王振龙,杨 秒,吕海深,胡永胜,朱永华,顾 南,王怡宁
基于蒸渗仪群淮北平原冻融期裸土及麦田潜水蒸发规律研究
王振龙1,杨 秒2,吕海深3,胡永胜1,朱永华3,顾 南2,王怡宁4
(1. 安徽省(水利部淮委)水利科学研究院水利水资源安徽省重点实验室,蚌埠 233000;2. 河海大学理学院,南京 211100;3. 河海大学水文水资源学院,南京 210098;4. 南京水利科学研究院,南京 210029)
为研究淮北平原冻融期潜水蒸发规律,采用五道沟水文实验站38套原状土蒸渗仪1991—2018年试验资料,采用非线性拟合方法,揭示了冻融期(12—2月)砂姜黑土和黄潮土有无作物潜水蒸发变化规律。结果表明,淮北平原冻融期多表现为昼融夜冻现象,砂姜黑土和黄潮土有无作物潜水蒸发均随埋深的增大呈先增后减趋势,在埋深0.1~0.3 m区间出现最大值,且种植小麦潜水蒸发量比裸地小。裸地情景下高斯函数拟合最好,拟合优度2均大于0.9,其中砂姜黑土冻融期12—2月潜水蒸发量最大时埋深平均值在0.08 m左右,黄潮土在0.29 m左右。小麦生长情景下类高斯函数拟合最好,拟合优度2均大于0.9,其中砂姜黑土冻融期潜水蒸发最大值对应的埋深为0,潜水蒸发随埋深递减,而黄潮土对应的埋深在0.23 m左右,2种土壤有作物时最大值对应的埋深均比裸地小。拟合的函数形式可直接用于冻融期旬潜水蒸发量的计算。
冻;融;蒸发;地下水;淮北平原
潜水蒸发研究成果主要侧重于非冻融期,许多专家学者对非冻融期潜水蒸发的影响因素[1-4]、规律机理[5-8]及计算方法[9-14]等方面做了大量研究。冻融期非饱和带土壤水分迁移转化异常复杂,使得冻融期潜水蒸发规律的研究较非冻融期困难且研究成果相对较少。目前,国内外有关冻融期潜水蒸发的研究大多在室内开展[15-19],少数在室外试验[20],室外研究还比较薄弱。
国内外学者对冻融期潜水蒸发的研究多集中在内蒙古河套灌区[21-26]和太谷均衡实验站(山西)[27-28]等北方地区,冻结层分别可达1.1和0.6 m,冻结层较厚,主要表现为连续冻结特征,试验土样分别为砂质壤土和亚砂土。淮北平原以砂姜黑土(54%)和黄潮土(33%)为主,冬季干旱少雨,多表现为不稳定冻结特征(昼融夜冻),冻结层较薄。因此,本文利用五道沟水文实验站历年观测资料,对砂姜黑土和黄潮土冻融期潜水蒸发规律进行分析研究,采用非线性拟合方法构建其计算模型,为冻融期潜水蒸发计算提供依据。
五道沟水文水资源实验站是淮北平原区大型综合实验站,地处117°21′E,33°09′N,位于安徽省蚌埠市北28 km处的新马桥原种场境内,属于平原区封闭式小流域实验站。淮北平原2种代表性土壤是砂姜黑土(54%)和黄潮土(33%)。按国际制土壤质地分级标准,砂姜黑土土壤颗粒质量百分数:黏粒(0~0.002 mm)占比13.1%,粉粒(>0.002~0.02 mm)占比49.4%,砂粒(>0.02~2 mm)占比37.5%;黄潮土土壤颗粒质量百分数:黏粒(0~0.002 mm)占比2.0%,粉粒(>0.002~0.02 mm)占比11.5%,砂粒(>0.02~2 mm)占比86.5%。2种土壤容重由环刀实测,其他水力参数参照文献[29],具体数据详见表1。
表1 研究区砂姜黑土和黄潮土土壤基本物理性质
实验站共62套大型地中蒸渗仪,建成于1989年,主要用于测定固定埋深状态下的潜水蒸发。文中选用直径为618 mm尺寸的38套蒸渗仪,该尺寸潜水埋深全,土壤有砂姜黑土和黄潮土2种。2种土壤和裸地、种植作物2种情景相组合,其中砂姜黑土裸地和种植作物蒸渗仪都为11套,黄潮土裸地和种植作物蒸渗仪都为8套,具体组合方案见表2。各蒸渗仪降水入渗量、潜水蒸发量及地表径流量数据人工逐日观测。蒸渗仪建成于1989年,1991年以后数据较完整,采用1991—2015年数据进行分析拟合,2017—2018年数据进行检验,2016年因蒸渗仪设备维修,停测1 a,2017年恢复正常。水面蒸发量采用E601型蒸发皿(面积0.3 m2)实测数据,每日08:00人工观测,数据时段选取与蒸渗仪观测数据时段相一致。浅层(0、5、10、15、20 cm)不同深度地温采用曲管地温表(精度为0.5 ℃)实测数据,每日08:00、14:00、20:00人工观测;深层(40、80、160、320 cm)地温采用直管地温表(精度为0.2 ℃)实测数据,每日14:00人工观测。气温采用放于百叶箱中的气温仪表(精度为0.1 ℃)实测数据,每日08:00、14:00、20:00人工观测。
表2 潜水蒸发试验方案
每经过一次异常值的剔除,剩下的数据需重新计算值,再以新为依据,进一步判别是否还存在异常值,直至无异常值为止。
为划分淮北平原地区冻融期,因气温、地温每年变化趋势基本一致,以2011年11月1日—2016年4月30日近5 a实测气温、地温数据为例,选取气温、地温在0 ℃以下的月份作为该区冻融期进行研究。由于昼夜温差的影响,分别取每日08:00与14:00数据为依据进行分析。2011年11月1日—2016年4月30日逐日08:00与14:00气温变化散点图见图1。由图1可见,12—2月08:00气温多在0 ℃以下,最低可达-10 ℃,而14:00气温多在0 ℃以上。1月中旬为淮北平原温度最低的时段。
图1 2011—2016年五道沟实验站逐日气温及地温变化
近5 a(2011—2016年)12—2月0和10 cm土层08:00和14:00地温随时间变化过程线如图1c~图1f所示。从图可见,0 cm土层12—2月08:00逐日地温多在0 ℃以下,14:00多在0 ℃以上,与上述气温分析结果相一致。因此,将12—2月份定义为该区的冻融期。由于昼夜温差的影响,该区冻融期多表现为昼融夜冻现象。10 cm土层12—2月08:00与14:00逐日地温多在0 ℃以上。不同年份地温在数值上有差异,但变化趋势基本一致,且随土层深度的增加,离散程度越来越小。因此,可选取其中任一年不同土层实测地温进行分析。
以2011—2012年12—2月逐日08:00实测气温和地温数据为例,展现地温随深度变化过程线,及气温对地温的影响,图中散点表示不同埋深的地温,实线表示气温。从图2可见,0、5 cm土层地温多在0 ℃以下,且变化趋势与气温(实线)基本一致;10、15 cm土层地温在0 ℃上下波动,随土层厚度的增大,地温也逐渐增加,且波动幅度越来越小。土层越深,地温变化越平缓,表层地温易受气象因素影响,故波动幅度较大。
地温影响潜水蒸发的重要因素,影响土层剖面水分的运移。冻融期夜晚地温降至0 ℃以下,表层土壤水分冻结成冰,土水势降低,产生自上而下的土水势梯度,驱使下层土壤水分向冻结层迁移[32]。白天气温升高,由于太阳辐射的作用,表层土壤温度缓慢升高,冻结层开始融化,如此反复循环,形成该地区昼融夜冻的现象。
图2 2011—2012年五道沟实验站冻融期不同土层气温和地温逐日变化
在水资源评价中,潜水蒸发系数指标一般选取月或年时段进行计算,本文从应用角度及系统反映冻融期变化过程考虑,选用旬时段进行分析、拟合。因文中选取数据系列较长,不可避免会存在随机误差。相关研究表明[33],通过对随机误差特性的分析,采用算术平均值的方法,可以得到真值的最佳估计。因此,通常情况下采用算术平均值作为最后的测量结果。在进行算术平均值步骤前,首先要根据相应的判别准则,筛选出数据集中的异常值并剔除,确保数据集中无异常点的存在,因为异常点的取值会明显歪曲测量结果。本文根据3准则对原始数据集进行预处理,对历年数据按每个月份的上、中、下旬分类,再按照埋深分别进行筛选,直到各埋深数据均满足3σ准则,对预处理后的数据再进行算术平均值。由于实验站潜水蒸发数据为每日观测,先对1991—2015年的日潜水蒸发数据按旬进行求和,计算历年各个月的旬潜水蒸发,再筛选出同一月份同一旬的数据,求取平均值,得到多年平均旬潜水蒸发数据。
裸地多年平均旬潜水蒸发随埋深变化过程线如图3所示。从图可知,冻融期不同土壤质地在不同潜水埋深情况下,裸地潜水蒸发并不是随埋深的增加而减小,而是在0.1~0.3 m埋深区间出现最大值,在0~0.1 m埋深区间,随着埋深的增大而增加;在0.3~5.0 m埋深区间,随着埋深的增大而减小。该变化规律与非冻结期裸地潜水蒸发随埋深增大递减规律不一致,主要是因为冻融期温度较低,裸地埋深0 m会直接冻结,表层土壤先冻结,潜水面距表层冻结土壤还有一段距离,因毛细管的存在,仍有一部分潜水通过毛细管上升到冻土层,使埋深0.1~0.3 m的潜水蒸发量比埋深0 m大,在曲线上表现出峰值,此后随埋深增大而减小。从图3可知,砂姜黑土与黄潮土随埋深增大均表现出先增后减规律,但砂姜黑土随埋深递减较陡峭,黄潮土变化较平稳。不同土壤质地对潜水蒸发影响较大,砂姜黑土土壤颗粒较黄潮土粗,土壤颗粒越粗孔隙越大,越便于水分迁移,水分向冻结面聚集越快。黄潮土颗粒较细,毛细管上升高度较高,冻结层持续向下移动,冻结层较砂姜黑土厚。
小麦地多年平均旬潜水蒸发随埋深变化过程线见图3b,从图可见,砂姜黑土和黄潮土旬潜水蒸发随埋深变化规律与裸地基本一致,均随埋深增大呈先增后减趋势。2种土壤递减速度虽有不同,但不像裸地那样明显。种植小麦情景下,作物覆盖会减缓土壤的冻结速率,作物根系发育对土壤表层结构有一定的影响。因此,小麦种植情景下,潜水蒸发随埋深变化与裸地不太一致。
采用1991—2015年据3准则预处理后的数据进行分析拟合,2017—2018年数据进行检验。据上述砂姜黑土、黄潮土有无作物冻融期潜水蒸发随埋深变化具有峰值的特点,考虑采用具有峰值的高斯函数、类高斯函数和三次函数型对其进行非线性拟合,并与已有的3种经典计算潜水蒸发的经验公式进行比较,6种函数形式见式(2)~式(7)。采用1991—2015年冻融期潜水蒸发观测数据,计算砂姜黑土和黄潮土有无作物不同埋深的旬潜水蒸发。
式中g为潜水蒸发量,mm;0为水面蒸发量,mm;为潜水埋深,m;0为极限潜水埋深,m;、、、为拟合参数,无量纲。
3.2.1 模型选择
利用MATLAB软件,采用上述6种曲线形式对平均旬潜水蒸发系数与埋深进行非线性拟合,砂姜黑土和黄潮土裸地6种曲线各月中旬潜水蒸发拟合优度和RMSE见表3。从表3可见,砂姜黑土、黄潮土裸地均为高斯函数拟合效果最好,拟合优度2均大于0.9,均方根误差均小于0.1,且能表现冻融期潜水蒸发随埋深增大先增后减的规律。故可选用高斯曲线进行该区裸地潜水蒸发的计算。
3.2.2 裸地冻融期潜水蒸发模拟结果
高斯函数型中的参数有着明确的数学含义,拟合结果及参数取值详见表4。拟合参数值为潜水蒸发最大值对应的埋深,从表4可见,砂姜黑土冻融期12—2月潜水蒸发量最大时埋深平均值在0.08 m左右,黄潮土在0.29 m左右。拟合参数值反映曲线陡缓程度,值越大,曲线越平缓。砂姜黑土值平均值约为0.33,黄潮土约为1.26,黄潮土值明显大于砂姜黑土,拟合曲线较平缓,与图3表现规律相一致。
据表4分析裸地情景下2种土壤拟合参数随时间变化规律。值表示峰值,从表4可见,拟合得到的参数值砂姜黑土平均值为1.04,黄潮土为1.07。与图3a中黄潮土的峰值比砂姜黑土的峰值稍大相对应。但还存在一定误差,产生误差的原因是在0~0.4 m埋深所测数据点太少,难以确定真正的峰值。在以后将要开展的试验中,应加测浅埋深的潜水蒸发,从而确定真正的峰值及峰值所对应的具体埋深。从时间上看,2种土壤参数值大致呈先增后减趋势,在1月中旬达最大值。前面也分析到,1月中旬是淮北平原温度最低的时段,表明值的大小与温度呈相反趋势,温度越低值越大。值表示峰值位置,黄潮土各旬拟合得到的参数值比砂姜黑土大,实际中2种土壤具体的峰值位置还有待进一步探寻。值表示曲线陡缓程度,值越大,曲线越平缓。黄潮土各旬拟合得到的参数值比砂姜黑土大,表明黄潮土潜水蒸发随埋深变化较砂姜黑土平缓,与图3a表现出的规律一致,前述解释了产生该特点主要是由土壤质地决定。从时间上看,2种土壤参数值基本平稳,随时间而变化较小,可能由于土壤质地是各种土壤所特有的,短期不随时间改变。
表3 裸地旬潜水蒸发拟合优度和均方根误差比较Table 3 Comparison of goodness of fit and root mean square error of 10-d based phreatic evaporation in bare land
表4 裸地冻融期旬潜水蒸发曲线拟合结果
采用2017—2018年冻融期砂姜黑土和黄潮土裸地各埋深实测潜水蒸发数据与水面蒸发实测数据,对拟合的高斯函数型公式进行验证,具体验证结果见表5。实测值与拟合值间平均相对误差为0.02%~3.53%,表明模型拟合可靠。
3.3.1 模型选择
砂姜黑土和黄潮土小麦6种曲线各月中旬潜水蒸发拟合优度和均方根误差见表6。从表可见,类高斯函数型拟合优度最高(2>0.9),均方根误差最小,且可反映潜水蒸发随埋深先增大后减少的规律,故可选用类高斯曲线进行该区冻融期小麦潜水蒸发计算。
3.3.2 蒸发模拟结果
类高斯函数曲线中的参数有着明确的数学含义,拟合结果及参数取值详见表7。参数值为潜水蒸发最大值对应的埋深,砂姜黑土值均为负,表明潜水蒸发最大值对应的埋深为0 m,潜水蒸发随埋深递减,黄潮土平均值在0.23 m左右。2种土质种植小麦潜水蒸发最大值对应的埋深均小于裸地,主要原因是作物覆盖具有明显保持地温的作用,可减缓土壤水的冻结速度,种植作物区域比裸地晚冻结,且冻结厚度小于裸地,导致有作物时最大值对应的埋深比裸地小。
表5 裸地冻融期旬潜水蒸发实测值与拟合值的平均相对误差
注:—,由于实测值接近0,故未计算相对误差。下同。
Note: —, relative error is not calculated because the measured evaporation is about 0. Same as below.
表6 小麦地冻融期旬潜水蒸发拟合优度和均方根误差比较
表7 小麦冻融期旬潜水蒸发曲线拟合结果
据表7分析种植小麦情景下2种土壤拟合参数随时间变化规律。值表示峰值,从表7可见,拟合得到的参数值砂姜黑土的平均值为0.84,黄潮土为0.81。从时间上看,2种土壤参数值大致呈先增后减趋势,在01月中旬达最大值,与裸地拟合参数值变化规律一致。裸地拟合参数值比种植小麦情景下稍大,与图3b呈现规律一致。值表示峰值位置,黄潮土各旬拟合得到的参数值比砂姜黑土大,与裸地拟合参数值变化规律一致。
采用2017—2018年冻融期砂姜黑土和黄潮土小麦各埋深实测潜水蒸发数据与水面蒸发实测数据,对上述拟合公式进行验证,结果见表8。实测值与拟合值间平均相对误差为0.02%~3.41%,表明采用类高斯模型拟合小麦地潜水蒸发规律的精度较高。
表8 小麦冻融期旬潜水蒸发实测值与拟合值相对误差Table 8 Relative error between measured and fitting value of 10-d based phreatic evaporation in freezing-thawing period of wheat land
1)淮北平原冬季干旱少雨,冻融期(12—2月)多表现为昼融夜冻特征,冻结层较薄。裸地条件下,砂姜黑土和黄潮土潜水蒸发均随埋深的增大呈先增后减趋势,在0.1~0.3 m埋深区间出现最大值,在0~0.1 m埋深区间,随着埋深的增大而增加;在0.3~5.0 m埋深区间,随着埋深的增大而减小。该变化规律与非冻结期裸地潜水蒸发随埋深增大递减规律不一致。
2)种植小麦条件下,砂姜黑土和黄潮土冻融期潜水蒸发随埋深变化规律与裸地一致,不同土质递减速度不同。砂姜黑土0~0.4 m埋深区间与黄潮土0~1.0 m埋深区间小麦潜水蒸发量均比裸地小,主要是因为作物的根系及土壤表层1~2 cm秸秆残留在土壤,对表层土壤形成覆盖,同时播前土地翻耕深度约20~30 cm,切断了上层毛细管,影响毛管水的输送,导致潜水蒸发量小。
3)裸地条件高斯函数拟合效果最好,拟合优度2均大于0.9,均方根误差(root mean square error,RMSE)均小于0.1 mm。砂姜黑土裸地潜水蒸发量最大时的埋深在0.08 m左右,黄潮土在0.29 m左右,潜水蒸发达最大值的埋深主要受冻土层厚度和土质的影响。黄潮土拟合曲线较平缓。
4)种植小麦条件类高斯函数拟合效果最好,拟合优度2均大于0.9, RMSE均小于0.1 mm。砂姜黑土水蒸发最大值对应的埋深为0,黄潮土在0.23 m左右,2种土质种植小麦潜水蒸发最大值对应的埋深均比裸地小,主要是因为作物覆盖对表土层具有明显的保温作用,可减缓土壤水的冻结速度,冻土层厚度变薄,导致有作物时最大值对应的埋深比裸地小。
本文模型较好地反映了淮北平原裸地和冬小麦情景下冻融期潜水蒸发随埋深变化规律,拟合参数意义明确,可直接用于冻融期旬潜水蒸发量的计算。但实际具体峰值位置有待进一步研究,在0~0.4 m埋深所测数据点太少,难以确定真正的峰值,在以后将要开展的试验中,应加测浅埋深的潜水蒸发,从而确定真正的峰值及峰值所对应的具体埋深。
[1] Gong Lebing, Xu Chongyu, Chen Deliang, et al. Sensitivity of the Penman–monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin[J]. Journal of Hydrology, 2006, 329(3) : 620-629.
[2] Unold G, Fank J. Modular design of field lysimeters for specific application needs[J]. Water,Air & Soil Pollution: Focus, 2008, 8 (2): 233-242.
[3] 郝振纯,陈玺,王加虎,等. 淮北平原裸土潜水蒸发趋势及其影响因素分析[J]. 农业工程学报,2011,27(6):73-78. Hao Zhenchun, Chen Xi, Wang Jiahu, et al.Trend and impact factors of evaporation from shallow phreatic groundwater of bare soil on Huaibei Plain in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(6): 73-78. (in Chinese with English Abstract)
[4] 于海龙,姜峰,苏浩. 气象因素对潜水蒸发影响探讨[J].水土保持应用技术,2011(3):24-25. Yu Hailong, Jiang Feng, Su Hao. Influence of meteorological factors on diving evaporation[J]. Technology of Soil and Water Conservation, 2011(3): 24-25. (in Chinese with English Abstract)
[5] 宁娟. 干旱区潜水蒸发规律及土壤水分数据同化研究[D].乌鲁木齐:新疆大学,2017. Ning Juan. Research on Evaporation Rules of Phreatic Water and Data Assimilation of Soil Moisture in Arid Area[D]. Urumchi: Xinjiang University, 2017. (in Chinese with English Abstract)
[6] 贾瑞亮,周金龙,周殷竹,等. 干旱区高盐度潜水蒸发条件下土壤积盐规律分析[J]. 水利学报,2016,47(2):150-157. Jia Ruiliang, Zhou Jinlong, Zhou Yinzhu, et al. Analysis on law of soil salt accumulation under condition of high salinity phreatic water evaporation in arid areas[J]. The Journal of Hydraulic Engineering, 2016, 47(2): 150-157. (in Chinese with English Abstract)
[7] 刘路广,崔远来,冯跃华. 引黄灌区潜水蒸发规律与计算方法研究[J]. 灌溉排水学报,2011,30(3):18-33. Liu Luguang, Cui Yuanlai, Feng Yuehua. Study on phreatic evaporation law and calculation method in yellow river irrigation area[J].Journal of Irrigation and Drainage, 2011, 30(3): 18-33. (in Chinese with English Abstract)
[8] 王振龙,刘淼,李瑞. 淮北平原有无作物生长条件下潜水蒸发规律试验[J]. 农业工程学报,2009,25(6):26-32. Wang Zhenlong, Liu Miao, Li Rui. Experiment on phreatic evaporation of bare soil and soil with crop in Huaibei plain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009,25(6): 26-32.
[9] 毛晓敏,雷志栋,尚松浩,等. 作物生长条件下潜水蒸发估算的蒸发面下降折算法[J]. 灌溉排水,1999, 18(2):26-29. Mao Xiaomin, Lei Zhidong, Shang Songhao, et al.Method of equivalent phreatic evaporation by lowering evaporation surface for estimation of the phreatic evaporation from farmland based on that from bare soil[J]. The irrigation and drainage, 1999, 18(2): 26-29. (in Chinese with English Abstract)
[10] Babajimopoulos C, Panoras A, Georgoussis H, et al. Contribution to irrigation from shallow water table under field conditions[J]. Agricultural Water Management, 2007, 92(3): 205-210.
[11] 习丽丽. EPIC模型在辽宁中部平原区潜水蒸发时空分布计算中的应用研究[J]. 水利技术监督,2018(1):106-109. Xi Lili. Application research of EPIC model in calculation of spatiotemporal distribution of diving evaporation in the central plain of Liaoning Province[J]. Technical Supervision in Water Resources, 2018(1): 106-109. (in Chinese with English Abstract)
[12] 雷志栋,杨诗秀,谢森传. 潜水稳定蒸发的分析与经验公式[J]. 水利学报,1984(8):60-64.
[13] 孔凡哲,王晓赞. 利用土壤水吸力计算潜水蒸发初探[J].水文,1997(3):45-48. Kong Fanzhe, Wang Xiaozan. Using soil water suction for phreatic evaporation evaluation[J]. Journal of Chinese Hydrology, 1997(3): 45-48. (in Chinese with English Abstract)
[14] 史文娟,沈冰,汪志荣,等. 夹砂层状土壤潜水蒸发特性及计算模型[J]. 农业工程学报,2007,23(2):17-20. Shi Wenjuan, Shen Bing, Wang Zhirong, et al. Characteristics and calculation model of phreatic evaporation of sand-layered soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(2): 17-20. (in Chinese with English Abstract)
[15] Kunio Watanabe, Yuki Kugisaki. Effect of macropores on soil freezing and thawing with infiltration[J]. Hydrological Processes,2017,31(2) : 270-278.
[16] Iwata Y, Hirota T, Hayashi M, et al. Effects of frozen soil and snow cover on cold-season soil water dynamics in Tokachi, Japan[J]. Hydrology Process, 2010, 24(13): 1755-1765.
[17] 雷志栋,尚松浩,杨诗秀,等. 地下水浅埋条件下越冬期土壤水热迁移的数值模拟[J]. 冰川冻土,1998,20 (1):52-55. Lei Zhidong, Shang Songhao, Yang Shixiu,et al. Numerical simulation on simultaneous soil moisture and heat transfer under shallow ground water table in winter[J]. Journal of Glaciology and Geocryology, 1998, 20(1): 52-55. (in Chinese with English Abstract)
[18] 尚松浩,雷志栋,杨诗秀,等. 冻融期地下水位变化情况下土壤水分运动的初步研究[J]. 农业工程学报,1999,18 (2):70-74. Shang Songhao, Lei Zhidong, Yang Shixiu, et al. Study on soil water movement with changeable groundwater levei during soil freezing and thawing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1999, 18 (2): 70-74. (in Chinese with English Abstract)
[19] 陈军锋,杨军耀,郑秀清,等. 地下水浅埋条件下单向冻结土壤水热变化试验[J].农业机械学报,2014,45(12):146-151,248. Chen Junfeng, Yang Junyao, Zheng Xiuqing, et al. Variation of soil temperature and moisture under unidirectional freezing with shallow groundwater[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(12): 146-151,248. (in Chinese with English Abstract)
[20] 付强,颜培儒,李天霄,等. 冻融期不同覆盖和气象因子对土壤导热率和热通量的影响[J]. 农业工程学报,2017,33(20):98-105. Fu Qiang, Yan Peiru, Li Tianxiao, et al. Influence of different coverage and meteorological factors on soil thermal conductivity and heat flux during freezing and thawing period[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(20): 98-105. (in Chinese with English Abstract)
[21] Kaneko Takemasa, Kobayashi Tetsuo, Wang Weizhen, et al. Estimating evaporation in winter at a field irrigated late in autumn in Inner Mongolia,China[J]. Journal of the Faculty of Agriculture Kyushu University, 2006, 51(2): 407-411.
[22] Wu Mousong, Huang Jiesheng, Wu Jingwei, et al. Experimental study on evaporation from seasonally frozen soils under various water,soluteand groudwater conditions in Inner Mongolia,China[J]. Journal of Hydrology, 2016, 535: 46-53.
[23] 童菊秀,杨金忠,岳卫峰,等. 冻结期与融解期潜水蒸发系数模拟研究[J]. 灌溉排水学报,2007,26 (2):21-24,40. Tong Juxiu, Yang Jinzhong, Yue Weifeng. Simulative study on groundwater evaporation coefficient in freezing and thawing period[J]. Journal of Irrigation and Drainage, 2007,26 (2): 21-24,40. (in Chinese with English Abstract)
[24] 雷志栋,尚松浩,杨诗秀,等. 土壤冻结过程中潜水蒸发规律的模拟研究[J]. 水利学报,1999(6):8-12. Lei Zhidong, Shang Songhao, Yang Shixiu, et al. Simulation on phreatic evaporation during soil freezing[J].The Journal of Hydraulic Engineering, 1999(6): 8-12. (in Chinese with English Abstract)
[25] 刘佳帅,杨文元,郝培净,等. 季节性冻融区地下水位预测方法研究[J]. 灌溉排水学报,2017,36(6):95-99. Liu Jiashuai, Yang Wenyuan, Hao Peijing, et al. Predicting change of groundwater table in seasonal permafrost[J]. Journal of Irrigation and Drainage, 2017, 36(6): 95-99. (in Chinese with English Abstract)
[26] 梁建财,李瑞平,史海滨,等. 河套灌区覆盖对盐渍土壤养分迁移与分布的影响[J]. 农业机械学报,2016,47(2):113-121. Liang Jiancai, Li Ruiping, Shi Haibin, et al. Effect of mulching on transfer and distribution of salinizated soil nutrient in hetao irrigation district[J].Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(2): 113-121. (in Chinese with English Abstract)
[27] 苗春燕,陈军锋,郑秀清. 冻融期气温与土壤冻融过程的关系研究[J]. 太原理工大学学报,2018,49(3):412-417. Miao Chunyan, Chen Junfeng, Zheng Xiuqing. Relationship between air temperatures and soil freezing-thawing process[J]. Journal of Taiyuan University of technology, 2018, 49(3): 412-417. (in Chinese with English Abstract)
[28] 单小琴,郑秀清.地表覆盖对季节性冻融期土壤水分特征的影响[J]. 水电能源科学,2018,36(7):99-103. Shang Xiaoqin, Zheng Xiuqing. Impacts of surface covering on soil water characteristics during seasonal freeze-thaw period[J]. Water Resources and Power, 2018, 36(7): 99-103. (in Chinese with English Abstract)
[29] 王振龙,章启兵,李瑞. 淮北平原区水文实验研究[M].合肥:中国科学技术大学出版社,2011.
[30] 薛薇. SPSS统计分析方法及应用[M]. 北京:电子工业出版社,2013.
[31] 杨茂,孟玲建,李大勇,等. 基于类3准则的光伏功率异常数据识别[J]. 可再生能源,2018,36(10) :1443-1448. Yang Mao,Meng Lingjian,Li Dayong, et al. Identification of abnormal data of photovoltaic power based on class 3[J]. Renewable Energy Resources, 2018, 36(10): 1443-1448. (in Chinese with English Abstract)
[32] 付强,侯仁杰,李天霄,等. 冻融土壤水热迁移与作用机理研究[J]. 农业机械学报,2016,47(12):99-110. Fu Qiang, Hou Renjie, Li Tianxiao, et al. Soil moisture-heat transfer and its action mechanism of freezing and thawing soil[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(12): 99-110. (in Chinese with English Abstract)
[33] 丁勇. 随机误差对线性回归相关系数的影响[J]. 中国卫生统计,2016,33(6):1063-1065,1067.Ding Yong. Influence of random error on linear regression correlation coefficient[J]. Chinese health statistics, 2016, 33(6): 1063-1065, 1067. (in Chinese with English Abstract)
Phreatic evaporation in bare and wheat land during freezing-thawing period of Huaibei Plain based on lysimeters experiments
Wang Zhenlong1, Yang Miao2, Lü Haishen3, Hu Yongsheng1, Zhu Yonghua3, Gu Nan2, Wang Yining4
(1.,233000,2.211100,3.210098,4.210029,)
This paper was aimed to study phreatic evaporation in Huaibei Plain during freezing-thawing period. The data was collected from long-term experiments at Wudaogou Hydrological Experimental Station from 1990 to 2018. In the experiments, a total of 38 lysimeters were installed. About half of them were planted with winter wheat. The others were bare lands. The soils in lysimeters were typical local soils: undisturbed lime concretion black soil and yellow moist soil. Soil temperature and air temperature were measured. The phreatic evaporation was determined and its relationship with soil depth was fitted with non-linear regression equations. According to the air temperature, the freezing-thawing period in the Huaibei Plain was from December to the next February. During the period, the soil was characterized with freezing at night and thawing during the day. The freezing layer was thin. In bare land, the phreatic evaporation increased firstly with depth and then decreased. The maximum phreatic evaporation occurred in the depth range of 0.1-0.3 m in the both soils. When the depth was smaller than the 0.1 m, phreatic evaporation increased with depth while it decreased with the depth when the depth was higher than 0.3 m. The characteristics of phreatic evaporation in soil profile during the freezing-thawing period was different from that in the period. The change of phreatic evaporation in the wheat land was similar with that in the bare land. However, the phreatic evaporation in the wheat land was smaller than that in the bare land when the depth was smaller than 0.4 m in lime concretion black soil and smaller than 1.0 m in the yellow moist soil. It was because the capillary was probably cut off due to covering on soil surface caused by roots or stalk residues or tillage before sowing, which affected the transport of water along the capillary and caused small phreatic evaporation. There was a peak in the phreatic evaporation curves. Therefore, 3 forms of distribution functions were selected to fit the change of phreatic evaporation with depth. Meanwhile, popular phreatic evaporation equations were compared. The Gaussian function could yield the best simulation for the phreatic evaporation in the bare land with the determination coefficient higher than 0.9 and the root mean square error smaller than 0.1. During the freezing-thawing period, the maximum phreatic evaporation from the lime concretion black soil occurred at 0.08 m below ground surface but at 0.29 m in yellow moist soil below ground surface. For wheat lands, the quasi-Gauss function was the best for constructing phreatic evaporation simulation formula with the determination coefficient higher than 0.9. The maximums of phreatic evaporation from the lime concretion black soil and the yellow moist occurred on the soil surface and 0.23 m below the soil surface, respectively. The soil depth corresponding to maximum phreatic evaporation was smaller in the wheat land than bare land.
freezing; thaw; evaporation; groundwater depth; Huaibei Plain
10.11975/j.issn.1002-6819.2019.13.014
TV213.9
A
1002-6819(2019)-13-0129-09
2018-10-01
2019-05-01
国家重点研发计划课题“湖沼系统生态需水核算及调控技术”(2017YFC0404504);国家自然科学基金项目(41830752、41571015)
王振龙,教授级高工,博士,主要从事水文水资源研究。 Email:skywzl@sina.com
王振龙,杨 秒,吕海深,胡永胜,朱永华,顾 南,王怡宁. 基于蒸渗仪群淮北平原冻融期裸土及麦田潜水蒸发规律研究[J]. 农业工程学报,2019,35(13):129-137. doi:10.11975/j.issn.1002-6819.2019.13.014 http://www.tcsae.org
Wang Zhenlong, Yang Miao, Lü Haishen, Hu Yongsheng, Zhu Yonghua, Gu Nan, Wang Yining. Phreatic evaporation in bare and wheat land during freezing-thawing period of Huaibei Plain based on lysimeters experiments[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(13): 129-137. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.13.014 http://www.tcsae.org