杨光树 王凯 燕永锋 贾福聚 李丕优 毛致博 周艳
昆明理工大学国土资源工程学院,昆明 650093
在滇东南老君山地区,围绕燕山期复式花岗岩体出露了一套穹窿状变形-变质岩系(张世涛等,1998;李东旭和许顺山,2000;颜丹平等,2005;Yanetal., 2006;张斌辉等,2011;谭洪旗和刘玉平,2017),其中产出了一系列特色鲜明,潜力巨大的锡、锌、铟、钨、铍等多金属矿床(点),长期以来备受关注(涂光炽,2002;Liuetal., 2003;刘玉平等,2006,2007;李健康等,2013;Faureetal., 2014;王丹丹等,2015;Xuetal., 2016; Zhouetal., 2017, 2018a; Zhaoetal., 2018)。
该区典型矿床主要分布于老君山花岗岩体周边,产于远离接触带的变质岩系中,矿体的直接赋存围岩主要是矽卡岩。前人在区内开展过一系列研究工作,并在许多方面取得了较丰硕的研究成果,如成岩成矿年代学(刘玉平等,2000a,2006;张斌辉等, 2012;Fengetal., 2013;李进文等,2013;刘艳宾等,2014;王小娟等,2014;Duetal., 2015;Xuetal., 2015;Chengetal., 2016)、地球化学(刘玉平等,2000b;贾福聚等,2013,2014,2016;何芳等,2015;叶霖等,2017,滕浪等,2018)、成矿规律(宋焕斌,1988,1989;罗君烈,1995;周建平等,1998;张洪培等,2006;阙朝阳等,2014;陈郑辉等,2015;Zhouetal., 2018b)等。然而,目前专门针对含矿矽卡岩的系统研究并不多,且争议较大,主要存在以下成因观点:(1)接触交代成因(宋焕斌,1988,1989;苏航等,2016;王金良等,2016;叶霖等,2016;李丕优等,2018);(2)正常沉积岩在印支期发生区域变质形成(曾志刚,1999;曾志刚等,2000;王冠等,2012);(3)喷流沉积-变质作用形成(戴婕等,2011;石洪召等,2011);(4)多因复成,即经历了喷流沉积-印支期变质-燕山期岩浆热液叠加等过程(刘玉平等,2000b;贾福聚等,2013,2014;蔡倩茹等,2017)。
矽卡岩不仅是区内最重要的赋矿围岩,同时也是直接找矿标志,其成因及与成矿关系的研究不仅有助于深化该区成矿规律的认识,对于指导进一步找矿也至关重要,值得深入探讨。鉴于此,本文在详细野外地质工作的基础上,通过对都龙、南秧田矿区含矿矽卡岩进行电子探针和ICP-MS等分析测试,对其地质特征、矿物学、岩石地球化学特征进行了对比分析,进而探讨了矽卡岩及相关矿床的形成机制。
滇东南地区大地构造上处于扬子、印支和华夏板块交接部位(图1a),是特提斯和滨太平洋构造域复合作用的产物(周建平等,1998;Yanetal., 2006;Chengetal., 2013;Xuetal., 2015)。特殊的大地构造位置造就了该区复杂的地质环境和优越的成矿条件,特别是大致沿北西向哀牢山-红河构造带平行分布的燕山晚期个旧、薄竹山、老君山花岗岩体周缘,产出了一系列大型-超大型锡-钨多金属矿田/床,例如个旧锡多金属矿田、白牛厂锡银矿床、都龙锡锌铟矿床、南秧田钨锡矿床等(图1a),构成了我国重要的滇东南锡钨多金属成矿带(涂光炽,2002;张洪培等,2006;赵一鸣等,2012,2017;陈郑辉等,2015;Chengetal., 2016; Huetal., 2017; Zhaoetal., 2018)。
老君山矿集区位于成矿带东南端,经历了多期沉积、岩浆、变质作用和构造活动,形成了构造复杂、岩性多样的地质格局(Yanetal., 2006; 刘玉平等,2007;Guoetal., 2009; 张斌辉等,2011;Xuetal., 2015, 2016;谭洪旗和刘玉平,2017)。区内主要出露一套穹窿状变形-变质岩系,分布于北北西向文山-麻栗坡断裂和马关-莲花塘断裂之间(图1b)。变质核由前寒武纪变质基底和中酸性侵入体组成,变质程度最高达低角闪岩相;外围以古生界沉积盖层为主,变质程度多限于低绿片岩相(张斌辉等,2011)。据发育在核部的剥离断层和盖层中的叠瓦状正断层系统等构造形迹特征,该岩系被命名为老君山变质核杂岩(李东旭和许顺山,2000;Liuetal., 2003;刘玉平等,2006,2007;谭洪旗和刘玉平,2017),或都龙-Song Chay变质穹隆体(Yanetal., 2006)。在1/50000老君山幅和麻栗坡县幅区域地质矿产调查报告(云南省地质矿产勘查开发局区域地质调查大队,1999(1)云南省地质矿产勘查开发局区域地质调查大队.1999. 1/50000老君山幅和麻栗坡县幅区域地质矿产调查报告)中,核部变质岩系被分解为晚志留世南温河片麻岩、新元古界新寨岩组和古元古界猛硐岩群(划分为南秧田岩组和洒西岩组),但目前它们的时代归属及其与上覆地层的接触关系仍然存在较大争议(Yanetal., 2006;刘玉平等,2006;张斌辉等,2011;王丹丹等,2015 ; Xuetal., 2016;Zhouetal., 2017, 2018b; 谭洪旗和刘玉平,2017)。
区内岩浆岩以加里东期和燕山期酸性侵入岩为主,基性岩、喷出岩次之。加里东期花岗岩广泛分布于中东部和南部,以南温河中细粒花岗岩为代表(图1b),多变质为(眼球状)花岗片麻岩,Xuetal. (2016)测得其中岩浆锆石U-Pb年龄为427~436Ma,谭洪旗和刘玉平(2017)研究认为区内主变质期为236Ma。燕山期以出露于中部的老君山三期复式花岗岩体为代表,面积约150km2(图1b)。前人(Yanetal., 2006;刘玉平等,2007;冯佳睿等,2011;Fengetal., 2013; 刘艳宾等,2014;Pengetal., 2015; Xuetal., 2015)研究表明,第一期(106~118Ma)以岩基形式侵位,规模约占岩体总出露面积的2/3,主要为中粗粒似斑状黑云母花岗岩;第二期(89~101Ma)以岩株形式侵入早期花岗岩中,规模次之,岩性为中细粒二云母花岗岩、白云母花岗岩;第三期(75~87Ma)规模最小,呈岩脉形式沿南北、东西向裂隙侵入前两期的花岗岩或变质围岩中,岩性为花岗斑岩。此外,部分研究认为该区还存在新元古代花岗岩浆活动和片麻岩穹窿构造(刘玉平等,2006;Guoetal., 2009;张斌辉等,2011;谭洪旗和刘玉平,2017)。这两次大规模岩浆活动为本区钨、锡等矿产资源的形成提供了物质基础和成矿条件(刘艳宾等,2014),造就了老君山岩体周边一系列丰富多样的有色-稀散金属矿床,构成了老君山锡-钨-锌-铟多金属矿集区。
图1 滇东南地区大地构造略图(a)和滇东南老君山矿集区地质简图(b)(据李建康等,2013;Xuetal., 2015修改)
Fig.1 Simplified geological map of SE Yunnan Province showing distribution of major tectonic units (a) and geological sketch map of the Laojunshan ore concentration area in Yunnan Province (b) (modified after Lietal., 2013; Xuetal., 2015)
图2 老君山矿集区典型矿床剖面图
(a)新寨矿体形态剖面图(西南地质勘探公司三一七队,1984(2)西南地质勘探公司三一七队.1984.云南省麻栗坡县南秧田钨矿深部评价报告);(b)南秧田5号勘探线剖面图(西南地质勘探公司三O六队,1988(3)西南地质勘探公司三O六队.1988.云南省麻栗坡县新寨锡矿床详查地质报告);(c)都龙锡锌多金属矿113号勘探线剖面图(西南有色地质勘查局三一七队,1991(4)西南有色地质勘查局三一七队.1991.云南省马关县都龙锡锌矿区曼家寨矿段勘探报告)
Fig.2 Geological sections of the typical deposits from the Laojunshan ore concentration district
(a) geological sections along exploration line 125 of the Xinzhai deposit; (b) geological sections along exploration line 5 of the Nanyangtian deposit; (c) geological sections along exploration line 113 of the Dulong deposit
区内矽卡岩围绕老君山花岗岩体分布,目前主要通过钻孔、采掘工程等揭露于各矿区(点),以都龙和南秧田矿区最典型。按产出特点可分为两类,一类为产于花岗岩体与钙质沉积岩接触带内的接触交代矽卡岩;另一类为远离接触带,多呈似层状、透镜状赋存于前寒武纪低绿片岩相到低角闪岩相变质岩系中,且具有一定层位性和岩类组合特征的远端矽卡岩,剖面上总体呈层状(图2)。接触带矽卡岩往往无矿化或矿化较弱,而远端矽卡岩则是区内W、Sn、Zn、In等多金属的主要赋矿岩系,含矿矽卡岩类型以钙质矽卡岩为主,都龙矿区铜街矿段有部分镁质矽卡岩 (刘玉平等,2000b;王小娟等,2014)。产于古元古界猛硐岩群南秧田岩组(Pt1n)中上段的透辉石-石榴石-透闪石矽卡岩主要分布于老君山岩体的北缘和东部,是区域大规模似层状钨(锡)矿床的主要赋矿围岩和有效找矿标志,产有南秧田超大型白钨矿床。产于新元古界新寨岩组(Pt3x)中段的石榴石-透辉石矽卡岩和阳起石-绿泥石矽卡岩主要分布于老君山岩体北部、南部边缘,是区域锡-锌-铟(-铜-钨)多金属矿床的主要赋矿围岩,产有新寨大型锡矿床、都龙超大型锡-锌-铟多金属矿床。区内主要钨锡多金属矿床中含矿矽卡岩地质特征见表1。
图3 都龙矿区含矿矽卡岩产出特征与结构构造(a)似层状含矿矽卡岩;(b)切层含矿矽卡岩;(c)含矿矽卡岩中夹残留大理岩团块;(d)含矿透辉-阳起石矽卡岩;(e)绿泥石交代环带状石榴石;(f)铁闪锌矿充填交代透辉石;(g)黑色、红棕色闪锌矿充填交代透辉石和阳起石;(h、i)阳起石矽卡岩中铁闪锌矿与磁黄铁矿共生,铁闪锌矿中乳滴状黄铜矿呈定向分布. Act-阳起石;Chl-绿泥石;Di-透辉石;Grt-石榴石;Ccp-黄铜矿;Po-磁黄铁矿;Py-黄铁矿;Sp-闪锌矿Fig.3 Exists and structures of the ore-bearing skarns in the Dulong mining district(a) stratiform ore-bearing skarns; (b) ore-bearing skarns cut the marble stratum; (c) residual marble mass in the ore-bearing skarns; (d) ore-bearing diopside actinolite skarns; (e) chlorite replace garnet with growth zone; (f) christophite fill and replace diopside; (g) red/brown sphalerite fill and replace; (h, i) christophite and pyrrhotine are paragenetic in the actinolite skarn, and emulsion drop like chalcopyrites are orientationally distributed in the christophite. Act-actinolite; Chl-chlorite; Di-diopside; Grt-garnet; Ccp-chalcopyrite; Po-pyrrhotine; Sp-sphalerite
本文研究的含矿矽卡岩样品分别采自都龙矿区24号矿体1250m、1180m、1080m中段,南秧田矿区1158m中段、1211m中段27线北沿脉和穿脉。
都龙矿区含矿矽卡岩类型主要有石榴石-透辉石矽卡岩、阳起石-透闪石矽卡岩和绿泥石矽卡岩等,其中阳起石和绿泥石矽卡岩含矿性最好(图3)。矽卡岩矿物组成较复杂,常见矿物有透辉石、阳起石、硬绿泥石、石榴石、透闪石、绿帘石、石英、白云母、萤石、方解石、白云石等。含矿矽卡岩结构、构造复杂,总体以粒状、柱状变晶结构和块状构造为主,常见充填结构、 交代结构、 包裹结构、环带结构和残留结构(图3e-i),条带状构造、浸染状构造和网脉状构造等。矿石矿物有铁闪锌矿、锡石、磁铁矿、磁黄铁矿、镍黄铁矿、黄铜矿、黄铁矿和毒砂等,常呈半自形细粒状充填于矽卡岩矿物粒间(图3g),不同金属矿物之间交代关系复杂,铁闪锌矿内部常见固溶体分离物黄铜矿或磁黄铁矿呈乳滴状定向分布,构成“似文象结构”(图3h,i)。
表1老君山矿集区代表性矿床中含矿矽卡岩地质特征
Table 1 Geological characteristics of the ore-bearing skarns from representative deposits in the Laojunshan ore concentration area
矿区南秧田矿区新寨矿区都龙矿区产出位置产于Pt1n中上段二云斜长片麻岩与石英变粒岩间产于Pt3x上部云母石英片岩中及其与大理岩过渡部位产于Pt3x中上部大理岩与云母石英片岩过渡部位、F1断层上下盘分布与形态带状、多层分布,平面长160~1680m,宽70~1280m;形态规则、简单,呈(似)层状、透镜状,产状稳定带状、多层分布,平面长>1000m,宽>600m;呈(似)层状、透镜状带状、多层分布,平面长>4000m,宽>400m;走向上呈(似)层状、透镜状、囊状,垂向上呈叠瓦状与围岩关系顺层产出,与围岩产状一致(图2a)顺层产出,与围岩产状基本一致(图2b)主要受大理岩与片岩岩相过渡带和层间断裂控制(图2c).发育顺层和切层矽卡岩(图3a,b)与岩体关系空间上与花岗岩体无直接关系,局部被花岗斑岩脉穿切空间上处于隐伏花岗岩体之上,但无直接联系空间上处于隐伏花岗岩之上几十米-几百米范围内,局部被花岗斑岩脉穿切造岩矿物以透辉石、石榴石、透闪石为主,其次为阳起石、符山石、绿帘石、云母和石英等以透辉石和透闪石为主,其次为阳起石、石榴石、绿帘石、萤石、云母和石英等以阳起石和绿泥石为主,其次为透辉石、石榴石(较少)、透闪石、普通角闪石、绿帘石、云母、石英和符山石(少量)等结构构造粒状、柱状变晶结构;块状构造、条纹条带状构造粒状、柱状、片状变晶结构;块状构造,条纹条带状粒状、柱状变晶结构、交代残余结构;块状构造矿化特征W(-Sn-Mo)矿体主要产于石榴石-透辉石-透闪石矽卡岩中、Be矿化主要产于伟晶岩、片麻岩中Sn矿体主要产于云英岩和矽卡岩中Sn-Zn-In(-Cu)矿体主要产于阳起石-绿泥矽卡岩中,Cu-W矿体主要产于透辉石-石榴石矽卡岩中分带特征分带特征不明显分带特征不明显具一定垂向分带性。隐伏岩体接触带向外依次为石榴石-透辉石矽卡岩、阳起石矽卡岩、绿帘石-绿泥石矽卡岩等
南秧田矿区含矿矽卡岩类型主要有石榴石矽卡岩、透辉石-透闪矽卡岩、绿帘石-透辉石矽卡岩等。矿物组合以透闪石+透辉石+石英、透辉石+绿帘石+石英、石榴石+透辉石+透闪石十石英等为主,有时还含有少量符山石、绿帘石、绿泥石和磷灰石等。白钨矿和金属硫化物(黄铜矿、磁黄铁矿、黄铁矿等)常呈半自形-他形粒状分布于矽卡岩矿物间(图4a),或以不规则团块状产出(图4b)。含矿矽卡岩常具有半自形-他形粒状变晶结构、交代充填结构、共边结构、嵌晶结构和交代残余结构等(图4c-f),以及块状构造、条纹条带状构造、网脉状构造和角砾状构造等。
图4 南秧田矿区含矿矽卡岩结构构造(a、b)块状石榴透辉石矽卡岩,含团块状白钨矿; (c)半自形粒状变晶结构,透辉石被白钨矿、黝帘石、石英等交代;(d)石英、白钨矿、绿帘石充填交代透辉石;(e)石榴石被白钨矿、石英等交代呈港湾状;(f)白钨矿与石英、黝帘石共生,并交代透辉石. Q-石英;Sh-白钨矿;Zo-黝帘石Fig.4 Structure of the ore-bearing skarns in the Nanyangtian mining district(a, b) mass scheelite in the garnet-diopside skarn; (c) the diopside skarn has hypidiomorphic-granular texture, with diopside replaced by scheelite, zoisite and quartz; (d) diopside replaced and filled by quartz, scheelite and epidote; (e) garnet replaced by scheelite and quartz, with rounded and curved shape; (f) diopside replaced by paragenetic scheelite, zoisite and quartz. Q-quartz; Sh-scheelite; Zo-zoisite
矽卡岩矿物电子探针成分分析在长安大学国土资源部成矿作用及其动力学开放实验室完成,仪器型号为日本电子 JXA8100,测试加速电压 15kV,电流为10nA,束斑直径5μm,电子探针定量分析方法采用中华人民共和国国家标准 GB/T 15617—2008,使用 ZAF 氧化物修正计算,分析精度优于2%。矿物标样贵橄榄石、刚玉、硅灰石、钾长石、钠长石、锰钛矿、赤铁矿、铬铁矿、金属镍、硫化锡分别用于测定Mg、Al、Si、Ca、K、Na、Ti、Mn、Fe 和Cr、Ni、Sn 的含量。矿物中阳离子参数及端元成分采用GeoKit软件计算。
微量和稀土元素分析在广州澳实分析检测中心采用ME-MS81型等电感耦合离子质谱仪(ICP-MS)测定,当元素含量大于10×10-6时,误差小于10%。实验中,首先准确称取50mg样品于聚四氟乙烯坩埚中,加入1mL HF和1mL HNO3,盖上盖后将坩埚放入钢套中,置于烘箱于180℃加热40h(根据样品岩性调整时间)。冷却后取出坩埚开盖置于低温电热板上蒸干。取下冷却后于坩埚中加入浓度为500×10-9的 Rh 内标1mL,2mL HNO3,去离子水5mL,重新装入钢套中密封后放入烘箱,于140℃加热5h。冷却后取出坩埚,摇匀后取0.4mL溶液至15mL离心管中,稀释到10mL,使用ICP-MS测定。
4.1.1 石榴石
老君山地区含矿矽卡岩中石榴石一般呈浅黄褐色、红褐色、绿色等,常呈自形-半自形粒状,大小0.5~10mm,晶形以菱形十二面体为主,其次为四角三八面体,集合体常为粒状或致密块状,无解理,裂理发育(图3、图4)。薄片中为浅红色或浅褐色,正高突起,糙面明显,晶体中有不规则裂纹,具均质性,并见光性异常现象,呈现一级灰干涉色,颗粒间或裂隙中常充填白钨矿或金属硫化物。都龙、南秧田矿区含矿矽卡岩石榴石电子探针分析结果见表2。
都龙矿区石榴石多呈黄褐色和红棕色,具环带结构(图3e)。其主要元素含量总体变化不大,SiO2为34.86%~37.22%,TiO2为0.16%~1.93%,Al2O3为 4.81%~8.38%,FeO为16.48%~20.69%,MnO为0.32%~1.68%,MgO为0.03%~0.51%,CaO为33.31%~36.38%,铁与铝呈现此消彼长的关系,Cr2O3含量较低。经换算为标准矿物,其端元组分含量变化较大,总体以钙铁榴石(And)和钙铝榴石(Gro)为主,含量分别为52.07%~69.42%和 28.10%~45.32%,含少量锰铝榴石(Spe)和镁铝榴石(Pyr),分别为0.72%~3.71%和0.12%~1.96%,不含铁铝榴石(Alm)。南秧田矿区石榴石多为黄褐色,裂理发育,其间常充填白钨矿(图4e)。其SiO2为38.72%~40.12%,TiO2为0.26%~0.62%,Al2O3为 20.62%~21.42%,FeO为4.25%~6.40%,MnO为0.34%~1.49%,MgO为0.03%~0.17%,CaO为30.25%~33.09%。端元组分以Gro (81.82%~88.58%)为主,含一定量Alm (7.38%~12.57%)和And (1.91%~5.39%),以及少量Spe (0.75%~3.27%)。
都龙与南秧田矿区石榴石成分有一定差异,前者属于钙铁-钙铝榴石系列(And52-69Gro28-45Spe1-4),且以And为主(图5a),不含Alm;而后者则属于钙铝-铁铝榴石系列(Gro82-89Alm7-13And2-5),Gro占绝对主导,含一定Alm,反映出二者在原岩成分和形成作用上有一定差异。都龙矿区具有环带结构的石榴石样品DL-12中,从核部到边部,And含量先降低后升高,Gro含量先升高后降低(图5b),显示出明显的韵律环带特征,其中Fe与Al含量呈现明显的负相关关系,与王金良等(2016)研究结果一致,推测在石榴子石的形成过程中,Fe 与 Al 发生了替代作用。
图5 都龙和南秧田矿区石榴石、辉石端元组成Fig.5 Endmember compositions of the garnets and diopsides from the Dulong and Nanyangtian mining districts
4.1.2 辉石类矿物
都龙、南秧田矿区含矿矽卡岩中辉石类矿物电子探针分析结果见表3。
都龙矿区矽卡岩中辉石常呈绿色或暗绿色,半自形柱状-他形粒状,大小0.5~2mm,单偏光下呈无色,正高突起,干涉色二级蓝绿至橙黄,常被黑云母、石英、方解石及不透明矿物交代呈交代残留结构(图3f)。其主要成分SiO2为47.11%~49.90%,Al2O3为 0.04%~1.18%,FeO为15.50%~22.07%,MnO为0~7.65%,MgO为2.08%~5.15%,CaO为21.49%~23.61%,其它Cr2O3、TiO2、Na2O、K2O等含量较低。辉石端元成分以钙铁辉石(Hd)和透辉石(Di)为主,含量分别为51%~73%和11%~41%,锰钙辉石(Jo)含量变化大,6个样品含量在0%~10%之间,3个样品(DL-4,9,12)含量超过20%。南秧田矿区矽卡岩中辉石主要呈浅绿色,短柱状,颗粒细,常与石榴石共生,多被后期石英、绿帘石穿插交代,形成筛状结构(图4c)。主要成分SiO2为51.59%~52.95%,Al2O3为 0.20%~0.89%,FeO为5.73%~12.85%,MnO为0.08%~1.60%,MgO为9.47%~14.20%,CaO为22.61%~23.77%,其它Cr2O3、TiO2、Na2O、K2O等含量较低。辉石端元组成主要为Di和Hd,含量分别为55%~81%和18%~42%,含少量Jo (0~5%),与冯佳睿等(2011)测试结果基本一致,但更偏透辉石端元。
从测试结果可见,南秧田矿区辉石(Di55-81Hd18-42Jo0-5)以透辉石为主,都龙矿区辉石(Di11-41Hd51-73Jo0-28)则以钙铁辉石为主(图5c,d),表明在其形成过程中,流体中Fe含量明显高于南秧田矿区,与石榴石测试结果一致。
4.1.3 角闪石类矿物
该区矽卡岩中角闪石类矿物主要有透闪石和阳起石,是早期无水矽卡岩矿物退化蚀变的产物。南秧田和都龙矿区角闪石类矿物电子探针分析结果见表4。
都龙矿区角闪石以阳起石为主,是矿区矽卡岩中最主要的造岩矿物之一。矿物以长柱状集合体产出,颗粒变大很大,长轴最小0.5mm左右,最大可达40~50cm,黄绿色到墨绿色,单偏光下呈浅绿色,具多色性(图3g)。主要成分SiO2为39.29%~52.26%,Al2O3为0.42%~25.59%,FeO为6.94%~31.35%,MgO为0.04%~13.55%,CaO为8.04%~33.54%。南秧田矿区角闪石以透闪石为主,呈浅绿色,颗粒一般小于2mm,多呈纤维状集合体。化学成分SiO2为50.74%~55.50%,Al2O3为0.90%~5.22%,FeO为8.68%~15.41%,MgO为12.96%~17.62%,CaO为11.82%~12.40%。端元成分上,都龙矿区样品投点主要落入铁阳起石区域,而南秧田矿区样品则主要落入阳起石和透闪石区域(图6)。主要相比而言,都龙矿区角闪石更富Fe和Al,贫Mg。
图6 都龙和南秧田矿区角闪石端元组成Fig.6 Classification of amphiboles in the Dulong and Nanyangtian mining districts
都龙和南秧田矿区含矿矽卡岩、围岩及花岗岩微量元素分析结果见表5。
都龙矿区含矿矽卡岩、片岩及花岗岩的原始地幔标准化微量元素分布特征相似(图7a),都具有富集Rb、U、Th、Nd、Sm等元素,强亏损Ba、Nb、Sr、Ti等元素,弱亏损P、K和Yb。矽卡岩中微量元素含量低于花岗岩和片岩,高于大理岩,花岗岩和矽卡岩中成矿元素W、Sn含量明显高于片岩和大理岩,与矽卡岩化大理岩相似。南秧田矿区含矿矽卡岩、片岩相对富集U、Th,强亏损K、Ba、Nb、Ti,弱亏损Sr、P和Yb(图7b),穿层花岗斑岩则相对富集U、Th、Sr,亏损K、Ba、Nb、P、Ti等。矽卡岩和斑岩中Sn、W含量明显高于片岩。南秧田矿区与都龙矿区矽卡岩、矽卡岩化大理岩微量元素配分模式基本可以对比,与花岗岩较为相似(图7c, d),成矿元素均较高,表明含矿矽卡岩的形成可能与花岗岩有关。
图7 含矿矽卡岩、围岩及花岗岩原始地幔标准化微量元素蛛网图(标准化值据Sun and McDonough, 1989)(a)都龙矿区;(b)南秧田矿区;(c)都龙与南秧田矿区对比;(d)片岩与花岗岩Fig.7 PM-normalized trace elements patterns of the ore bearing skarns, surrounding rocks and granites from the Laojunshan area (normalization values after Sun and McDonough, 1989)(a) Dulong mining district; (b) Nanyangtian mining district; (c) comparison of the trace elements patterns from Dulong and Nanyangtian mining district; (d) the trace elements patterns of schists and graintes
稀土元素分析结果见表6。都龙矿区含矿矽卡岩、片岩、和未蚀变大理岩的ΣREE分别为12.64×10-6~227.9×10-6、184.2×10-6~254.6×10-6和12.61×10-6~31.09×10-6,平均值分别为67.75×10-6、218.1×10-6和21.85×10-6;LREE/HREE分别为7.95~13.96、7.98~10.39和7.61~8.70;(La/Yb)N分别为9.67~20.80、9.15~13.54和10.68~14.86,显示较强的轻重稀土分馏作用。矽卡岩化大理岩样品DL-14上述值分别为62.75×10-6、3.96和3.06。采自矿区外围(北部)的新鲜中粗粒二云二长花岗岩样品上述值分别为42.83×10-6~135.9×10-6(平均89.38×10-6)、7.83~15.22和8.99~21.38。矽卡岩的Eu异常变化较大(δEu=0.46~4.18),其中DL-6和DL-7显示明显正异常(δEu=4.18和1.52),其余样品则显示中等负异常(δEu=0.46~0.70),与围岩(δEu= 0.56~0.70)基本一致。花岗岩样品则具有强烈的Eu负异常(δEu=0.33~0.36)。
图8 含矿矽卡岩、围岩及老君山花岗岩球粒陨石标准化REE配分模式(标准化值据Sun and McDonough, 1989)(a)都龙矿区;(b)南秧田矿区;(c)南秧田矿区石榴石与矽卡岩;(d)都龙、南秧田矿区矽卡岩与花岗岩Fig.8 Chondrite-normalized REE patterns of the ore bearing skarns, surrounding rocks and granites from the Laojunshan area (normalization values after Sun and McDonough, 1989)(a) Dulong mining district; (b) Nanyangtian mining district; (c) REE patterns of the garnets and skarns from the Nanyangtian mining district; (d) REE patterns of granites and the ore bearing skarns from Dulong and Nanyangtian mining districts
南秧田矿区含矿矽卡岩、围岩(片岩)和单矿物石榴石的ΣREE分别为21.04×10-6~242.7×10-6、48.42×10-6~197.8×10-6和13.16×10-6~235.1×10-6,平均值分别为146×10-6、123.1×10-6和64.41×10-6。轻重稀土分馏作用明显,LREE/HREE分别为2.83~9.77、6.07~7.70和0.27~3.86,(La/Yb)N值分别分别为2.68~11.61、6.47~8.80和0.13~4.08,除石榴石单矿物样品N-11和N-13具有重稀土相对富集特征外,其余样品都显示出轻稀土相对富集的特征。除片岩样品N-6具有Eu正异常外(δEu=1.29),其余样品都具有弱-中等Eu负异常(δEu= 0.56~0.99)。
都龙和南秧田矽卡岩总体显示出近似平行的中等右倾轻稀土富集型特征(图8),除DL-6和DL-7样品Eu显示明显正异常外,其余样品Eu都呈现中等-微弱负异常特征,与花岗岩和部分围岩类似(图8a, b)。南秧田矿区石榴石呈现三种不同的配分特征(图8c),即LREE富集,Eu中等负异常的右倾型(N-9,10),轻重稀土分异不明显,Eu微弱负异常/无异常的平坦型(N-11,12),以及HREE富集,Eu微弱负异常/无异常的左倾型(N-13)。南秧田矿区含矿矽卡岩ΣREE总体高于都龙矿区,但二者的配分模式特征总体都与老君山花岗岩相似(图8d),表明含矿矽卡岩的形成有花岗岩有关,与微量元素示踪结果一致。
图9 都龙、南秧田矿区石榴石、辉石端元成分与全球矽卡岩矿床对比(a,底图据Meinert et al., 2005)和都龙矿区共生石榴石-辉石的氧逸度-温度图解(b,底图据赵一鸣等,2012)Fig.9 Endmember compositions of the garnets and diopsides from the Dulong and Nanyangtian mining districts with that from the world skarn deposits (a, base map after Meinert et al., 2005) and lgf(O2) vs. T diagram of the paragenetic garnets and clinopyroxenes from the Dulong mining district (b, base map after Zhao et al., 2012)
矽卡岩矿床中矿物组合受岩体、围岩的性质,形成深度以及形成时的温度、压力、氧逸度、酸碱度等综合因素控制,通过矿物组合和成分研究不仅可以认识不同矽卡岩类型及其伴生金属矿特征,还可以反演其形成过程中的物理化学条件变化,对于示踪成岩成矿环境具有重要意义(Einaudietal., 1981;Chenetal., 1992; Luetal., 2003; Meinertetal., 2005; 赵一鸣等,2012,李壮等,2017)。
都龙和南秧田矿区矽卡岩矿物以石榴石、透辉石、阳起石、透闪石、绿泥石等为主,总体属于钙质矽卡岩类,相对而言,南秧田矿区石榴石、辉石及角闪石类矿物更富Mg、Al,贫Fe(图5、图6)。都龙矿区石榴石端元组成以钙铁-钙铝为主(And52-69Gro28-45Spe1-4),辉石属于钙铁-次透辉石系列(Di11-41Hd51-73Jo0-28),与区域内个旧锡多金属矿床相近(图5),并处于世界典型矽卡岩型锡和锌矿床的石榴石、辉石端元组成范围内(图9a),指示都龙矿区属于锡、锌等多金属矿化类型,与地质事实相符。南秧田矿区含矿矽卡岩中石榴石端元组成以钙铝榴石为主(Gro82-89Alm7-13And2-5),辉石属于透辉石-钙铁辉石系列(Di55-81Hd18-42Jo0-5),类似于南岭地区瑶仙岗、新田岭、曹家坝等交代成因矽卡岩型白钨矿床,低于典型热水沉积-变质型层状白钨矿床(戴婕等,2011;张志远等,2016),总体处于世界典型矽卡岩型钨矿床端员组成范围内(图9a),具有相对较高的钙铝榴石含量,指示其形成于交代作用。
实验研究表明,钙铁榴石易形成于450~600℃、中酸性溶液、氧化-弱氧化(lgf(O2)=-28.637~-11.066)条件,钙铝榴石易形成于550~700℃、中-酸性溶液、弱氧化-弱还原条件,流体含F、Cl时,可降低其形成温度(梁祥济,1994);形成于还原条件的矽卡岩矿物具有较高的Fe2+/Fe3+比值,而氧化环境下形成的矽卡岩矿物则与之相反(Zaw and Singoyi, 2000)。都龙矿区矽卡岩中石榴石端元成分变化较大,总体以钙铁榴石为主,Fe多以Fe3+为主,Fe2+多为0值;南秧田矿区以钙铝榴石为主,变化范围不大,且石榴石中Fe都以Fe2+为主,Fe2+/Fe3+值范围为2.1~9.3,平均4.1,明显高于都龙矿区,与南岭地区交代矽卡岩类似。都龙矿区干矽卡岩阶段形成的矿物主要有石榴石和辉石,退化蚀变阶段则以阳起石、透闪石、绿帘石和绿泥石等为主(图3e, f),这两个阶段对应的流体温度范围大致为420~600℃和376~419℃(叶霖等,2016,2017),结合电子探针分析结果,通过共生石榴石-辉石的氧逸度-温度图解(图9b),估算得到干矽卡岩阶段氧逸度大致范围为lgf(O2) =-26~-20。
较大的端元成分变化表明都龙矿区矽卡岩中石榴石和辉石形成于非完全封闭的平衡条件下,流体的pH值和氧化-还原环境是动态变化的。王金良等(2016)研究表明,随着与深部隐伏花岗岩距离的增加,钻孔中的石榴石端元成分由钙铝榴石为主逐渐过渡到以钙铁榴石为主,推测成矿流体早期处于酸性的还原环境,后期转变为相对碱性的氧化环境。本文测试的石榴石采自24号主矿体,距离岩体相对较远,成分以钙铁榴石为主。在具有环带的样品DL-12中,从核部到边部, FeOT、Al2O3含量均呈现此消彼长的关系,总体上FeOT含量和钙铁榴石成分含量呈上升趋势,Al2O3含量和钙铝榴石成分呈下降趋势(表2、图5b),表明价态相同,离子半径也相近的Fe3+(离子半径0.078nm)和Al3+(离子半径0.054nm)之间发生了替代(Jamtveitetal., 1995)。核部→边部的总体趋势为Fe3+替代Al3+,说明石榴石形成过程中,热液中Fe3+浓度处于增长状态,氧逸度逐渐升高,成岩环境向着pH值上升的相对氧化状态转变。
图10 南秧田矿区石榴石Y/Ho-La/Ho图解(a)和不同类型矽卡岩REE配分模式对比图(b) (据蔡倩茹等,2017)Fig.10 Y/Ho vs. La/Ho diagram of the garnets from the Nanyangtian mining district (a) and chondrite-normalized REE patterns of the different genetic skarns (b) (after Cai et al., 2017)
综上所述,老君山地区与钨成矿有关的矽卡岩可能形成于相对还原的环境,而与锡-锌-铟多金属成矿相关的矽卡岩形成环境有一定变化,但总体偏弱氧化环境。
稀土元素是示踪成矿物质来源和成矿过程的有效手段。从图8中可见,除南秧田矿区样品N-5呈现无明显轻重稀土分异的平坦型特征外,都龙和南秧田矿区含矿矽卡岩都显示出相似的、LREE相对富集的右倾型稀土配分模式,多具有中等-弱Eu负异常,表明二者可能具有相似的形成过程。
都龙矿区含矿矽卡岩和大理岩总体具较低的REE含量和一致的配分模式,REE含量较高的磁铁矿化矽卡岩(DL-9)与相邻的矽卡岩化大理岩(DL-14)也呈现一致的配分模式特征(图8a),以及矽卡岩切穿大理岩层理,花岗岩和矽卡岩中成矿元素W、Sn含量明显高于大理岩和片岩等特征,都表明矽卡岩的形成晚于大理岩和片岩,不是由区域变质作用形成,而是热液交代作用的结果。都龙矽卡岩样品DL-6和DL-7 具有较强Eu正异常(δEu=4.18和1.52),刘玉平等(2000b)和贾福聚等(2014)认为该区矽卡岩Eu正异常是喷流沉积温度变化和海水混入的结果。但Eu呈正异常的矽卡岩在长江中下游、内蒙-新疆地区和滇西北等地区接触交代矽卡岩矿床也广泛发育,主要与矽卡岩矿物成分有关(张遵遵等,2016)。赵劲松等(2007)和Gasparetal. (2008)研究表明,HREE优先与钙铝榴石结合,LREE优先与钙铁榴石结合;矽卡岩中的Eu正异常主要与和钙铁榴石含量和REE总含量有关,岩石REE含量越低,钙铁榴石含量越高,越容易表现出Eu正异常特征,富钙铝榴石的矽卡岩一般具有Eu负异常。都龙矿区具有Eu正异常样品的REE总含量低(ΣREE=12.64×10-6~24.64×10-6),配分模式与其它矽卡岩样品一致,Eu正异常可能是含有较多钙铁榴石所致。
南秧田矿区矽卡岩ΣREE总体处于围岩和花岗岩之间,都显示出相似的右倾式配分特征(图8b),表明矽卡岩的形成与它们有关。矽卡岩中石榴石以钙铝榴石为主,除N-9外,ΣREE总体较低,具有“左倾型、右倾型和平坦型”三种配分模式,无Ce异常,Eu呈中等负异常或无异常(图8c),与王金良等(2016)报道的都龙矿区岩浆热液交代成因钙铝榴石特征相似。石榴石通常具有HREE富集的左倾型配分模式,但很多矽卡岩矿床中石榴石都具有LREE富集的右倾型配分特征(赵斌等,1999;赵劲松等,2007;姚远等,2013),主要原因是在相对开放体系、高水岩比的条件下,热液的氧逸度、温度、盐度等物化参数常因外部流体的混合作用影响而改变,从而导致不同成分石榴石的REE配分模式差异较大(Smithetal., 2004)。课题组前期通过流体包裹体研究发现,降温和流体的混合作用是导致白钨矿沉淀的主要因素(蔡倩茹等,2018),石榴石的REE配分模式差异可能是热液交代作用的结果。Bau (1991)研究表明,Ho和Y离子半径和电价相似,因此具有相近地球化学行为,只在水溶液中发生行为分异,Y/Ho值在不同类型岩石、矿物和球粒陨石(Y/Ho=28)中变化不大,被热液改造过的石榴石,Y/Ho值会偏离球粒陨石值28。都龙矿区石榴石Y/Ho=1.5~53.3,南秧田矿区石榴石Y/Ho=29.1~35,都偏离了球粒陨石值,都显示出热液成因特征。在Y/Ho-La/Ho 图解中(图10a),南秧田矿区不同产状的石榴石呈现水平分布特征,表明其具有同源性(Bau and Dulski,1995)。据课题组前期研究结果(蔡倩茹等,2017),与几种不同成因类型的代表性矽卡岩、围岩、老君山花岗岩REE配分特征相比,南秧田矽卡岩和热液接触交代矽卡岩、老君山花岗岩较相似,都具有LREE相对富集,Eu中等负异常、Ce无异常的右倾型配分特征(图10b),表明含矿矽卡岩主要与老君山花岗岩浆热液交代作用有关。
前已述及,目前老君山地区矽卡岩及相关Sn-W-Zn-In多金属矿床的形成过程仍存在沉积变质、喷流沉积-改造、岩浆热液交代和多因复成等不同认识。宋焕斌等(1988)和张洪培等(2006)认为该区Sn-Zn-In多金属矿床为岩浆热液矿床。周建平等(1998)则认为区内W、Sn矿床属于典型的喷流沉积块状硫化物矿床。曾志刚(曾志刚,1999;曾志刚等,2000)、石洪召等(2011)、王冠等(2012)研究认为南秧田矿区矽卡岩及白钨矿床由正常沉积(或喷流沉积)岩经区域变质作用形成。刘玉平等(2000a, b,2007)通过都龙矿区的系统研究,提出了多因复成观点,认为该区矽卡岩矿床经历了热水沉积、区域变质和岩浆热液叠加等三个阶段,并强调燕山期岩浆热液叠加对成矿具有重要意义。贾福聚等(2013,2014,2016)认为该区矽卡岩矿床是加里东期海底火山喷流沉积、印支期区域变质和燕山期花岗岩浆热液共同作用的结果。近来年,越来越多的研究显示燕山晚期花岗岩浆热作用在该区矽卡岩及多金属矿床形成过程中可能具有支配性的地位(刘艳宾等,2014;王小娟等,2014;王金良等,2016;叶霖等,2016,2017;Zhaoetal., 2018;李丕优等,2018)。
虽然成因观点不同,但矽卡岩广泛发育,并且是该区最重要的赋矿围岩是一个不争的事实。这些含矿矽卡岩具有两个重要特色:①主要产于距离接触带较远的沉积地层中,有别于典型的接触交代矽卡岩;②含矿矽卡岩与地层的产状方向基本一致,剖面上总体呈“层状”(图2)。据产状特征,这些矽卡岩长期以来被称为“层状矽卡岩”,并被当作沉积/喷流沉积的重要证据(曾志刚,1999;刘玉平等,2000a;石洪召等,2011)。但野外调查表明,都龙矿区“层状矽卡岩”并非完全顺层发育,而是多分布于薄层大理岩与石英云母片岩之间的层间滑脱带或过渡部位,采场中可见大量含矿矽卡岩切穿层理、包裹或含大理岩交代残留体等现象(图3b, c),矽卡岩矿物组合没有明显的定向排列,充填交代结构显著(图3d, e),表明其形成晚于大理岩,是含矿热液与围岩交代作用的结果。南秧田矿区含矿矽卡岩的“层状”特征更明显,部分矽卡岩具有变余层理构造,并与地层同步褶皱,成分变化较大,因而被认为是沉积变质作用形成(曾志刚,1999;石洪召等,2011)。然而井下采场可见含矿矽卡岩中既有透辉石-钙铝榴石等典型干矽卡岩矿物组合,又有绿帘石-透闪石-绿泥石等退化蚀变矿物组合,存在大量热液充填、包裹、交代结构(图4c-f),矽卡岩中发育长石石英脉、电气石石英脉等,表明其形成过程经历了与热液交代有关的高温-低温蚀变过程,是热液蚀变作用的产物。
老君山地区主要Sn-W-Zn-In多金属矿床(点)主要围绕老君山花岗岩体分布,随着与岩体距离的增加,矿化类型和围岩特征呈现一定的分带规律。在都龙矿区,花岗岩体内部可见高温元素W、Sn、Mo等矿化,局部发育含黑钨矿石英脉;靠近岩体的内接触带发育少量矽卡岩型W、Sn、Cu矿化,围岩以钙铝榴石+透辉石组成的干矽卡岩为主;离岩体较远的片岩和大理岩过渡带中产出了矽卡岩型Sn、Zn、In多金属主矿体,围岩以阳起石+绿泥石+绿帘石等组成的湿矽卡岩为主,不含水矿物石榴石减少,成分变为以钙铁榴石为主;而远离岩体的地层中则发育脉状低温Ag、Pb、Zn矿体或矿化,围岩为碳酸盐岩。这一规律可能主要与成矿热液的演化过程有关。结合本文研究结果和前人资料(王金良等,2016;叶霖等,2016),花岗岩侵位过程中,早期分离出的酸性高温含矿热液顺着构造裂隙运移,并与围岩发生交代作用,在岩体附近接触带和地层中构造薄弱带部位形成了以石榴石+透辉石为主的干矽卡岩,部分高温元素W、Sn、Mo随之沉淀,其中Sn4+与 Fe3+离子半径相近,且比Fe3+更稳定,趋于赋存于富Fe的石榴子石中,这一点可以从钙铁榴石中Sn含量远高于钙铝榴石得到证明。随着交代作用的进行和流体运移距离的增加,流体温度、盐度降低,在退化蚀变阶段交代形成了大量富含铁质和水的退变质矿物如阳起石、透闪石、绿帘石和绿泥石等,并释放出石榴石中固定的Sn,消耗了流体中大量的H+,致使溶液呈碱性,氧逸度随之升高,锡石、磁铁矿和少量石英等的氧化物从流体中沉淀。随后的石英硫化物阶段早期,成矿流体中Cu、Pb、Zn、In等浓度由于氧化物的沉淀而增加,且随着耗氧加剧,成矿流体的氧化还原状态再次发生变化,高价态S(S6+、S4+)被还原成低价态还原性S2-,并与Pb、Zn、Cu、Fe等结合,生成大量金属硫化物叠加充填于矽卡岩中,同时,与Fe2+和Zn2+离子半径相似的In3+以类质同象方式大量进入铁闪锌矿和铁硫化物晶格,从而形成了别具特色的矽卡岩富铟硫化物矿床。
综合矽卡岩地质特征、矿物电子探针分析结果和岩矿微量元素地球化学特征可见,老君山Sn-W-Zn-In多金属矿集区含矿矽卡岩和相关矿床可能主要与燕山晚期老君山花岗岩浆活动有关,矽卡岩化过程与锡钨多金属矿化富集过程都是岩浆热液与围岩相互作用的体现,“层状”矽卡岩是热液沿层间构造、岩相突变带等有利位置充填交代的产物。
(1)都龙矿区含矿矽卡岩富Fe、贫Al,矽卡岩矿物端元成分以钙铁榴石(And52-69Gro28-45Spe1-4)、钙铁辉石(Di11-41Hd51-73Jo0-28)及铁阳起石等为主,形成于弱氧化环境。南秧田矿区含矿矽卡岩富Mg、Al,贫Fe,矽卡岩矿物端元成分以钙铝榴石(Gro82-89Alm7-13And2-5)、透辉石(Di55-81Hd18-42Jo0-5)和透闪石(阳起石)等为主,形成于相对还原环境;
(2)都龙和南秧田矿区含矿矽卡岩ΣREE总体处于围岩和燕山晚期老君山花岗岩之间,含矿矽卡岩与花岗岩都显示出相似的、LREE相对富集的右倾型稀土配分模式,多具有中等-弱Eu负异常,与典型的热液交代成因矽卡岩特征相似,石榴石REE显示热液成因特征,矽卡岩形成于热液交代作用;
(3)老君山地区矽卡岩过程与Sn-W-Zn-In多金属矿床都是燕山晚期花岗岩浆期后热液与围岩相互作用的结果,“层状”矽卡岩是热液沿层间构造、岩相突变带等有利位置与碳酸盐岩发生交代的产物。
致谢野外工作得到了云南都龙锌铟公司广大地质人员的大力支持与帮助;两位匿名审稿人对文章提出了许多建设性修改意见,对文中谬误的修改完善以及本文质量的提升助益良多;在此一并深表感谢。