渠 芳,连承波,柴震瀚,任冠雄,夏青松,刘 宏
(西南石油大学地球科学与技术学院,四川成都610500)
孔隙性砂岩地层中的变形带是指发育于孔隙性岩石(孔隙度大于15%)或未完全胶结的颗粒沉积物中,多表现为小型、断层状结构的局部应变薄层带,与一般的断裂相比,缺少独立、连续的滑脱面[1-3]。通常在变形带形成和发展过程中,其孔隙度和渗透率会明显低于周围岩石[4-10],在碎屑岩油气储层中,变形带有可能作为单独的局部构造存在,也有可能数条变形带聚集在一起出现在断裂破碎带中[11]。孔隙性砂岩地层中变形带的研究是近年来断层发育区储层精细建模所涵盖的关键内容,可以更好地指导流体的运移模拟[12]。
中国东部主要的含油气盆地多以中、新生界孔隙性砂岩地层作为主要的含油气层系,且断裂极为发育,控制着油气藏的垂向和平面分布。因此,断裂对油气的输导性、封堵性研究一直是石油地质研究领域的热点和难点,取得了许多进展[13-17]。但是目前针对孔隙性砂岩地层中断层破裂带发育的变形带的相关研究甚少。因此,笔者对中外有关孔隙性砂岩地层中变形带研究及其相关应用进行综合分析,以期在厘清孔隙性油气储层中的油气优势运移通道、剖析断层对流体运移的影响、精细准确的三维地质建模以及明确油气成藏规律等方面起到抛砖引玉的作用。
变形带这个术语在很多领域均有应用,AYDIN等将其最早应用于描述砂岩中的形变现象[18-20]。自此以后,变形带逐渐用来代表孔隙性岩层中的微断裂[5]、剪切变形带[21]、破碎滑动带[22]等。FISHER等认为可将15%作为高孔隙性和低孔隙性岩石的分界[8]。低孔隙性或非孔隙性岩石的变形受成岩阶段影响较小,岩石变形形成的微构造多为裂缝;高孔隙性砂岩变形形成的变形带类型繁多,在未固结-半固结、固结至超固结成岩阶段分别形成解聚带、碎裂变形带和压溶胶结变形带,按泥质含量可分为碎裂带和层状硅酸盐变形带[2],根据力学性质可分为膨胀带、剪切带、压缩带以及混合变形带[1,23-24]。
地质学所说的变形带一般是指由于碎屑颗粒旋转形成的压缩性的剪切碎裂变形带。这种应力集中产生的压实作用会形成局部簇状变形带,并最终发展形成断层[25]。而纯剪切变形带和纯挤压变形带一般在实验室条件下或理论上存在[6,26-33],在野外也可以观测到[34],其共同的特征是存在于孔隙性砂岩或砂质沉积物(孔隙度为15%~30%)中。
AYDIN认为变形带仅发育于孔隙性颗粒介质中,其形成与发展包括碎屑颗粒的旋转与形变过程,需要一定的孔隙度来完成[18]。若岩层的孔隙度很小,则倾向于形成张性裂缝及断层滑动面。目前对石英砂岩中断裂变形机制的研究较多[2,19],而对长石砂岩和岩屑砂岩却缺乏系统研究。变形带的形成机制主要有:颗粒流运动(颗粒边缘的滑动及颗粒旋转)、碎裂流作用、溶解和胶结作用以及层状硅酸盐涂抹作用等。在不同的成岩演化阶段,母岩及温压条件均不同,变形机制也明显不同,进而形成的变形带类型也不同,甚至会发生相互转化[23]。有些沉积岩层的性质虽然比较稳定,但层间差异较大,从而导致在不同的岩性边界形成不同的变形带类型。而诸如孔隙度、渗透率、围压、应力状态及胶结程度这些因素常会随着时间推移而发生一定的变化,所以随着沉积岩层埋深的增加,变形带常会形成一定的时间演化序列,可以反映出地层在埋藏、成岩、抬升过程中所经历的物性变化。
国外很多学者针对砂岩中变形带形成的时间演化序列进行了研究,认为不同类型变形带的形成主要与岩石埋深及层状硅酸盐含量有关[2,35](图1)。
图1 变形带类型与岩石埋深及层状硅酸盐含量的关系(据文献[2]修改)Fig.1 Schematic of relationship among deformation band types,rock depth and phyllosilicate content(Modified according to reference[2])
高孔隙性砂岩在未固结-半固结成岩阶段(埋深小于1 km、低围压条件)的断裂变形机制为颗粒边界摩擦滑动引起颗粒旋转和滚动,即为颗粒流[35-36],导致颗粒重排,形成解聚带[37-39]。其外观颜色比母岩浅,颗粒尺寸无明显减小,孔渗性与母岩相比无明显变化[36]。
在固结成岩阶段(埋深为1~3 km、中等围压条件),断裂变形机制为碎裂作用,形成碎裂带[8,19-20,38,40]。孔隙度和渗透率与母岩相比明显降低,且母岩孔隙度越大,形成的碎裂带孔隙度越低[6]。有学者发现在埋深小于1 km的弱固结砂岩中也可能发育碎裂变形带,这主要是由于分选、磨圆均较好的矿物颗粒造成的颗粒接触应力集中所致。不过这些浅层碎裂带所表现出的碎裂作用比深层碎裂带要弱得多[35]。当固结高孔隙性岩石或低孔隙性岩石处于高围压条件,且应变速率较高时,岩石会发生破裂,沿破裂面发生矿物颗粒的强烈摩擦滑动、旋转和破碎,即为碎裂流,也会形成碎裂带。不过由碎裂作用至碎裂流作用的界限受很多因素影响,目前还不确定(图1)。
当埋深超过3 km,即地层温度超过90℃时,碎裂带发生明显的石英压溶胶结,形成压溶胶结带[2],其渗透率比碎裂带低1~2个数量级[8]。固结成岩的砂岩在抬升过程中,由于卸载作用和冷却作用,主要发生脆性变形,形成区域裂缝无内聚力的断层角砾岩[23]。
层状硅酸盐变形带的形成主要与岩石中层状硅酸盐矿物的含量有关。不管深度如何,只要层状硅酸盐矿物含量大于15%,则在变形过程中主要表现为碎屑颗粒与黏土矿物的滑动和混合,形成层状硅酸盐变形带。当黏土矿物含量超过40%时,则以发生泥岩涂抹作用为主[2]。
野外及实验室观察数据均表明,在不同成岩阶段形成的不同类型变形带可以出现叠加,例如固结成岩阶段形成的碎裂带与压溶胶结型碎裂带的组合,或是碎裂带与低孔隙性阶段形成的裂缝组合[2,8,41]。从宏观上来讲,在一个砂岩层中的不同部位有可能同时发育变形带和节理构造;但就局部来说,变形带的发育常遵循以下时间演化序列:①单条变形带;②簇状变形带或发育断层滑动面的簇状变形带;③节理;④节理发生更大滑动形成断层[42]。因此,变形带可以作为独立构造存在,也可以聚集形成复杂的簇状变形带,以及存在于断层破裂带中,且随着应力的增大,形成变形带的数目也越多[11,20]。断层滑动面通常在簇状变形带中成核,然后逐渐生长、连接,最终形成一条贯穿的断层面[43]。在断层开始形成之前,通常会先经过颗粒强烈局部破碎的过程。在断层端部前方,常会形成长度不等的过渡区,由数量不一的变形带组成;其长度因岩层的岩性不同而各异,在分选良好的孔隙性砂岩中,过渡区通常长达百米,从而会对油气运移聚集产生影响[43]。
与石油地质密切相关的、本文的重点研究对象为孔隙性岩层中大量发育的碎裂变形带以及压溶碎裂变形带,其主要具有以下发育特征:①多发育在高孔隙性(孔隙度大于15%)砂岩中,拉张应力与挤压应力下均可以形成[8,38,44-45]。②发育模式主要有2种类型:一是以多种组合模式发育于背斜中,二是广泛发育于断裂破碎带中(图2)。③由于风化原因,外观上多呈肋状凸出,颜色比母岩浅,泥质含量较高时颜色较深(图 3)[2,19],矿物成分与母岩相似,微观上表现为颗粒尺寸减小、分选变差。④变形带不同于断层滑动面或裂缝,与典型断面或裂缝相比,其厚度变化较大,位移更小,且致使岩石的孔隙度和渗透率降低(图3)[45]。⑤单条变形带的位移很小,即使长达100 m的变形带,其位移一般也不会超过几厘米,且变形带的密度随着与断层核距离的增大而逐渐减小[2]。⑥簇状变形带可发育于断裂破碎带、断裂端部的过渡区、调节带、背斜顶部、交叉断层组成的三角地带、2条平行断层之间的区域等应力集中的构造部位,且其厚度变化较大(图3c)[2,42]。⑦平面和剖面组合模式多样,如网状、交叉、平行、共轭、截断、硬连接等(图3)。
很多学者通过研究变形带及其两侧岩层的渗透性,发现变形带可能会对岩层的渗透性产生影响,进而影响流体的渗流特征。变形带会降低储层的渗透性,但也有一些实例表明变形带有时亦可以作为流体的运移通道[46-48],这主要取决于变形带内部渗透性与其围岩渗透性的关系。根据变形带的力学形成机制,浅层形成的膨胀型解聚带多会增大岩层的孔渗性,但总体来讲,其对于砂岩储层渗透率的影响微乎其微。层状硅酸盐变形带由于层状矿物的混合与重组,通常会降低岩层渗透率达2~5个数量级[8]。目前关于变形带物理性质的研究多集中于最为常见的剪切变形作用形成的碎裂变形带,由于颗粒的破碎和重新排列,常会导致碎裂变形带的渗透率比围岩低 2~6 个数量级[4-5,7-8,10,48-53],而发生于变形带中的胶结作用和溶解作用常会致使其孔渗性继续变差[54]。
图2 变形带常见发育构造部位(据文献[45]修改)Fig.2 Main development structural positions of deformation bands(Modified according to reference[45])
图3 远安盆地上白垩统砂岩地层中的变形带组合模式Fig.3 Types of composition of deformation bands in Upper Cretaceous sandstone of Yuanan Basin
虽然绝大多数变形带会降低岩层的渗透性,但其对流体流动的影响究竟如何却尚无定论。变形带的厚度及其渗透性可控制单相流体的流动(比如水在饱和水的岩石中流动或油在饱和油的岩石中流动)[55]。但FOSSEN等通过数值模拟发现:当碎裂带的渗透率比母岩的渗透率低3个数量级时,即使碎裂带密度高达100条/m时,对流体的流动效率也没有明显的影响;但当碎裂带的渗透率比母岩的渗透率低4~6个数量级时,流体的流动效率明显降低;在两相流体的流动过程中(例如油在饱含水的岩石中流动),毛细管力则起到更为重大的作用,断层两盘岩层的排驱压力决定其可以聚集的烃柱高度[12]。王海学等以柴达木盆地油砂山背斜下油砂山组为研究对象,探讨了其中发育的变形带对流体流动的影响,同样发现当变形带渗透率较母岩低3个数量级以上时,对流体流动起到阻碍作用,而变形带渗透率低1~2个数量级,对流体流动基本无明显阻滞作用[49]。HARPER等通过计算认为变形带封闭油柱的高度不超过20 m[56],GIBSON则认为变形带封闭的烃柱高度最大为75 m[57]。在苏格兰东北部Coithness的老红砂岩上部富含沥青的多孔砂岩中,油气包裹体仅存在于未变形的砂岩孔隙和变形后形成的晚期石英次生加大带中,而胶结的变形带中不含油气,证明了变形带确实可以对油气运移路径造成影响。而塔里木盆地下古生界碳酸盐岩变形带的分析结果表明[58],其对储层物性的作用不同于碎屑岩,大多数压实变形带以低渗透特征出现,表现出阻碍流体运动的特征。膨胀变形带并非都具有增孔作用,而剪切变形带则可能残余局部孔隙,并在部分裂缝发育区形成良好的渗流通道。总体来讲,碳酸盐岩变形带可能是造成油气层渗透性整体较低的重要原因。
笔者认为,不管是单相流体还是双相流体,仅考虑渗透率的差异都是不够的,变形带在三维空间的厚度、连续性及渗透性的变化才是关键所在。野外观察显示,即使是单条变形带,其厚度及孔隙度的变化也是很大的,延伸至整个变形区,变形带及簇状变形带的展布特征及对应渗透性的变化则更加难以掌握。但目前对于变形带及簇状变形带三维空间分布规律的研究尚较为欠缺。
由于断裂是复杂的三维空间体,且与油气的运移、成藏及保存的关系非常密切,因此断裂带内部结构及其变形机理研究倍受重视[15,59-68]。目前中外很少将变形带孤立进行研究,多数是将其作为整个断裂带内部结构及封闭性研究的一部分。
近年来断裂带内部结构研究越来越精细化,主要分为4个方面:野外露头断裂带内部结构分类[67,69-78]、断裂带结构单元的非均质性[67,79-82]、盆地内断裂带内部结构[83-85]、断裂相及建模[3,86-89]。
随着研究的深入,多数国外学者通过野外露头观察和取样测试对断裂带内部结构进行了精细划分,认为断裂带通常包括断层核和周围的破裂带,这两者与未变形的原岩在构造特征、形成机理及岩石物性等方面均存在差异[69-74]。JONES等根据应力场分布特点将破裂带划分为内破裂带和外破裂带[90-91]。KIM等根据断裂带不同结构单元的位置,将破碎带分为围岩破碎带、连接破碎带和端部破碎带[92]。而在孔隙性的岩层中,断层破碎带以变形带的出现为特征,其可以降低岩体渗透性。碎屑岩储层中变形带的存在可导致渗透率降低1~6个数量级,主要是阻碍流体的流动,形成致密封隔层[2,83]。断裂带内部结构也具有明显的时空差异:在时间上,同一断裂不同地质历史时期的内部结构存在差异;空间上,断裂带具有横向上的不对称性、垂向上的分层性和走向上的分段性[67]。断层核两侧通常由不对称的结构单元组成[79-81]。正是这些差异引起断裂带内部不同结构单元物性的非均质特点,致使断裂带对油气的输导和封堵能力也存在时空差异。
付晓飞等以纯净石英砂岩为研究对象,针对不同类型的变形带对断层封闭性、油气运移、充注的影响进行了有益的探讨[15],认为在不同成岩阶段,由于不同的深度变形机制及变形带类型,导致油气选择性充注,碎裂带和压溶胶结碎裂带阻止油气向高孔隙性砂岩中充注,解聚带会成为油气运移的通道,裂缝有利于油气优先充注(图4)。但目前中国学者将变形带和油气充注联系起来进行研究的文献和成果则太少。
相较于露头,对于盆地内部断裂结构即断裂带埋于地下部分的研究较少。陈伟等利用地震、钻井和录井资料定性分析含油气盆地的断裂带内部结构,总结各类结构单元的测井响应特征[67]。在此基础上,利用断裂带指示曲线计算法和交会图法对断裂带各类结构单元进行定量计算。断裂带指示曲线反映次生孔隙和裂缝的发育程度,但受资料所限,至今无法做到有效识别出覆盖区变形带,因此针对该方面的研究仍属空白。
通过研究断裂带内部结构单元(包括变形带的发育和分布),尽可能详细地建立三维断裂地质模型,以更有效地反映出断裂带对流体运移和聚集的影响。TVERANGER等针对断裂带中流体运移的精细建模进行了详细研究,提出了断裂相的概念[86]。而通常所说的断裂带即为一系列断裂相的集合,断裂相概念的提出对于更进一步理解油气运移机制,建立非均质储层精细建模方法,进而提高油气采收率具有重要意义。FREDMAN尝试进行断层相建模,对断裂带在三维空间内进行表征,但此次尝试仍主要针对断层核部的细化,而对断裂带周围的破碎带或变形带的研究则存在不足[87]。BRAATHEN等将碎屑岩油藏中的断裂相划分为不同级别、不同尺度的结构要素和岩相组合,认为主要形成滑动面、裂缝带和变形带3种断裂相,为断裂带内部结构研究提供了新的思路和定量建模方法[3]。屈泰来等采用TVERANGER等提出的断裂相的概念和思路,以中国新疆塔里木盆地柯坪露头碳酸盐岩断裂带为例,详细研究其滑动面、裂缝带和变形带等断裂相的特征,认为碳酸盐岩断层核部多致密,破碎带中的裂缝带是油气输导的优势通道[88]。邬光辉等通过露头与井下资料的综合分析,研究了塔里木盆地奥陶系碳酸盐岩走滑断裂带各类断裂相(断层核部的裂缝带、透镜体、滑动面,破裂带的裂缝带、变形带)的发育特征,并利用地震剖面、构造图和相干图等资料联合判识各类断裂相的特征及发育程度,根据其渗流特性定性地区分高渗透相和致密相区[89]。
图4 纯净砂岩中断裂变形形成的微构造类型及对油气充注影响模式(据文献[15]修改)Fig.4 Micro-structural types formed by fracture deformation and their effects on hydrocarboon filling in pure sandstones(Modified according to reference[15])
由上述内容可知,对不同地质条件下断裂带的研究仍主要集中于针对断层核部系统的探讨,或断层封堵性的研究。而断层破碎带中所发育的不同类型变形带虽已引起很多学者的注意,但鉴于其分布规律、物性变化在三维空间研究的不足,以及覆盖区资料难以识别变形带的问题,目前在断层带的三维精细建模中还不能做到全面利用变形带的特点和分布来更好地指导断层的建模和流体运移的分析。
在不同成岩阶段,随埋深的增加,孔隙性砂岩地层中变形带遵循解聚带、碎裂带、压溶胶结型碎裂带的形成顺序。层状硅酸盐变形带的形成则主要与岩石中层状硅酸盐矿物的含量有关。当层状硅酸盐矿物含量为15%~40%时,在变形过程中主要表现为形成层状硅酸盐变形带。在不同成岩阶段形成的不同类型变形带可以出现叠加。
完整的变形带时间演化序列主要包括:①单条变形带;②簇状变形带或发育断层滑动面的簇状变形带;③节理;④节理发生更大滑动形成断层。因此,变形带可以作为独立构造存在,也可以聚集形成复杂的簇状变形带,以及存在于断层破裂带中,平面和剖面上具有网状、交叉、平行、共轭、截断、硬连接等多种组合模式。
目前变形带的研究主要基于野外露头,针对变形带的类型、形成机制、发育特征等方面的研究相对较为成熟,在变形带对流体渗流的影响方面做出了一些有益的探讨,认为绝大多数变形带会降低岩层的渗透率达2~6个数量级,但其对流体流动的影响究竟如何却尚无定论。这主要源于目前对孔隙性砂岩变形带的类型、三维空间的长度和密度变化规律、与断层位移的关系以及物性的变化规律等方面尚存在疑点,而变形带对流体运移的影响又主要受控于以上因素,因此导致在该方面的认识欠缺。
针对中国孔隙性砂岩地层中的变形带尚欠缺独立、完整的研究,还有很大研究空间。目前仅在新疆柯坪露头、武汉远安盆地和青海柴达木盆地油砂山等地区有一些初步研究。由于过断层的钻井、岩心等资料相对缺乏,难以进行直观的观察,仅利用地震和测井等资料无法达到有效识别,因此关于含油气盆地内部井下孔隙性砂岩变形带的研究只略有涉及。上述研究成果为中国含油气盆地浅层碎屑岩地层中变形带的研究提供了良好的支持和借鉴。结合丰富的野外露头资料,更深入地研究变形带的发育特征及非均质性,将会对油气优势运移通道研究大有裨益,对于更加精细准确的三维地质建模以及明确油气成藏规律也具有重要的理论和实践意义。