苜蓿叶片氮、磷和钾养分重吸收与化学计量比的偶联关系

2019-11-18 06:17王振南赵梅杨燕李富宽王慧吕慎金
草业学报 2019年11期
关键词:重吸收叶中苜蓿

王振南,赵梅,杨燕,李富宽,王慧,吕慎金

(1.临沂大学农林科学学院,山东 临沂 276000;2.山东省产品质量检验研究院,山东 济南 250100;3.临沂市农业科学院,山东 临沂 276012)

养分重吸收是植物营养保留的重要机制之一,其能促使植物重新利用衰老叶中营养元素(如N、P和K等)向成熟叶中转移,从而提高植物对养分的利用效率,减少养分损失,减少植物对外界养分的依赖,增强植物环境适应性[1-4]。重吸收效率(resorption efficiency,RE)和重吸收度(resorption proficiency,RP)是养分重吸收的重要体现方式,重吸收效率是指养分从衰老叶转移至成熟叶中的比例[1,5-6],重吸收度以衰老叶片养分转移后的最低浓度来表示[1]。在植物体内,各元素含量是同时变化,并且紧密联系的,这意味着养分重吸收过程不仅影响单一元素的变化,还将影响多元素的同时变化[7]。生态化学计量比恰好能够较好地说明不同元素同一时间的变化规律[8]。但对元素养分重吸收和生态化学计量比之间的偶联关系的研究还鲜有报道,需开展进一步的研究。

紫花苜蓿(Medicagosativa)是一种优良的多年生豆科牧草,其具有较强的环境适应性[9-11]。前期研究发现,相比于分枝期和开花期,苜蓿在孕穗期具有较高的C∶N[12],且苜蓿C∶N、C∶P和N∶P一般在第2茬和8龄时最大[13]。研究还发现苜蓿N、P和K养分重吸收随年龄的增加呈先增加后降低的趋势[7,14]。这些研究较好地说明了苜蓿的生态化学计量比和养分重吸收特征,但忽略了其偶联关系的研究。基于此,研究了苜蓿成熟叶和衰老叶C、N、P和K生态化学计量特征及N、P和K重吸收表现,探讨了生态化学计量特征与重吸收间的偶联关系,以进一步揭示苜蓿对环境的适应性及其体内元素的变化规律。

1 材料与方法

1.1 试验地概况

试验地位于山东省临沂市亚姆巴试验基地(35°14′3″ N,118°18′18″ E),属暖温带季风区半湿润大陆性气候。该地年均降水量800 mm左右,年均气温约13.3 ℃,无霜期平均为202 d。土壤为沙壤土。

1.2 试验设计

试验材料为7个苜蓿品种,分别是WL319、WL343、WL525HQ、标靶、南苜601、无棣、中原804。完全随机区组设计,3次重复,共21个小区。每个小区面积为15 m2(3 m×5 m),小区之间间隔0.6 m。所有品种于2016年4月20日进行播种,于2016年10月2日(越冬前最后一茬初花期)对苜蓿成熟叶和衰老叶进行取样。

1.3 样品处理及指标测定

所采集的衰老叶以依然保留于植株茎秆上,但在轻轻抖动苜蓿植株时会自然掉落下来的叶片为标准;所采集的成熟叶以叶腋处颜色深绿且成熟的三出复叶为标准。采集的成熟叶和衰老叶先在105 ℃杀青10 min,再在70 ℃烘干48 h。烘干样品用粉碎机粉碎,过0.5 mm筛后进行指标测定。

采用重铬酸钾加热氧化法测定叶片中有机碳(C)含量,凯氏定氮法测定全氮(N)含量,钼锑抗比色法测定全磷(P)含量,火焰光度计测定全钾(K)含量[15]。

1.4 参数计算

养分重吸收效率(RE)采用以下公式进行计算:

式中:Numature代表成熟叶片养分浓度,Nusenesced代表衰老叶片养分浓度,N、P和K养分重吸收分别以NRE、PRE和KRE表示。

养分重吸收度(RP)以Nusenesced来表征,Nusenesced越大,重吸收度越小。N、P和K养分重吸收度分别以NRP、PRP和KRP表示。

C、N、P和K生态化学计量比分别以C∶N、C∶P、C∶K、N∶P、N∶K、K∶P表示。C∶N、C∶P、C∶K由叶片有机碳含量分别除以叶片全氮含量、叶片全磷含量、叶片全钾含量计算得到,N∶P、N∶K由叶片全氮含量分别除以叶片全磷、叶片全钾含量计算得到,K∶P由叶片全钾含量除以叶片全磷含量计算得到。

1.5 数据处理

采用Microsoft Excel 录入数据并制图,用SPSS 17.0中One-way ANOVA进行差异性统计分析,采用SPSS 17.0中线性回归模型y=ax+b分析养分重吸收效率和养分重吸收度与叶片养分浓度和化学计量比的相关关系。

2 结果与分析

2.1 苜蓿成熟叶和衰老叶C、N、P和K生态化学计量特征

不同苜蓿品种成熟叶和衰老叶C、N、P和K计量比不同,C∶N、C∶P、C∶K、N∶K和K∶P在衰老叶中比成熟叶中具有较高的值(图 1)。C∶N在成熟叶中以WL343最大,以WL319最小;在衰老叶中以中原804最大,以无棣最小(图 1A)。C∶P在成熟叶中以无棣最大,标靶最小;在衰老叶中随品种无显著变化(P>0.05)(图 1B)。C∶K在成熟叶中以无棣最大,标靶最小;在衰老叶中以南苜601最大,中原804最小(图 1C)。N∶P在成熟叶中以无棣最大,标靶最小;在衰老叶中随品种无显著变化(P>0.05)(图 1D)。N∶K在成熟叶中以WL319最大,标靶最小;在衰老叶中以南苜601最大,中原804最小(图 1E)。K∶P在成熟叶中以中原804最大,以标靶最小;在衰老叶中以南苜601最大,WL343最小(图 1F)。

图1 不同品种苜蓿成熟叶和衰老叶N、C、P和K化学计量比Fig.1 The N, C, P and K ratios in green leaves and senesced leaves of alfalfa under different varieties Ⅰ:WL319;Ⅱ:WL343;Ⅲ:WL525HQ;Ⅳ:标靶 Biaoba;Ⅴ:南苜601 Nanmu 601;Ⅵ:无棣 Wudi;Ⅶ:中原804 Zhongyuan 804.不同小写字母代表不同品种间差异显著(P<0.05),下同。“*”代表同一品种间差异显著(P<0.05)。Different lowercase letters represent significant differences among varieties (P<0.05),the same below. “*” represents significant difference between the mature and senesced leaves in the same variety (P<0.05).

2.2 苜蓿叶片N、P和K养分重吸收特征

图2 不同品种苜蓿N、P和K养分重吸收效率Fig.2 The NRE, PRE and KRE in alfalfa of different varieties 不同大写字母代表同一品种间NRE、PRE和KRE差异显著(P<0.05)。Different capital letters represent a significant difference among NRE, PRE and KRE in the same variety (P<0.05).

苜蓿叶片N、P和K养分重吸收效率随品种不同而不同(P<0.05)(图2)。WL319的KRE和NRE显著高于PRE(P<0.05);WL343的PRE显著高于NRE(P<0.05);WL525HQ、标靶、南苜601都呈KRE最大,PRE其次,NRE最小的变化趋势;无棣和中原804的NRE、PRE和KRE间无显著变化(P>0.05)。NRE在中原804中最大,在无棣中最小;PRE随品种变化不显著(P>0.05);KRE在标靶中最大,在无棣中最小。7个苜蓿品种的平均NRE、PRE和KRE分别为42.73%、42.35%和52.13%。

苜蓿叶片N、P和K养分重吸收度随品种不同而不同(图3)。NRP在无棣中最大,在中原804中最小;PRP随品种变化不显著;KRP在中原804中最大,在其他品种间无显著差异。7个苜蓿品种的平均NRP、PRP和KRP分别为25.95、1.05和8.10 g·kg-1。

图3 不同品种苜蓿N、P和K养分重吸收度Fig.3 The NRP, PRP and KRP in alfalfa of different varieties

2.3 苜蓿C、N、P和K元素含量及化学计量比与养分重吸收效率的相关分析

苜蓿NRE与衰老叶C、N含量呈显著负相关关系(P<0.05),与P、K含量关系不显著(表1);苜蓿NRE与成熟叶N含量呈显著正相关关系(P<0.05),与C、P和K含量关系不显著。苜蓿PRE与衰老叶N、P含量呈显著负相关关系(P<0.05),与C、K含量关系不显著;而与成熟叶K含量呈显著正相关关系(P<0.05),与C、N、P含量关系不显著。苜蓿KRE与衰老叶K含量呈显著负相关关系,与成熟叶K含量呈显著正相关关系(P<0.05),而与衰老叶、成熟叶C、N、P含量无显著关系。苜蓿NRP与衰老叶C含量呈显著正相关关系(P<0.05),与成熟叶N含量呈显著负相关关系(P<0.05)。苜蓿PRP只与成熟叶P含量呈显著正相关关系。

苜蓿NRE与衰老叶C∶N呈显著正相关关系,与衰老叶N∶P和成熟叶C∶N、C∶P呈显著负相关关系(P<0.05)(表2)。苜蓿PRE与衰老叶C∶P、N∶P、K∶P呈显著正相关关系,与成熟叶C∶P、C∶K、N∶P、N∶K呈显著负相关关系(P<0.05)。苜蓿KRE与衰老叶C∶K、N∶K和成熟叶K∶P呈显著正相关关系,与衰老叶K∶P和成熟叶C∶K、N∶K呈显著负相关关系(P<0.05)。苜蓿NRP与衰老叶C∶N呈显著负相关关系(P<0.05),与衰老叶N∶K和成熟叶C∶N、C∶P呈显著正相关关系(P<0.05)。苜蓿PRP与衰老叶C∶P、N∶P和K∶P呈显著负相关关系(P<0.05)。苜蓿KRP与衰老叶C∶K和N∶K呈显著负相关关系(P<0.05),与K∶P呈显著正相关关系(P<0.05)。

表 1 NRE、PRE和KRE与叶片C、N、P和K含量间相关系数Table 1 Correlation coefficient of the NRE, PRE, KRE and the leaf C, N, P, K concentrations

注:“*”代表在0.05水平显著相关。下同。

Note: “*” represents a significant correlation at 0.05 level. The same below.

表 2 NRE、PRE和KRE与叶C、N、P和K计量比间相关系数Table 2 Correlation coefficient of the NRE, PRE, KRE and the leaf C, N, P, K ratios

3 讨论

品种是影响植物生长性状最直接的因素,同一物种不同品种间植物具有不同的环境适应性[16]。养分重吸收能够减弱植物对土壤养分供应的依赖[4,17],增强植物对环境的适应性[3,18]。本研究中,NRE和KRE在WL343和无棣品种中较小,NRP在无棣中最大,KRP在WL343中较大,均说明无棣和WL343具有较低的养分重吸收效率,其受环境影响较其他品种高。同时,本研究中7个苜蓿品种的平均NRE、PRE和KRE分别为42.7%、42.4%和52.1%,不同苜蓿品种的平均KRE大于平均PRE或平均NRE,这说明苜蓿较依赖于环境中的N和P元素,也更容易获取环境中的N和P元素,而对K元素依赖性相对较弱。该平均值也低于Vergutz等[17]对全球陆生植物NRE、PRE和KRE(分别为62.1%、64.9%和70.1%)的研究,物种和生长环境等的不同可能是造成差异的主要原因。

不同苜蓿品种的N、P和K养分重吸收的差异不仅体现了植物对环境的适应性,其也是苜蓿中元素由衰老叶转移至成熟叶的结果[19]。研究表明,苜蓿NRE、PRE和KRE分别与衰老叶N、P和K元素呈显著负相关关系,而分别与成熟叶N、P、K呈显著正相关关系;苜蓿NRP、PRP和KRP则受衰老叶和成熟叶元素含量影响较小,这与段兵红等[14]的研究结果基本一致。这说明,养分重吸收效率受衰老叶养分浓度和成熟叶养分浓度的影响是直接的,且受衰老叶的影响是负向的,而受成熟叶的影响是正向的。

叶片养分浓度不仅对养分重吸收有直接的影响,且对元素生态化学计量比有直接的影响[13]。植物叶片的C∶N、C∶P和C∶K代表植物吸收N、P和K元素所能同化C的能力,在一定程度上反映了植物的养分利用效率[13]。本研究发现植物对N、P和K元素的利用效率随品种不同呈多样性变化,但衰老叶较成熟叶具有更高的值,这可能是N、P和K元素由衰老叶转移至成熟叶的结果。植物N∶P(或结合N∶K和K∶P)常被用来描述土壤营养限制情况,根据Koerselman等[20]提出N∶P>16时P为限制元素,N∶P<14时N为限制元素,可判断本研究中苜蓿受P元素限制较严重;根据Olde等[21]提出的N∶P<14.5和N∶K<2.1时,N为限制元素,N∶P>14.5和K∶P>3.4时,P或P和K为限制元素,N∶K>2.1和K∶P<3.4时,K或K和N为限制元素,可判断本研究中苜蓿受P或P和K元素限制。但前文介绍,相对于K元素,苜蓿对土壤P元素具有较高的依赖性,因此,综合判断本研究中苜蓿受土壤P含量影响最严重。

叶片养分浓度对养分重吸收及生态化学计量比的影响,必然使后两者存在一定的关联性。本研究中,叶片养分重吸收效率基本与衰老叶生态化学计量比呈正相关关系,而与成熟叶生态化学计量比呈负相关关系,这说明重吸收效率与生态化学计量比具有一定的相关性。但区别于魏大平等[22]的研究,其发现植物叶片NRE与叶片C∶N和N∶P呈显著正相关关系,而叶片PRE与叶片C∶N呈显著负相关关系。也区别于邓浩俊等[23]的研究,其发现叶片NRE与鲜叶和凋落叶C、N和P生态化学计量特征呈显著正相关关系,PRE只与凋落叶C∶N和C∶P呈显著正相关关系。植物种类、年龄、生态环境以及选取的叶片成熟度等都是造成区别的原因。而养分重吸收潜力作为衰老叶化学计量比的构成部分,与衰老叶化学计量比存在一定的显著相关性。

4 结论

通过对苜蓿叶片N、P和K养分重吸收特征及化学计量比的偶联关系进行研究,得出以下结论:

1)7个苜蓿品种的平均NRE、PRE和KRE分别为42.7%、42.4%和52.1%,分别低于全球陆生植物的NRE、PRE和KRE(分别为62.1%、64.9%和70.1%)。

2)根据养分重吸收特征及生态化学计量比,判断苜蓿受土壤P含量影响最严重。

3)叶片养分重吸收效率基本与衰老叶化学计量比呈正相关关系,而与成熟叶化学计量比呈负相关关系。

猜你喜欢
重吸收叶中苜蓿
盐地碱蓬养分重吸收对不同水盐交互梯度的响应∗
苜蓿的种植技术
不同骨盆倾斜角与破裂型LDH髓核重吸收的相关性
蔓三七叶中分离绿原酸和异绿原酸及其抗氧化活性研究
要造就一片草原
高速逆流色谱分离制备油橄榄叶中橄榄苦苷
消髓化核汤对腰椎间盘突出后重吸收影响的临床研究
一测多评法测定湖北海棠叶中5种黄酮的含量
苜蓿:天马的食粮
尿的形成动态模拟装置的制作和使用