研究成果[9-11],将沥青、石墨烯和碳纳米管按照一定质量比,制备碳纳米管/石墨烯/碳复合材料,其基本流程如图1 所示。
图1 干扰剂样品制备流程图Fig.1 Sample preparation flow chart of interfering agent
借助于气流粉碎机,将制备的碳纳米管/石墨烯/碳复合材料进一步粉碎、分级,加工了粒径D50分别为4.2、7.8 μm 和15.6 μm 三批样品。
碳纤维经过短切处理后,表面还存在上浆胶,在装填和混制过程中容易结团,不易分散,在一定程度上,影响了其毫米波的遮蔽性能。为提高其碳纤维的适用性,通过高温焙烧除胶,对碳纤维材料的分散性能做进一步改进[12]。
将短切碳纤维分别经过400 ℃和800 ℃培烧处理2 min,未处理碳纤维与400、800 ℃培烧处理的碳纤维状态对比见图2。从图2 可知,经过800 ℃培烧处理的碳纤维,其物理分散性更佳。
2.4.1 正交实验设计
为简化试验次数,确定多频谱干扰剂中轻质复合材料与碳纤维的最佳质量比,根据光散射理论、前期实验经验及工艺改善需要,以碳纳米管/石墨烯/碳复合材料D50粒径(A)、碳纤维除胶温度(B)、碳纤维所占质量百分数(C)、混制溶剂(D)作为主要因素,以可见光(0.4~0.7 μm)、近红外(1~3 μm)、中红外(3~5 μm)、远红外(8~14 μm)、3 mm 波和8 mm 波的质量消光系数之和作为评价指标,来评价多频谱复合干扰剂对多波段的综合遮蔽性能。选用L9(34)正交表,优选复合干扰剂最佳制备条件,因素、水平如表1 所示。
图2 碳纤维焙烧除胶实物对比图Fig.2 Comparison of carbon fiber before and after roasting and degumming
表1 因素和水平表Table 1 Factors and levels table
2.4.2 测试方法
正交试验安排见表2。按照试验序号,分别选择相应状态的轻质复合材料及碳纤维,并按照预定比例放入选定的溶剂中进行混合,待混合均匀后,将混合干扰剂过滤,并放入干燥箱中,进行干燥处理。
表2 正交实验设计Table 2 Orthogonal experimental design
2.5.1 主要测试系统
(1)烟箱:容积为16.5 m3(4.3 m×2.1 m×1.8 m),光程为2.1 m,内设两个用于搅拌的风扇。
(2)ST 型宽量程可见光照度计及钨丝白炽灯光源:取样率为1 s,分辨率为±4%。
(3)JHF-Ⅱ红外辐射计:工作波段分别为1~3,3~5 μm 和8~14 μm,由发射端和接收端组成。
(4)3 mm 波和8 mm 波测试系统:由发射和接受端组成。
(5)滤膜直径为20 cm,流量为2~5 L·min-1的滤膜浓度采样器:通过抽取烟箱内烟幕的一定体积,使其通过玻璃纤维滤膜,将残留在滤膜上的烟幕粒子进行称量,进一步计算得到其质量浓度。
2.5.2 测试原理
测试的各系统布置示意图如图3 所示,红外测试系统、激光测试系统、毫米波测试系统的发射和接收器分别布设在烟箱测试窗口两侧。实验前,对各测试设备进行调试,使发射端信号稳定。实验时,各测试设备的发射器经过烟幕的衰减作用,使得接收器接收到的信号减弱,通过对比测试前后的信号强弱,可得到该时刻烟幕的透过率衰减曲线。
图3 烟箱测试系统布置图Fig.3 Smoke box test system layout
2.5.3 测试方法
测试开始后,先对各测试设备进行调试。待系统稳定后,称取16.5 g 实验序号对应的复合干扰剂,将其装入喷撒罐体中,通过高压气泵将干扰材料喷撒到烟箱中,经风扇搅拌20 s,开始计时。浓度采样器在浓度稳定后,间隔50 s 进行采样,采样三次即可。
各试验系统的复合干扰剂在释放前,标定其初始电压或能量。释放后,反馈测试电压(或照度值)给计算机。其透过率计算公式[13-14]如下:
式中,U0为复合干扰剂释放前测试仪器的初始电压(或照度值),V(或lx);Ut为烟幕释放后,探测器的输出电压值(或能量值),V(或lx);τ为透过率,%。
为计算正交试验的评价指标,将各实验测试得到的各时间节点的透过率,按一定时间间隔取点并计算均值,得到各波段的平均透过率,如表3 所示。
表3 各实验样品在不同波段的平均透过率Table 3 The average transmittance of each sample at different wavebands %
根据消光原理,多频谱复合干扰剂服从“朗伯-比尔”定律,则质量消光系数计算表达式[15]如下:
根据公式(2)计算得到各波段的质量消光系数如表4 所示。由表4 可知,多频谱复合干扰剂在不同工艺和条件下,其可见光、近红外、中红外和远红外的质量消光系数均大于1 m2·g-1,其中,2、3、4、5、7、8 号实验复合干扰剂的3 mm 和8 mm 的质量消光系数大于1 m2·g-1,优于其他实验的复合干扰剂。由于复合干扰剂中短切碳纤维长度对毫米波性能的影响,样品对8 mm 波的质量消光系数优于3 mm 波。
进一步计算得到正交试验的评价指标、各因素的均值及极差如表5 所示。由表5 可知,因素A~D的极差分别为1.48、0.32、1.43 和0.52,因此,各因素对评价指标的影响大小分别为A>C>D>B,从极差数值来看,A因素和C因素为影响多频谱复合干扰剂综合遮蔽性能的主要因素,B因素和D因素次之,即碳纳米管/石墨烯/碳复合材料的粒径和碳纤维的质量占比是影响综合质量消光系数的主要因素,碳纤维的状态及混制溶剂是影响综合质量消光系数的次要因素。基于最佳评价指标下的最优组合为:A1B3C2D2,即多频谱复合干扰剂的最佳制备条件为:D50为3~5 μm 的轻质复合材料与800 ℃焙烧处理的碳纤维按照质量比为85∶15,加入到乙醇溶液中进行分散混合。
表4 各试验样品在不同波段的质量消光系数Table 4 The mass extinction coefficients of each sample at different wavebands m2·g-1
表5 正交试验的结果Table 5 The results of orthogonal experiment
为进一步验证最佳制备条件下复合干扰剂的遮蔽性能,在上述条件下制备了多频谱复合干扰剂,通过烟箱实验得到该样品对各波段的衰减曲线,如图4所示。
由图4 可知,该条件下制备的多频谱复合干扰剂,其形成的烟幕对可见光、近红外、中红外和远红外透过率小于5%,有效遮蔽时间大于300 s;3 mm 和8 mm波的衰减值可达-14 dB 和-15.65 dB,有效遮蔽时间均大于30 s。
根据式(2)进一步计算样品在各波段下的质量消光系数,结果见表6。
表6 多频谱复合干扰剂在各波段下的质量消光系数Table 6 Mass extinction coefficients of the multi-spectral composite interfering agent at different wavebands m2·g-1
图4 复合干扰剂样品对各波段的衰减曲线Fig.4 The attenuation curve of the composite interfering agent on varying wavebands
由表6 可知,多频谱复合干扰剂对可见光、近红外、中红外、远红外、3 mm 波和8 mm 波的质量消光系数均大于1.8 m2·g-1,具有较好的多波段遮蔽性能。与2 号正交组对比可知,800 ℃高温焙烧及湿法混制工艺,并没有降低碳纤维的毫米波干扰性能,反而有一定的提高。
采用材料改性技术和复合配药技术制备了“碳纳米管/石墨烯/碳复合材料+碳纤维”复合干扰剂,采用正交试验法分析了复合干扰剂的干扰性能及最佳制备条件,所得结论如下:
(1)基于正交实验下,碳纳米管/石墨烯/碳复合材料的粒径和碳纤维的质量占比对复合干扰剂的干扰性能影响较大。经过800 ℃高温焙烧和湿法混制工艺,能够在一定程度上改善碳纤维对毫米波的干扰性能,进而提高复合干扰剂对毫米波的干扰性能,但对可见光和红外波段的影响较小,因此,对复合干扰剂的综合干扰性能影响相比较小。
(2)选用D50为3~5 μm 的碳纳米管/石墨烯/碳复合材料与800 ℃高温焙烧过的碳纤维,按照质量比为85∶15 在乙醇溶液中混制得到的复合干扰剂,其对可见光、近红外、中红外、远红外、3 mm 和8 mm 波具有良好的遮蔽性能。