基于混沌类电磁算法优化支持向量机的短期负荷预测

2019-08-13 09:26王茜李皓然王新娜张媛媛
计算技术与自动化 2019年4期
关键词:负荷预测支持向量机

王茜 李皓然 王新娜 张媛媛

摘   要:短期負荷预测准确性对于电网态势感知和电网策略具有十分重要的意义。提出一种基于混沌类电磁学(CEM)优化支持向量机的短期负荷预测方法,该方法利用聚类思想判断数据质量并进行相关数据预处理工作。建立支持向量机的短期负荷预测模型,针对传统支持向量机参数选择困难问题,引入混沌类电磁学算法优化参数,提高算法收敛效率和寻优能力。仿真结果表明:所提算法较传统支持向量机算法和粒子群-支持向量机算法(PSO-SVM)收敛速度更快,寻优能力更强,适用于短期负荷预测。

关键词:负荷预测;类电磁学;支持向量机

中图分类号:TM796                                        文献标识码:A

Short Term Load Forecasting Based on SVM

and Chaos Electromagnetic Algorithm

WANG Qian,LI Hao-ran?覮,WANG Xin-na,ZHANG Yuan-yuan

(Skills Training Center of State Grid Jibei Electric Power Company Limited

(Baoding Electric Power Voc.&Tech. College),Baoding,Hebei 071000,China)

Abstract:The accuracy of short-term load forecasting is very important for power grid situation awareness and power grid strategy. A short-term load forecasting method based on chaotic electromagnetics (CEM) optimization support vector machine (SVM) is proposed. This method uses clustering idea to judge the data quality and preprocess the related data. A short-term load forecasting model of SVM is established. Aiming at the difficult problem of parameter selection of traditional SVM,a new method is introduced. Chaotic electromagnetism algorithm optimizes parameters,and improves the convergence efficiency and optimization ability of the algorithm. Simulation results show that the proposed algorithm has faster convergence speed and stronger optimization ability than the traditional support vector machine algorithm and particle swarm optimization support vector machine (PSO-SVM),and is suitable for short-term load forecasting.

Key words:load forecasting;electromagnetics;support vector machine

猜你喜欢
负荷预测支持向量机
基于高阶BP神经网络的日最大负荷预测
基于改进支持向量机的船舶纵摇预报模型
电力系统短期负荷研究综述
基于SVM的烟草销售量预测
动态场景中的视觉目标识别方法分析
论提高装备故障预测准确度的方法途径
电力系统负荷的一元线性模型预测方法
基于熵技术的公共事业费最优组合预测
基于支持向量机的金融数据分析研究