工业大数据建设 首先是一种思维变革

2019-11-22 11:54瓴英科创
中国信息化周报 2019年39期
关键词:工业生产企业

瓴英科创

在工业生产中,无时不刻都在产生数据。生产机床的转速、能耗,食品加工的温湿度,火力发电机组的燃烧和燃煤消耗,汽车的装备数据,物流车队的位置和速度等,都是在生产过程中的数据。

工业大数据产生的背景

以云计算为代表的新型数据处理基础架构,大幅降低工业数据处理的技术门槛和成本支出。以工业领域的SCADA系统为例,传统模式下每个电网、化工企业都需要建立一套SCADA系统,成本在千万以上,如果采用云架构模式,成本将可以降低七成以上。社会需求变革是最大拉动力。在商品过剩经济时代,以个性化为代表的消费文化,使得工业企业的产出物,要最大限度匹配个性需求。从服装定制,车辆选配,到T恤的印花和个性化教育。

要响应个性化需求,有两种方式,以服装定制为例,就是靠老师傅用尺子量,眼见手摸,凭借经验,确定服装的裁剪和版型,这种我们可以称之为模拟方式,效率和质量难以保证,耗时长,个性化定制的成本高;还有一种是数字方式,就是通过制订一套数据采集手段,由前台的客户代表测量采集用户身形数据,然后将数据传回总部,结合生产原材料数据,将需求分解为一项一项的生产工艺动作,最后生产出达到定制化要求服装。当然,工厂也会聘请资深的老师傅,他们的主要工作不是面对一个个客户的定制化需求,而是去研究更好的生产工艺,对数据和工艺分解进行把控。这种模式下,效率和质量得到保证,效率随着生产线的扩容线性提升,有一批专家队伍不断研究提升工艺能力,定制化生产的成本将得以显著摊薄。从发展趋势看,后者这种数字模式的个性化生产将是未来选择。

国策方针是重要推动力。完成了工业自动化过程的德国工业界,在自动化基础上,以工业数据为基础,引入云计算和人工智能技术,提升工业的智能化水平,以满足大批量个性化定制的社会生产需求。

工业大数据的特点和分类

不管是工业自动化、还是工业智能化(工业4.0),或者是工业互联网概念,他们的基础是工业数据。

随着行业发展,工业企业收集的数据维度不断扩大。主要体现在三个方面:

1.时间维度不断延长。经过多年的生产经营,积累下来历年的产品数据、工业数据、原材料数据和生产设备数据。

2.数据范围不断扩大。随着企业信息化建设的过程,一方面积累了企业的财务、供应商数据,也通过CRM系统积累了客户数据,通过CAD等积累了研发过程数据,通过摄像头积累了生产安全数据等;另一方面越来越多的外部数据也被收集回来,包括市场数据、社交网络数据、企业舆情数据等。

3.数据粒度不断细化。从一款产品到多款、多系列产品使得产品数据不断细化,从单机机床到联网机床,使得数据交互频率大大增强;加工精度从1mm提升到0.2mm,从5分钟每次的统计到每5秒的全程监测,都使得采集到的数据精细度不断提升。

以上三个维度最终导致企业所积累的数据量以加速度的方式在增加,构成了工业大数据的集合。不管企业是否承认,这些数据都堆砌在工厂的各个角落,而且在不断增加。

再从企业经营的视角来看待这些工业数据,我们可以按照数据的用途分成三类:

第一类是经营性数据,比如财务、资产、人事、供应商基础信息等数据,这些数据在企业信息化建设过程中陆陆续续积累起来,表现了一个工业企业的经营要素和成果。第二类是生产性数据,这部分是围绕企业生产过程中积累的数据,包括原材料、研发、生产工艺、半成品、成品、售后服务等。随着数字机床、自动化生产线、SCADA系统的建设,这些数据也被企业大量记录下来。这些数据是工业生产过程中价值增值的体现,是决定企业差异性的核心所在。第三类是环境类数据,包括布置在机床的设备诊断系统,库房、车间的温湿度数据,以及能耗数据,废水废气的排放等数据。这些数据对工业生产过程中起到约束作用。

从结构上可以分为:结构化数据、半结构化数据和大量的非结构化数据。从目前的数据采用情况看,经营类数据利用率最高,生产性数据和环境类数据相比差距比较大。从未来数据量来说,生产线数据在工业企业数据中的占比将越来越大,环境类数据也将越来越多样化。

一般意义上,大数据具有数据量大、数据种类多、商业价值高、处理速度高的特点,在此基础上,工业大数据还有两大特点。一是准确率高,大数据一般的应用场景是预测,在一般性商业领域,如果预测准确率达到90%已经是很高了,如果是99%就是卓越了。二是实时性强,工业大数据重要的应用场景是实时监测、实时预警、实时控制。一旦数据的采集、传输和应用等全处理流程耗时过长,就难以在生产过程中发挥价值。

工业大数据应用

企业所积累的数据量以越来越快的速度在增加,很多企业也就顺势将大数据技术引入企业的生产经营中。大数据在工业企业的应用主要体现在三方面:

一是基于数据的产品价值挖掘。通过对产品及相关数据进行二次挖掘,创造新价值。日本的科研人员日前设计出一种新型座椅,能够通过分析相关数据识别主人,以此确保汽车的安全。这种座椅装有360个不同类型的感应器,可以收集并分析驾驶者的体重、压力值,甚至坐到座椅上的方式等多种信息,并将它们与车载系统中内置的車主信息进行匹配,以此判断驾驶者是否为车主,从而决定是否开动汽车。实验数据显示,这种车座的识别准确率高达98%。

二是提升服务型生产。提升服务型生产就是增加服务在生产(产品)的价值比重。主要体现在两个方向。一是前向延伸,就是在售前阶段,通过用户参与、个性化设计的方式,吸引、引导和锁定用户。二是后向延伸,通过销售的产品建立客户和厂家的互动,产生持续性价值。

三是创新商业模式。商业模式创新主要体现在两个方面,一是基于工业大数据,工业企业对外能提供什么样的创新性商业服务;二是在工业大数据背景下,能接受什么样的新型的商业服务。最优的情况是,通过提供创新性商业模式能获得更多的客户,发掘更多的蓝海市场,赢取更多的利润;同时通过接受创新性的工业服务,降低了生产成本、经营风险。

在接受服务方面,目前国内外有一批企业提供云服务架构的工业大数据平台。海尔收购GE的白电业务的一揽子合作中,就包括GE的Predix工业大数据平台向海尔开放,接入海尔的工厂,提供工业大数据服务。九次方大数据也在联合各省市建立云化的工业大数据平台,向当地的工业企业开放大数据采集、大数据存储、大数据挖掘和应用能力。

工业大数据是企业生产经营的一次重大变革,对于工业化、信息化都还没有完成的工业企业而言,数据化时代到来了,挑战更大了。

工业大数据建设,首先是一种思维变革,改变以前以要素竞争为主的工业生产模式,进入到数据和创新竞争为主的新生产时代。

其次,正如清华大学王建民教授所言,“工业大数据不存在交钥匙工程”,因此,需要企业领导人、管理层、员工和相关人都投身其中,各司其职,才有所成。

最后,工业大数据建设抓住两个板子作为突破点。一个是最长的板,也就是梳理产品(工业)竞争力最强的在哪里,继续深挖数据价值,围绕这一部分的工业数据构建产品和服务能力;另一个是最短的板,就是找出影响工业企业发展的痛点,成本、市场、供应链,还是能耗?应在数据化时代下,寻找更有效的解决方案。

猜你喜欢
工业生产企业
企业
企业
企业
用旧的生产新的!
敢为人先的企业——超惠投不动产
“三夏”生产 如火如荼
工业人
S-76D在华首架机实现生产交付
掌握4大工业元素,一秒变工业风!
“工业4.0”之思考