四边形上一种线性双有理映射构造方法

2019-08-08 08:11:02王旭辉钱毅加
图学学报 2019年3期
关键词:六面体构造方法有理

吴 梦,陈 冲,王旭辉,钱毅加

四边形上一种线性双有理映射构造方法

吴 梦,陈 冲,王旭辉,钱毅加

(合肥工业大学数学学院,安徽 合肥 230009)

作为一种特殊的有理映射,双有理映射可应用于图像变形、等几何分析中区域参数化中。针对文献[1]通过几何方法构造四边形上的双有理映射,需要先确定权值再构造的问题,提出一种基于动直线的方法,可直接构造四边形上的双有理映射。此外,通过选择不同的参数,可以得到四边形上不同的双有理映射。验证可知,该方法满足文献[1]提出的权值比例关系,并通过实例说明了其有效性。

双有理映射;动直线;权值

双有理映射是一种特殊的有理映射,其映射与逆映射均为有理的。具体到二元有理映射情形,给定二元有理映射(,),若其满足:

双有理映射具有形式简单便于计算等特性,且在计算机图形学和几何设计中发挥着重要的作用[2],同时也在图像变形和图像修复上有着广泛的应用[3],HUDSON[4]基于Cremona变换讨论了二维有理映射的数学理论,但具体应用时需要考虑双有理映射的构造问题,这也是十分新颖的问题。近年来,文献[1]针对四边形情形,通过事先对四边形的顶点赋予适当的权值,提出了一种四边形上的双有理映射的构造方法,同时FLOATER[5]又从重心的角度出发,重新解释了在四边形上的双有理映射,并且给出了其逆映射的一般形式。文献[6]通过建立凸六面体的重心坐标,找到了满足特殊条件的权值的构造方法,给出了在凸六面体上的三线性映射为双有理映射。

动直线是由COX等[7]提出的,是一种解决曲面表示与计算的代数工具,在曲线曲面隐式化、坐标参数化以及奇点计算等方面有着广泛的应用[8]。

本文从动直线出发,不需要事先通过对顶点赋权值来构造四边形上的双有理映射,从而直接给出四边形上的一种双有理映射。

1 四边形上的双有理映射

则定义在该四边形上的双线性映射为

一般情况下,该映射不是双有理映射。然而,文献[1]将顶点赋上适当的权值w,通过计算,发现了权值需要满足的关系式,即当权值满足比例关系

猜你喜欢
六面体构造方法有理
DC-DC变换器分层级构造方法
有理 有趣 有深意
今日农业(2021年12期)2021-11-28 15:49:26
一个领导人的“六面体”
商业评论(2021年10期)2021-10-20 09:26:46
《有理数》巩固练习
一种适用于任意复杂结构的曲六面体网格生成算法
数码设计(2018年1期)2018-05-23 02:51:14
新型透空式六面体在南汇东滩促淤二期工程中的应用
中国水运(2017年6期)2017-06-13 07:57:31
圆周上的有理点
基于六面体网格的水下航行体流体动力分析
电子制作(2017年24期)2017-02-02 07:14:27
《梦溪笔谈》“甲子纳音”构造方法的数学分析
几乎最佳屏蔽二进序列偶构造方法