南秦岭柞水-山阳矿集区小河口矽卡岩型铜矿床矿物化学及其成矿意义*

2019-08-27 02:23熊潇朱赖民张国伟杨文强郑俊姜航刘凯郭延辉
岩石学报 2019年8期
关键词:透辉石矽卡岩黄铁矿

熊潇 朱赖民** 张国伟 杨文强 郑俊 姜航 刘凯 郭延辉

1. 西北大学地质学系,大陆动力学国家重点实验室,西安 7100692. 西北有色地质勘查局713总队,商洛 726000

燕山期是秦岭造山带最重要的成矿时期,华北陆块南缘的东秦岭是燕山期斑岩-矽卡岩型钼(钨)矿床的集中分布区(图1b),前人在其成岩成矿规律及动力学背景等问题的研究上已取得了重要进展(李诺等, 2007; 朱赖民等, 2008, 2009; Maoetal., 2008, 2011; Zhuetal., 2010; Yangetal., 2012, 2017; Caoetal., 2015)。但是,秦岭造山带燕山期斑岩-矽卡岩型铜矿床过去发现的数量有限,相关研究比较薄弱(Guoetal., 2014; Xieetal., 2017),因此对秦岭造山带燕山期铜矿床成矿机制需要深入研究。

图1 秦岭造山带构造格架(a, 据Dong et al., 2012)、东秦岭主要矿床(矿点)分布图(b, 据Wang et al., 2015补充修改)和南秦岭柞水-山阳矿集区地质简图(c, 据刘凯等,2014修改)Fig.1 Simplified maps showing the tectonic division of the Qinling orogenic belt (a, after Dong et al., 2012), the distribution of major ore deposits (ore occurrence) in the eastern Qinling (b, modified after Wang et al., 2015) and the Zhashui-Shanyang ore cluster in the South Qinling (c, modified after Liu et al., 2014)

近年来,西北有色地勘局在对南秦岭柞水-山阳矿集区地质、物探、化探、遥感资料综合研究的基础上,通过大比例尺地质填图、化探异常、高精度磁法扫面综合研究和可控源音频大地电磁法测深,在该矿集区内池沟-冷水沟晚侏罗世-早白垩世斑岩体内及其接触带发现了Cu(Mo-Au)矿化体,表明该区是寻找燕山期斑岩-矽卡岩型铜矿床的有利区带,找矿潜力较大(刘凯等, 2014; 任涛等, 2014; 王瑞廷等, 2015; Xieetal., 2017)。因此,南秦岭燕山期斑岩-矽卡岩型矿床成矿机制已成为目前亟待研究的重要科学问题。迄今为止,前人对柞水-山阳矿集区的燕山期成矿岩体进行了较深入的岩相学、地球化学及锆石U-Pb年代学研究(图1c),基本确定了花岗岩体的成岩时代、岩浆源区及成岩大地构造背景(谢桂青等, 2012; 任涛等, 2014; 吴发富, 2013; 郑俊, 2016),但是,该区斑岩-矽卡岩型矿床地质-地球化学研究还很薄弱(张本仁等, 1989; 刘凯等, 2014; 陈雷等, 2014; 闫臻等, 2014; 孟德明等, 2014; Xieetal., 2017),针对矽卡岩型矿床矿物化学的专门研究几乎还是空白,致使对矽卡岩和矽卡岩矿床成矿机制以及成矿物理化学条件还没有完全理清,尤其是对矽卡岩阶段的流体性质和演化规律缺乏精细刻画。

矽卡岩型矿床的矿物标型特征及矿物化学组成对矿床成因、成矿热液的性质与时空演化以及成矿机制具有重要指示意义(艾永富和金玲年, 1981; 赵一鸣等, 1990; Jamtveit and Hervig, 1994; 梁祥济, 2000; Meinert, 1992; Meinertetal., 2003, 2005; Somarin, 2004; Chang and Meinert, 2008; Dupuis and Beaudoin, 2011; Zhaietal., 2014; 安芳等, 2014; Nadolletal., 2015; 赵盼捞等, 2018)。小河口铜矿床是南秦岭柞水-山阳矿集区内少数具有工业价值的矽卡岩型铜矿床,矿体产于燕山期花岗质岩体与泥盆系桐峪寺组地层接触的矽卡岩带内(图2),代表矽卡岩型矿化的不同成矿阶段的矿物组合发育齐全,矽卡岩矿物尤其是石榴子石的结构和成分复杂多样(见后文),能够反映不同的物理化学条件且有效的记录成矿热液的组成和演化过程。因此,小河口铜矿床是研究秦岭造山带矽卡岩型铜成矿作用的理想研究对象。本文在对小河口铜矿床矽卡岩矿物和矿石金属矿物进行详细的岩(矿)相学观察的基础上,率先对石榴子石、辉石、磁铁矿和硫化物进行了电子探针分析,确定了这些矿物的化学成分及其分布变化规律,并探讨了成矿早阶段矽卡岩形成过程中流体的物理化学条件、时空演化以及氧逸度变化对铁、铜金属沉淀富集的控制,以期为深入理解南秦岭柞水-山阳矿集区矽卡岩型铜矿床的成矿演化过程和金属沉淀富集机理及矿床成因提供矿物化学依据。

1 地质背景与矿床地质特征

小河口铜矿床位于柞水-山阳多金属矿集区的中心位置。北临商丹蛇绿混杂岩带,南依山阳-凤镇构造混杂岩带,西邻东江口、柞水、曹坪等三叠纪花岗岩基(图1c)。区内断裂发育,主要为NW向、NNE向和近NS向断裂。矿区出露的地层包括青石垭组(D2-3q)板岩、千枚岩夹灰岩和灰岩夹板岩,以及桐峪寺组(D3ty)千枚状板岩-变质粉砂岩互层和碳酸盐岩,其中,碳酸盐岩是小河口铜矿床最主要的赋矿层位(图2),中上泥盆系中产有隐爆角砾岩带(图3a, 祁思敬和李英, 1997)。矿区地层倾角为40°~54°,产状稳定,构成矿区北倾的单斜地层(祁思敬等, 1993)。区内断层发育,受区域张家坪-袁家沟-小河口-元子街-桐木沟断裂构造控制,又被NW、近SN向左行走滑断裂所切割,小河口岩体侵位于这些断裂交汇部位(图1c、图2)。矿体大部分产在花岗质岩石和地层接触地带附近的层间滑动剪切带或层间破碎带内。

矿区出露的岩浆岩主要是花岗闪长玢岩与花岗斑岩,除此之外,还发育有诸多闪长玢岩和石英闪长岩岩脉(图3b),并侵入于中上泥盆统青石垭组(D2-3q)和桐峪寺组(D3ty)灰岩、浅灰色板岩、薄层粉砂质板岩中。矿区围岩蚀变比较强烈,在花岗闪长玢岩岩体与桐峪寺组碳酸盐岩接触带形成矽卡岩,矿体与矽卡岩关系密切(图2、图3)。矿体一般呈薄层状、透镜状、脉状产于岩体外接触带矽卡岩体内,以铜矿体为主,常见铜、铁矿体伴(共)生。矿体一般延伸较远、层位稳定且层数多,呈近东西走向展布,与围岩产状基本一致。矿石矿物组成复杂,发育特征的矽卡岩型矿床矿物组合。矿石中主要金属矿物有黄铜矿、黄铁矿、磁铁矿、磁黄铁矿、辉钼矿、镜铁矿和赤铁矿,其次为白铁矿、闪锌矿、方铅矿、菱铁矿、辉铜矿、铜蓝及微量银金矿等,非金属矿物主要有石榴子石、透辉石、阳起石、绿帘石、绿泥石、绢云母、石英和方解石等(图3)。据野外观察及岩(矿)相学研究,按照矿物共生组合和脉体间的穿插关系可将小河口铜矿床的成矿作用划分为4个成矿阶段:Ⅰ干矽卡岩阶段(图3c, k, l),该阶段主要发育石榴子石和透辉石等无水硅酸盐矿物,其中石榴子石含量较高且自形程度较好,呈红褐色和深黄褐色(图3g, h),普遍被后期硫化物所充填交代(图3k, o),透辉石含量相对较少,呈柱状或粒状集合体(图3l, m)。Ⅱ湿矽卡岩-氧化物阶段,此阶段以大量形成阳起石、绿帘石和绿泥石等含水硅酸盐矿物为特征(图3e, m),同时出现大量的磁铁矿和镜铁矿(图3f, j, n),磁铁矿呈他形-半自形结构,充填交代于石榴子石和透辉石粒间及裂隙。Ⅲ石英-硫化物阶段,该成矿阶段是铜矿化的主要阶段(图3d),以黄铜矿、黄铁矿、磁黄铁矿、斑铜矿和辉钼矿等金属硫化物和石英为主。Ⅳ碳酸盐-石英阶段,主要出现碳酸盐和石英,硫化物少量,此阶段常见方解石呈细-粗脉状截切早阶段矿脉和矽卡岩,或充填于早阶段的石榴子石、阳起石和金属硫化物裂隙和粒间(图3g, h, n)。其中,Ⅱ(含水矽卡岩-氧化物阶段)和Ⅲ(石英-硫化物阶段)是小河口铜矿床的主要成矿阶段。

图2 小河口铜矿床地质简图(据陕西省地质调查中心,2013[注]陕西省地质调查中心. 2013. 陕西省矿产资源潜力评价成果报告修改)

Fig.2 Geological map of the Xiaohekou area in the Zha-Shan ore district cluster

2 样品特征与测试方法

本次实验所采用的样品主要采自820平硐内花岗闪长玢岩与碳酸盐岩内外接触带的层状矽卡岩中,包括干矽卡岩阶段的石榴子石矽卡岩(XH3、XH2、XH10)和透辉石石榴子石矽卡岩(XH4、XH8)、湿矽卡岩-氧化物阶段的磁铁矿矿石(XH14)以及石英-硫化物阶段的黄铁矿和磁黄铁矿矿石(XH7、XH11)。

石榴子石矽卡岩呈浅褐色-深褐色,花岗变晶结构,块状构造,由石榴子石(80%~85%)和少量透辉石(5%~10%)组成,矿物颗粒大小0.1~0.8mm(图3e、图4)。透辉石石榴子石矽卡岩具粒-柱状变晶结构(图3l),呈红绿色条带状构造,主要由石榴子石(50%~60%)、透辉石(20%~30%)、透闪石(10%~15%)、石英(5%~10%)和少量方解石(~5%)等矿物组成,石榴子石多发育裂理(图3o、图5)。当早阶段矽卡岩进一步蚀变成为阳起石绿帘石矽卡岩时(图3e, m), 岩石呈粒状鳞片变晶结构, 块状构造,呈暗绿色、灰绿色,阳起石、绿帘石、透闪石和绿泥石等含水矽卡岩矿物组分显著增多,同时出现大量的磁铁矿±镜铁矿呈他形-半自形结构,充填交代于石榴子石和透辉石粒间及裂隙(图3f, l)。黄铜矿、黄铁矿和磁黄铁矿等金属矿物呈浸染状、脉状及不规则团块状交代石榴子石、透辉石或充填于石榴子石、透辉石、绿帘石和阳起石粒间(图3f, j, n, o)。当热液交代作用进行的较彻底时,石榴子石则为孤立颗粒在金属矿物间残留。

图3 小河口矿区矽卡岩类型及矿化特征

(a)矿区内隐爆角砾岩;(b)桐峪寺组灰岩被花岗闪长玢岩岩脉贯入;(c) 820平硐矽卡岩化带中的石榴子石矽卡岩和透辉石石榴子石矽卡岩;(d)石英-硫化物脉及团块状磁铁矿-赤铁矿-黄铁矿矿石发育在蚀变灰岩中;(e)早阶段石榴子石矽卡岩经晚期热液交代形成阳起石绿帘石矽卡岩;(f)磁铁矿-石英交代早阶段石榴子石;(g)透辉石-钙铁榴石(Grt-d)交代早阶段钙铝榴石(Grt-a),呈交代残余结构;(h)钙铁榴石(Grt-b)围绕钙铝榴石(Grt-a)边部生长;(i)透辉石-钙铁榴石(Grt-d)与黄铜矿化;(j)阳起绿帘石矽卡岩中的磁铁矿和镜铁矿;(k)透辉石石榴子石矽卡岩中可见黄铜矿-黄铁矿细脉;(l)磁铁矿交代并充填于透辉石及石榴子石粒间;(m)绿帘石交代自形长柱状透辉石;(n)绿帘石阳起石矽卡岩被磁铁矿充填交代;(o)黄铜矿充填交代石榴子石. Mt-磁铁矿;Hm-赤铁矿;Spe-镜铁矿;Cpy-黄铜矿;Py-黄铁矿;Qz-石英;Grt-石榴子石;Di-透辉石;Ep-绿帘石;Act-阳起石;Cal-方解石

Fig.3 Representative photographs and photomicrographs showing typical skarn and mineralization characteristics

(a) cryptoexplosive breccia in the ore district; (b) corcovadite dikes intruding into the Tongyusi Formation; (c) garnet skarn and diopside-garnet skarn in the underground tunnels at 820m level; (d) quartz-polymetallic sulfide veins and massive magnetite+hematite+pyrite assemblage occurring in the marble; (e) late-stage actinolite-epidote skarn overprinting early-stage garnet skarn; (f) magnetite+quartz replacing earlier garnet; (g) diopside-andradite (Grt-d) replaces early grossularite (Grt-a) exhibiting metasomatie-relict texture; (h) andradite (Grt-b) grows around grossularite (Grt-a); (i) diopside-andradite (Grt-d) and its copper mineralization; (j) magnetite+specularite occurring in actinolite-epidote skarn; (k) chalcopyrite+pyrite veinlets in the diopside-garnet skarn; (l) coexisting diopside and garnet are replaced by magnetite; (m) epidote replacing euhedral diopside crystal; (n) magnetite replacing actinolite-epidote skarn; (o) chalcopyrite relacing and filling in the cracking of garnet. Mt-magnetite; Hm-hematite; Spe-specularite; Cpy-chalcopyrite; Py-pyrite; Qz-quartz; Grt-garnet; Di-diopside; Ep-epidote; Act-actinolite; Cal-calcite

图4 小河口铜矿床石榴子石成分变化示意图(红色符号以钙铝榴石端员组分为主,黑色符号以钙铁榴石端员组分为主)Fig.4 Composition variation of garnet from the Xiaohekou Cu deposit (the red symbol is mainly grossularite composition and black symbol is mainly andradite composition)

图5 小河口铜矿床石榴子石环带成分变化示意图Fig.5 Composition variation of garnet zonation from the Xiaohekou Cu deposit

表1 小河口矽卡岩型铜矿床中石榴子石(Grt-a和Grt-b)电子探针分析结果(wt%)

Table 1 Electron microprobe analyses (wt%) of garnet (Grt-a and Grt-b) from the Xiaohekou skarn Cu deposit

测点号XH4-1-g04-g05XH4-5-g01-g02XH4-1-g01-g02-g03XH4-5-g03-g04Grt-aGrt-bSiO237.4338.8238.0638.0236.4535.9736.4736.8635.59TiO20.950.170.410.500.000.420.651.110.05Al2O315.7314.8916.0516.134.703.275.128.262.51Cr2O30.040.000.030.000.230.000.040.020.02FeO7.749.777.827.8522.6023.5521.7917.0625.01MnO0.560.540.560.530.250.110.250.330.20MgO0.180.050.200.100.060.160.140.180.07CaO37.0836.5236.3036.6733.6833.7934.8535.2534.18K2O0.010.000.000.000.000.030.010.030.00Na2O0.000.000.010.000.020.110.000.000.07SrO0.090.220.110.110.120.050.010.040.07NiO0.000.090.000.000.000.020.000.020.00Total99.80101.0799.5799.9098.1197.4599.3399.1497.75O12 Si2.912.982.952.942.992.992.952.952.97Ti0.060.010.020.030.000.030.040.070.00Al1.441.351.471.470.460.320.490.780.25Cr0.000.000.000.000.020.000.000.000.00Fe3+0.500.630.510.511.531.641.481.141.74Fe2+0.000.000.000.000.020.000.000.000.00Mn0.040.040.040.030.020.010.020.020.01Mg0.020.010.020.010.010.020.020.020.01Ca3.093.013.023.042.963.013.033.033.05Ura0.10.000.10.000.7500.130.070.06And23.9830.9024.7424.6876.5480.8772.3755.8585.03Pyr0.670.20.760.370.260.630.560.680.29Spe1.171.151.191.120.570.250.560.720.45Gro74.0867.7473.2173.8321.2718.2526.3742.6714.18Alm0.000.000.000.000.60.000.000.000.00

本文矽卡岩矿物和金属矿物的电子探针分析在西北大学大陆动力学国家重点实验室完成,仪器型号为JEOL JAX-8230,分析精度≤±2%,最低检测限为~0.001%。测试条件为:加速电压15kV;束流2×10-8A;束斑2~5μm;修正方法为PRZ;使用的标样为标准样品美国SPI公司53中矿物,不同矿物标样用于校正不同元素:石英/硬玉-Si;硬玉/斜长石-Al;硬玉/钠长石-Na;透辉石-Ca;橄榄石-Mg;透长石-K;蔷薇辉石-Mn;金红石-Ti;黄铁矿-S, Fe;赤铁矿-O;硅化镍-Ni;单质钴-Co;毒砂-As。

3 矽卡岩矿物和矿石金属矿物化学组成

3.1 石榴子石

矽卡岩中石榴子石呈粒状或粒状集合体,颜色以红褐色和深黄褐色为主,呈菱形十二面体或四角三八面体的半自形-自形粒状结构,粒度介于0.3~5mm,个别可达1mm以上。镜下石榴子石呈六边形,多具有光性异常的干涉色、双晶和环带。根据石榴子石交代关系、环带发育特征和电子探针成分分析,将其划分为四类,分析结果见表1、表2、表3。

第一类石榴子石(Grt-a)为早期石榴子石,呈红褐色,多呈交代残留结构(图3g),均质性,正交偏光下全消光,不具环带,被后期透辉石和石榴子石(Grt-b)所交代(图4)。此类石榴子石的SiO2含量变化范围为37.43%~38.82%, CaO为36.30%~37.08%,FeOT为7.74%~9.77%,Al2O3为14.89%~16.13%,含少量的MnO、MgO和TiO2。端员组分以钙铝榴石(67.74%~74.08%)为主,其次为钙铁榴石(23.98%~30.90%),及少量的钙铬榴石、镁铝榴石和锰铝榴石(表1),与铜矿化无明显关系。

表2 小河口矽卡岩型铜矿床中石榴子石(Grt-c)电子探针分析结果(wt%)

Table 2 Electron microprobe analyses (wt%) of garnet (Grt-c) from the Xiaohekou skarn Cu deposit

测点号XH3-1-g01-g02-g03-g04-g05-g06-g07-g08-g09-g10-g11Grt-cSiO237.1036.8537.7536.7737.9237.1037.0037.2037.8136.6237.44TiO20.070.241.981.701.160.090.280.082.051.591.01Al2O36.547.6012.308.3615.407.677.607.5812.036.9514.97Cr2O30.040.190.040.080.090.010.080.060.000.040.58FeO20.4218.6611.7516.548.2418.9219.1218.9611.8418.948.62MnO0.420.460.760.670.570.460.430.490.780.690.70MgO0.020.060.100.110.010.000.060.050.100.000.04CaO34.8434.5735.6234.7536.3235.1635.2335.2235.5934.3835.68K2O0.000.000.010.020.000.000.000.000.000.000.02Na2O0.060.000.000.030.010.050.010.010.050.020.00SrO0.000.170.110.080.150.130.030.090.070.060.11NiO0.000.000.000.020.040.000.000.000.000.000.01Total99.5198.80100.4299.1299.9099.5999.8299.74100.3299.2899.18O12Si2.982.982.942.952.942.972.962.982.952.952.93Ti0.000.010.120.100.070.010.020.010.120.100.06Al0.620.721.130.791.410.720.720.711.110.661.38Cr0.000.010.000.010.010.000.000.000.000.000.04Fe3+1.371.260.771.110.531.271.281.270.771.270.56Fe2+0.000.000.000.000.000.000.000.000.000.000.00Mn0.030.030.050.050.040.030.030.030.050.050.05Mg0.000.010.010.010.000.000.010.010.010.000.00Ca3.002.992.972.993.023.023.023.022.982.962.99Ura0.120.610.130.260.260.030.240.190.000.111.78And67.9062.4237.8254.6426.2462.3662.862.2238.1363.4927.81Pyr0.090.220.40.410.0400.230.190.400.16Spe0.951.041.641.51.221.030.941.091.691.551.52Gro30.9435.7160.0243.1972.2536.5835.7836.3159.7834.8468.74Alm0.000.000.000.000.000.000.000.000.000.000.00

第二类石榴子石(Grt-b)主要以交代Grt-a的形式产出,围绕Grt-a边部生长(图3h),发育环带结构,宽几十微米,呈黑白相间的干涉色(图4)。此类石榴子石成分与Grt-a相差较大,相比Grt-a,其Al2O3(2.51%~8.26%)明显降低,FeOT(17.06%~25.01%)明显升高,分子式计算结果显示Grt-b端员组分以钙铁榴石(55.85%~85.03%)为主,其次为钙铝榴石(14.18%~42.67%)(表1)。

第三类石榴子石(Grt-c)发育较宽的环带,宽几十到一百微米(图4),化学成分分析表明,从核部到边缘,石榴子石的SiO2(36.62%~37.92%)、CaO(34.38%~36.32%)含量基本保持不变,而FeOT(8.24%~20.42%)与Al2O3(6.54%~15.40%)含量呈负相关并且二者曲线相交,端员组分显示钙铝榴石(30.94%~72.25%)和钙铁榴石(26.24%~67.90%)交替出现的规律(图4、表2)。

第四类石榴子石(Grt-d)相比前三类石榴子石,该类石榴子石SiO2(35.38%~36.83%)和CaO(33.28%~35.04%)相似,FeOT(20.68%~29.16%)明显升高、Al2O3(0.00%~5.77%)明显降低,其端员组分接近于纯的钙铁榴石(And=68.30%~100%)(图6、表3),样品XH2和XH8整体发育密集的环带结构,宽几微米,环带明暗交替通过Al2O3和FeO韵律变化显示出来,暗色部分Al2O3含量高,浅色部分FeOT含量高;样品XH10仅发育外环带,其核部的SiO2、CaO、Al2O3成分含量均低于外环带,仅FeOT的含量高于外环带(图5、表3)。总体上看,Grt-b和Grt-d成分虽然有所变化,但仅在小范围内上下波动,反映了该类石榴子石形成过程中物理化学环境改变微弱。

表4 小河口矽卡岩型铜矿床中辉石电子探针分析结果(wt%)

Table 4 Electron microprobe analyses (wt%) of pyroxene from the Xiaohekou skarn Cu deposit

测点号XH4-1-d01-d02-d03-d04XH4-3-d01-d02-d03-d04XH8-1-d01-d02-d03-d04SiO254.8154.0654.7053.9954.9054.9653.6653.6554.7454.3954.9855.32TiO20.000.030.040.030.030.040.060.030.020.030.050.01Al2O30.020.450.110.210.040.150.110.080.090.160.170.19Cr2O30.000.020.010.040.000.220.250.000.000.040.030.02FeO6.064.526.476.434.113.754.806.603.554.002.782.39MnO0.790.720.800.840.640.670.670.880.470.460.350.36MgO14.6114.8014.3714.0615.6015.6214.8813.6716.0515.7616.5517.04CaO25.6225.9425.3025.5525.7225.7025.0625.7926.0525.5126.4825.71Na2O0.000.030.040.030.030.040.060.030.020.030.050.01K2O0.010.000.000.000.010.000.060.020.000.010.020.02SrO0.040.100.150.130.180.160.160.160.070.140.110.14NiO0.000.000.000.040.020.000.000.000.000.000.000.12Total101.96100.66101.95101.33101.26101.2999.72100.87101.06100.54101.52101.36O6Si (T)2.001.982.001.992.002.001.991.991.991.991.982.00Ti (M1)0.000.000.000.000.000.000.000.000.000.000.000.00AlⅥ (T)0.000.000.000.000.000.000.000.000.000.000.000.00AlⅣ (M1)0.000.020.000.010.000.010.000.000.000.010.010.01Fe3+ (M1)0.010.010.000.020.000.000.010.030.020.010.030.00Cr (M1)0.000.000.000.000.000.010.010.000.000.000.000.00Mg (M1)0.790.810.780.770.850.850.820.750.870.860.890.92Fe2+ (M1)0.210.170.210.220.150.140.160.240.130.130.100.07Mn (M1)0.020.020.020.030.020.020.020.030.010.010.010.01Mn (M2)0.020.020.020.030.020.020.020.030.010.010.010.01Ca (M2)1.001.020.991.011.001.001.001.021.011.001.020.99Fe2+ (M2)0.000.000.000.000.000.000.000.000.000.000.000.00Mg (M2)0.000.000.000.000.000.000.000.000.000.000.000.00Na (M2)0.000.000.000.000.000.000.000.000.000.000.000.00K (M2)0.000.000.000.000.000.000.000.000.000.000.000.00Wo49.9551.1949.5650.2550.2350.4249.9750.8950.5350.0550.8949.85En39.6340.6239.1738.4842.3942.6441.2837.5243.3143.0444.2545.95Fs10.438.0711.1311.157.266.798.5211.506.086.834.684.16Ac0.000.120.140.110.120.150.220.090.070.090.180.04Jo2.372.002.442.001.952.062.082.681.421.431.071.10Di77.5180.0076.7875.9683.2584.1481.6973.0086.0785.0088.0091.44Hd20.1918.0020.9522.1514.7214.1316.2723.8012.7513.5310.548.19

图6 小河口铜矿床中石榴子石端员组分与世界不同类型矽卡岩矿床中石榴子石组分对比(据Meinert, 1992)Fig.6 Ternary diagrams summarizing garnet and comparison with different types of skarn deposits in the world (after Meinert, 1992)

以上4类石榴子石均属于钙铝-钙铁榴石系列,其中以钙铁榴石端员组分为主的Grt-b和Grt-d与金属矿化密切相关(图3i, k、图5),大部分测试点落入全球矽卡岩型Cu-Mo-Fe矿床中的石榴子石成分范围内(图6)。

3.2 辉石

图7 小河口铜矿床辉石分类图及其与世界矽卡岩型金属矿床中辉石成分对比(据Meinert et al., 2005)Fig.7 Ternary diagrams summarizing pyroxene and comparison with skarn deposits in the world (after Meinert et al., 2005)

辉石主要产于辉石-石榴子石矽卡岩中,主要与具环带结构的钙铁榴石(Grt-d)共生,呈短柱状、细粒状集合体(图3l、图5),分析结果见表4。12个电子探针分析点显示小河口铜矿床的辉石主要成分SiO2含量变化范围为53.65%~55.32%,CaO为25.06%~26.48%,MgO为13.67%~17.04%,FeOT为2.39%~6.60%,Al2O3为0.02%~0.45%,此外含少量的MnO、Al2O3、Cr2O3和TiO2。分子式计算结果显示硅灰石端员组分Wo为49.56%~51.19%,顽火辉石端员组分En为37.52%~45.95%,铁辉石端员组分Fs为4.16%~11.5%,在辉石分类图中落于透辉石范围内(图7)。辉石中透辉石、钙铁辉石和锰钙辉石端员组分分别为73.00%~91.44%、8.19%~23.80%和1.07%~2.68%,主要落入偏向透辉石方向(图7b),与全球矽卡岩型Cu-Au-Fe矿床中的辉石组成相似。

3.3 矿石金属矿物

小河口铜矿床矿石中的金属矿物(黄铁矿、磁黄铁矿和磁铁矿)的电子探针分析结果见表5。磁铁矿的Fe含量为69.14%~71.78%(平均为70.66%),O含量为27.89%~29.87%(平均为28.40%),其次还有Al(0.06%~0.19%)、Ca(0.00%~0.36%)、Mn(0.01%~0.10%)和Co(0.08%~0.18%)等微量元素。黄铁矿的电子探针测试结果显示Fe含量为46.45%~54.21%(平均为47.86%),S含量为39.35%~54.13%(平均为51.48%),总体表现为亏Fe富S型。磁黄铁矿的Fe含量为59.50%~60.78%,平均值=60.33%,S含量为38.13%~39.47%,平均值=39.09%。黄铁矿和磁黄铁矿Co的含量较高,在0.02%~0.17%之间,均值为0.11%;Ni含量较低,为0.00%~0.12%,平均为0.03%,Co/Ni值介于1.1~7.5之间,平均为3.4。

4 讨论

4.1 矿床成因与矽卡岩的形成环境

矽卡岩可以由接触交代作用(赵一鸣等, 1990; Meinert, 1992)、火山-次火山气液变质作用(Sunetal., 2015a)或区域变质-混合岩化作用形成(曾志刚等, 1999; 梁祥济, 2000)。据野外观察及岩(矿)相学研究,小河口铜矿床的形成受花岗闪长玢岩侵入体和桐峪组碳酸盐岩的热接触交代作用控制,接触交代带内发育石榴子石和透辉石等无水矽卡岩矿物以及阳起石、绿帘石和绿泥石等含水矽卡岩矿物,矿化与矽卡岩关系密切(图2、图3),呈薄层状、透镜状和脉状产于内、外矽卡岩带内。小河口铜矿床的矽卡岩矿物组合为钙铁榴石-钙铝榴石、透辉石-钙铁辉石等矿物系列,与世界Cu-Fe-Mo矽卡岩矿床中的石榴子石和辉石系列一致(图6、图7),且小河口成矿岩体属于磁铁矿系列的高钾钙碱性-钾玄质花岗闪长玢岩(郑俊, 2016),表明小河口铜矿床为典型的接触交代成因钙质矽卡岩型矿床(赵一鸣等, 1990; Meinert, 1992; Meinertetal., 2005; 安芳等, 2014; Zhuetal., 2015; Soloviev, 2015)。

表5 小河口铜矿床的黄铁矿、磁黄铁矿和磁铁矿电子探针分析结果(wt%)

Table 5 Electron microprobe analyses (wt%) of pyrite, pyrrhotite and magnetite from the Xiaohekou skarn Cu deposit

测点号CaTiAlSrMgFeMnCrNiCoSeAsCuSOTotal (%)黄铁矿XH7-3-30.040.000.020.000.0154.210.035.450.120.130.040.070.5439.350.00100.00XH7-4-10.000.000.000.000.0046.910.000.020.010.040.000.160.0053.520.71101.36XH7-4-20.000.000.090.000.0046.450.000.060.010.080.000.180.1051.881.85100.69XH8-5-30.000.010.000.000.0047.010.000.030.000.120.000.000.0754.131.09102.47XH10-5-10.000.000.020.060.0146.720.000.010.100.140.000.000.0053.661.66102.38XH10-3-10.000.000.000.040.0047.210.010.000.000.110.000.030.0053.860.19101.45XH10-3-20.000.000.000.000.0046.550.020.070.020.110.000.030.0154.000.37101.16磁黄铁矿XH7-3-40.050.000.090.000.0259.500.001.270.010.020.120.790.0038.130.00100.00XH11-1-10.000.000.000.000.0260.230.000.000.000.050.000.000.0039.080.3099.67XH11-1-20.000.000.000.000.0160.350.000.010.000.170.020.000.0239.310.37100.25XH11-2-10.000.000.010.000.0260.660.000.000.040.120.000.000.0639.410.38100.69XH11-2-20.000.000.000.040.0060.780.050.050.040.110.000.020.0039.470.28100.83XH11-3-20.000.000.020.000.0160.440.010.040.000.170.000.020.0039.160.46100.33磁铁矿测点号CaTiAlSrMgFeMnCrNiCoSeAsCuSOVTotal(%)XH14-1-10.080.000.100.010.0270.730.010.020.000.120.000.000.000.0128.080.0099.19XH14-1-20.020.020.080.000.0371.010.030.020.000.130.000.030.000.0028.010.0199.40XH14-1-30.080.000.060.000.0671.780.070.030.000.100.010.000.000.0128.670.00100.87XH14-1-40.360.010.140.000.1170.130.080.040.000.140.000.000.010.0128.220.0199.26XH14-2-10.270.000.170.000.1070.020.040.000.030.180.000.010.000.0128.460.0099.30XH14-2-20.110.010.080.010.0771.000.100.020.030.160.000.000.000.0028.070.0299.68XH14-2-30.080.010.070.000.0570.700.030.000.000.130.000.010.000.0028.330.0199.41XH14-3-10.000.000.080.000.0171.480.020.000.000.150.000.000.000.0029.870.00101.61

Co、Ni和Fe的化学性质相似,它们与Fe呈类质同象进入黄铁矿(或磁黄铁矿)晶格,黄铁矿的Co、Ni含量及Co/Ni比值被证明是确定矿床成因类型的有效方法(Bajwahetal., 1987; 龙汉生等, 2011)。小河口铜矿床的黄铁矿和磁黄铁矿的As-Co-Ni图解显示为岩浆热液型成因(图8a);其Co/Ni比值为1.1~7.5(平均为3.4),Ni-Co投图显示其大多落于岩浆热液成因范围中(图8b)。此外,小河口磁铁矿Al、Mn含量较高,大多数样品V、Ti、Ni、Co含量较低,与接触交代矿床成分特征相似(Dupuis and Beaudoin, 2011; Nadolletal., 2015),在TiO2-Al2O3-MgO和(Ti+V)-(Ca+Al+Mn)图解上(图8c, d),小河口磁铁矿主要位于热液型及钙质矽卡岩区域内,指示小河口铜矿床属于岩浆热液型矽卡岩矿床。

图8 小河口铜矿床黄铁矿和磁黄铁矿As-Co-Ni图解(a,底图据严育通等, 2012)、Ni-Co图解(b,底图据龙汉生等, 2011)及磁铁矿TiO2-Al2O3-MgO图解(c,底图据王顺金, 1987)、(Ti+V)-(Ca+Al+Mn)图解(d,底图据Dupuis and Beaudoin, 2011)Fig.8 Plots of As-Co-Ni (a, after Yan et al., 2012) and Ni vs. Co (b, after Long et al., 2011) for pyrite and pyrrhotite and plots of TiO2-Al2O3-MgO (c, after Wang, 1987) and (Ti+V) vs. (Ca+Al+Mn) for magnetite (d, after Dupuis and Beaudoin, 2011) from the Xiaohekou skarn Cu deposit

矽卡岩体系中的石榴子石常发育环带结构,这些韵律环带能有效记录成矿热液的演化历史,可为研究石榴子石环带成因及成矿热液演化提供重要信息(Jamtveitetal., 1993; Jamtveit and Hervig, 1994; Somarin, 2004; 安芳等, 2014; Zhaietal., 2014; 赵盼捞等, 2018)。实验研究表明,不同的矽卡岩矿床中,石榴子石和辉石组合和成分有所差异(图6、图7),且石榴子石与辉石的化学组成也可以指示其形成时的物理化学条件(赵斌, 1983; 赵一鸣等, 1990; Meinert, 1992; Jamtveitetal., 1993; Jamtveit and Hervig, 1994; Meinertetal., 2005)。由于在相对氧化的条件下,Fe主要以Fe3+形式存在,因此钙铁榴石(富Fe3+)组分高的石榴子石比钙铝榴石(贫Fe3+)组分高的石榴子石在更加氧化的条件下形成(赵斌等, 1983; Meinertetal., 2005)。中-碱性溶液是钙铁榴石形成的最佳环境,而高pH的环境难以形成六配位的Al,故钙铝榴石往往在酸性介质中最易形成(艾永富和金玲年, 1981; 高雪等, 2014)。氧化程度相对较高的矽卡岩环境更有利于形成矽卡岩型Cu矿床,且主要矿物为钙铁榴石、透辉石及少量的硅灰石、阳起石和绿帘石(Meinertetal., 2005; 安芳等, 2014)。小河口矽卡岩型铜矿床早期石榴子石总体以Grt-a无环带的钙铝榴石(Gro=67.74%~74.08%)为主,其次为钙铁榴石(And=23.98%~30.90%),指示石榴子石形成早期为弱氧化、酸性环境,该阶段的石榴子石成分投点偏离于世界矽卡岩型铜矿床的石榴子石成分范围(图6)。Grt-c成分变化较大,从核部到边部钙铝榴石组分(Gro=30.94%~72.25%)和钙铁榴石(And=26.24%~67.90%)组分交替出现,指示其振荡的生长环境,反映成矿过程中体系的氧化还原状态和酸碱性发生周期性变化,也反映成矿体系的氧逸度和碱性逐渐增强。小河口干矽卡岩演化的晚期主要形成较纯的具密集振荡环带结构的钙铁榴石(Grt-b和Grt-d,And=55.85%~85.03%和68.30%~100%)或交代早期的钙铝榴石(Grt-a),显示成矿体系富含铁质,且具有较高的氧逸度和碱性,其成分与世界矽卡岩型铜矿床的石榴子石成分非常相似(图6)。Meinert (1992)、Meinertetal. (2005)研究认为,与矽卡岩型矿床有关的辉石主要为透辉石-钙铁辉石系列,且富Mg2+、贫Fe2+的透辉石比钙铁辉石(富Fe2+)形成于更加氧化的环境(Kwak, 1994; Luetal., 2003; 刘建楠等, 2013),小河口矽卡岩中的辉石以透辉石为主,其组分不仅与世界矽卡岩型铜矿床中的辉石组分一致(图7),且透辉石与Grt-b和Grt-d的共生组合更加印证了小河口干矽卡岩阶段晚期成矿体系的高氧逸度特征。湿矽卡岩-氧化物阶段发育大量的磁铁矿和镜铁矿,这两种矿物的形成也表明在流体交代过程中存在较高的温度和氧逸度(Meinertetal., 2005; Sunetal., 2015b; Nadolletal., 2015)。

综上所述,小河口铜矿床的干矽卡岩矿化阶段从早到晚依次形成钙铝榴石、钙铝榴石组分-钙铁榴石组分交替系列和透辉石-纯钙铁榴石。无环带的钙铝榴石(Grt-a)反映早期矽卡岩成岩环境为低氧逸度、酸性还原环境,该阶段不利于矽卡岩铁、铜矿化的形成;随着形成过程中氧逸度的逐渐增加,成矿热液由酸性逐渐向弱碱性演化,FeOT含量逐渐增加,在振荡的物理化学环境中形成了钙铝榴石和钙铁榴石组分交替生长的石榴子石(Grt-c);晚期形成稳定的透辉石-钙铁榴石(Grt-b、Grt-d)组合,表明此时成矿体系处于相对稳定的高氧逸度、碱性环境,为矽卡岩型铁、铜矿化的发生提供了有利条件。

4.2 成矿机制及成矿过程

南秦岭小河口铜矿床成矿岩体锆石U-Pb年龄(~141Ma, 郑俊, 2016)与南秦岭柞水-山阳矿集区其他燕山期岩体及华北陆块南缘东秦岭金堆城超大型钼矿含矿斑岩的LA-ICP-MS锆石U-Pb年龄和辉钼矿Re-Os年龄一致(朱赖民等, 2008; Zhuetal., 2010),暗示小河口矽卡岩型铜矿床与华北陆块南缘的大规模成矿作用可能形成于同一地质事件。秦岭造山带前中生代长期受冈瓦纳、劳亚和古特提斯等古板块构造的控制,形成EW向为主的主造山期构造;中新生代以来处于太平洋板块、印度板块和欧亚板块3个板块构造动力学系统的汇交复合部位,东部更多受太平洋板块的影响,使之正处于前后两期动力学系统转换时期(张国伟等, 2001)。~141Ma由于南北主应力场向东西主应力场构造体制转变,秦岭造山带陆内俯冲的南北向挤压作用消失,开始受伸展构造应力场的制约且伴随岩石圈厚度减薄,软流圈急剧抬升,幔源物质和热流流体上涌,并诱发强烈的壳-幔相互作用,提供足够的热促使加厚下地壳和岩石圈地幔受热发生熔融形成富Cu的花岗质岩浆气水热液。当气水热液沿构造薄弱带上升侵位于桐峪寺组等沉积地层中,与灰岩发生接触交代作用首先形成钙铝榴石矽卡岩,此时成岩环境为低氧逸度、酸性还原环境;成矿流体不断从岩浆中出溶并发生多次沸腾,引起残留热液的氧化还原状态发生周期性变化,成矿热液由酸性逐渐向弱碱性演化,在振荡的物理化学环境中形成了钙铝榴石-钙铁榴石组分交替生长的石榴子石矽卡岩;随着岩浆演化和流体作用的扩大,成矿体系处于稳定的碱性和高氧逸度环境,形成了透辉石-钙铁榴石矽卡岩和湿矽卡岩-氧化物,最终温度、氧逸度骤减导致黄铁矿、磁黄铁矿和黄铜矿等硫化物发生沉淀,以石英-硫化物脉的形式充填构造裂隙或矽卡岩体内,形成小河口矽卡岩型铜矿床。

石榴子石和透辉石等为高温蚀变矿物,早阶段成矿流体为岩浆-热液过渡性流体,即不混溶流体,该流体是中酸性岩浆在结晶分异过程中挥发分过饱和所致(Bodnar, 1995; 张承帅等, 2013; Soloviev and Kryazhev, 2017),这种流体上升侵位并沿层间空隙贯入渗透,交代形成石榴子石和透辉石等干矽卡岩矿物。如前文所述,小河口矽卡岩中的石榴子石普遍发育有环带(Grt-c和Grt-d),Jamtveitetal. (1993)认为这种环带与石榴子石形成时的温度无关,而与流体成分变化有关,是石榴子石与流体相互作用的结果。石榴子石(Grt-c)宽环带中钙铁榴石(Fe)和钙铝榴石(Al)含量的变化,可能与流体氧逸度的变化引起的含矿热液中Fe3+含量的周期性变化有关(Yardleyetal., 1991; Jamtveitetal., 1993),反映了流体的演化特征。Yardleyetal. (1991)认为石榴子石环带是在流体发生大量沸腾的阶段形成。考虑到小河口成矿Ⅰ和Ⅱ阶段曾发生流体沸腾作用(熊潇, 2018),且矿区内见与小河口花岗岩同时代的隐爆角砾岩(图3a)(祁思敬等, 1993),为沸腾作用存在的宏观地质标志,所以将干矽卡岩阶段成矿流体演化的具体过程刻画为:流体沸腾作用引起残留热液的氧化还原状态发生变化,进而导致Fe3+和Al3+活度(aFe3+/aAl3+)的变化(Yardleyetal., 1991),形成钙铁榴石和钙铝榴石组分交替变化的生长环带(Grt-c),多次沸腾形成周期性变化。干矽卡岩阶段的晚期,成矿体系处于相对稳定的高氧逸度环境,富Fe3+流体注入矽卡岩体系中,导致体系中的Fe3+发生过饱和从而晶出一圈富Fe2O3、贫Al2O3的钙铁榴石层,此时,残余流体中Fe3+的过饱和程度降低而Al3+的过饱和程度相对增加,从而接着晶出一圈富Al2O3、贫Fe2O3的钙铁榴石层,Fe和Al的过饱和程度此消彼长,形成具有密集振荡环带的钙铁榴石(Grt-d)。值得指出的是,Grt-d的振荡环带发育凹槽状结构(图5),表明在稳定的高氧逸度环境中,钙铁榴石快速生长(Jamtveitetal., 1992)。

透辉石生成时,岩石中也会产生一定的自由空间导致压力释放,可促使矽卡岩矿化过程中部分位置发生沸腾作用(Meinertetal., 2005)。此外,随着干矽卡岩阶段钙铁榴石的大量结晶,化学式为:

3CaCO3+Fe2O3+3SiO2=Ca3Fe2Si3O12(钙铁榴石)+3CO2↑

流体体系中生成一定量的CO2,被之后的湿矽卡岩-氧化物阶段(Ⅱ)的矿物捕获进入包裹体,这可能是CO2仅在该阶段包裹体中被检测出的原因(熊潇, 2018)。干矽卡岩矿物形成后,成矿演化进入湿矽卡岩-氧化物阶段,成矿以富含挥发分的热液活动起主导作用。随着岩浆演化和流体作用的扩大,热液从岩浆中分离聚集,与围岩相互反应,而沸腾作用将H+和CO2分离进入气相,导致流体体系碱性和氧逸度程度升高(Drummond and Ohmoto, 1985; Baker, 2002),进而导致该阶段磁铁矿-镜铁矿大量沉淀富集。小河口铜矿床Ⅰ干矽卡岩和Ⅱ湿矽卡岩-氧化物矿化阶段的流体具有高温、高盐度和高氧逸度的特点,与国内外典型矽卡岩型矿床的成矿流体特征相似(赵一鸣等, 1990; Meinertetal., 2003; Chang and Meinert, 2008; 张承帅等, 2013; Zhaietal., 2014; Zhuetal., 2015; Soloviev and Kryazhev, 2017),这种岩浆-热液过渡性的流体具有很强的萃取和携带金属的能力,是成矿系统中热液和金属的主要贡献者(Meinertetal., 2005),且Ⅰ和Ⅱ阶段曾发生多次流体沸腾作用,加之透辉石、钙铁榴石以及磁铁矿和镜铁矿的沉淀(Fe3+含量骤减),成矿流体体系温度和氧逸度开始降低,加速了之后石英-硫化物主成矿阶段成矿物质以硫化物的形式卸载沉淀。

5 结论

(1)小河口铜矿床为典型的接触交代成因钙质矽卡岩型矿床,干矽卡岩矿化阶段从早到晚依次形成钙铝榴石(Grt-a)、钙铝榴石组分-钙铁榴石组分交替系列(Grt-c)和透辉石-纯钙铁榴石(Grt-b,Grt-d),反映早期矽卡岩成岩环境为低氧逸度、酸性还原环境,该阶段不利于矽卡岩铁、铜矿化的形成;成矿热液由酸性逐渐向弱碱性演化,同时流体沸腾作用引起残留热液的氧化还原状态发生变化,进而导致Fe3+和Al3+活度的变化,在振荡的物理化学环境中形成钙铁榴石-钙铝榴石组分交替变化的宽生长环带。晚期成矿体系处于相对稳定的高氧逸度、碱性环境,形成稳定的透辉石-密集振荡环带钙铁榴石组合。

(2)成矿演化进入以富挥发分的热液活动起主导作用的湿矽卡岩-氧化物阶段,沸腾作用将H+和CO2分离进入气相,导致流体体系碱性和氧逸度程度升高,进而导致磁铁矿大量沉淀富集。Ⅰ和Ⅱ阶段曾发生多次流体沸腾作用,加之透辉石、钙铁榴石和磁铁矿的沉淀(Fe3+含量骤减),成矿流体体系温度和氧逸度开始逐渐降低,加速了之后石英-硫化物主成矿阶段成矿物质以硫化物的形式卸载沉淀。

猜你喜欢
透辉石矽卡岩黄铁矿
磁黄铁矿多型矿物学特征与分选行为差异
山东德州地区矽卡岩型铁矿找矿方法研究
激电联合剖面在判断矽卡岩型矿床矿体产状中的应用
广西博白县三叉冲矽卡岩型钨钼矿地球物理特征及找矿预测
包裹体
黄铁矿的吸附性能研究现状及进展
黄铁矿主微量元素及晶胞参数研究内容和意义
河南省方城县青山透辉石矿床地质特征及开发利用前景
四川省九龙县某铜钼矿矽卡岩与成矿关系分析
广东茅岭铁矿地质特征及矿床成因