吐哈盆地台北凹陷天然气碳氢同位素组成特征

2019-07-15 00:48倪云燕廖凤蓉龚德瑜焦立新高金亮姚立邈
石油勘探与开发 2019年3期
关键词:乙烷烃源同位素

倪云燕,廖凤蓉,龚德瑜,焦立新,高金亮,姚立邈

(1.中国石油天然气股份有限公司油气地球化学重点实验室,北京 100083;2.中国石油勘探开发研究院,北京 100083;3.中国石油吐哈油田公司勘探开发研究院,新疆哈密 839009)

0 引言

自1979年《成煤作用中形成的天然气与石油》[1]一文发表以来,在煤成气理论的指导下,中国天然气地质储量近40年来有了一个快速的增长。煤成气理论创立之前,1978年中国天然气总储量2 284×108m3(其中煤成气203×108m3),年产气137×108m3(其中煤成气3.43×108m3),至2016年全国天然气总储量118 951.20× 108m3(其中煤成气82 889.32×108m3),年产气1 384× 108m3(其中煤成气742.91×108m3),共发现煤成大气田39个,占全国大气田总数(59个)的66%;其中全国储量最大、年产气量最高的苏里格气田就是煤成气田[2]。随着经济的发展和社会的进步,世界对油气资源的需求不断增加,而随着常规油气已被大量发现,其勘探变得越来越困难,勘探的目标不断向其他高难领域扩展,比如非常规、深层、低熟、高过成熟以及无机成因等各类油气。由于天然气主要由少数简单的低分子量烃类组成,其成因分析主要依靠碳、氢同位素组成特征和组分含量[2]。前人针对天然气成因判识和气源对比,利用天然气碳氢同位素组成进行了一系列卓有成效的研究,这为叠合盆地复杂天然气成因的判识提供了重要的研究手段[3-10]。

吐哈盆地为中国重要的含油气盆地,长期以来被认为是煤成油的典型盆地[11-14],其煤成气勘探始于20世纪90年代初。目前该盆地的天然气勘探工作主要集中在台北凹陷,因此,台北凹陷天然气地球化学特征及成因来源研究对于吐哈盆地天然气勘探意义重大。但对于台北凹陷天然气的成因与来源,一直存在诸多争议,目前主要观点如下:台北凹陷天然气为来自中下侏罗统的低熟煤成气,源岩以西山窑组为主[15-16]、八道湾组为辅或者以八道湾组为主、西山窑组为辅[17];吐哈盆地天然气大多数属于接近油型气的混合气,来自煤系泥岩而非煤层[13];台北凹陷天然气主要为煤成气,但巴喀和鄯善油田的个别井属于生物改造气或混合气[18];丘东次凹致密砂岩气为来自于煤系泥岩的煤成气和混合气,柯柯亚地区煤成气来自于煤系泥岩,而混合气主要来源于西山窑组煤系源岩[19]。对于台北凹陷天然气的成因与来源,目前还没有定论。Ni等[3]根据天然气地球化学特征,结合天然气氢同位素组成研究,认为丘东和红台气田天然气为来自中下侏罗统煤系源岩的煤成气,但没有对台北凹陷其他地区的天然气成因进行详细研究。本文将根据天然气组分、稳定碳同位素组成、稳定氢同位素组成,对台北凹陷巴喀、鄯善、丘陵和温米等油气田天然气成因进行系统分析,深入探讨其成因和来源。

1 区域地质背景

吐哈盆地位于新疆东部,呈东西向展布,是新疆地区3大沉积盆地之一。盆地东西长660 km,南北宽60 km,面积约5.35×104km2。盆地内部构造单元分为东部哈密坳陷、中部了墩隆起和西部吐鲁番坳陷。其中吐鲁番坳陷是盆地的主体坳陷,台北凹陷是吐鲁番坳陷的次一级构造单元,面积为9 600 m2,是主要的侏罗系煤系含油气区(见图1)。盆地中发育石炭系—第四系,最大累计厚度逾9 000 m。其中石炭系—二叠系为海相沉积岩—火山岩组合,三叠系为半深湖—浅湖相沉积,中下侏罗统为半深湖—河流沼泽相含煤沉积,白垩系和第三系为浅湖—河流相沉积[13]。侏罗系在盆地中分布最为广泛,厚度可达4 600 m;其中台北凹陷的侏罗系发育最为齐全(见图2)。吐哈盆地烃源岩主要包括:石炭系—下二叠统海相泥岩、上二叠统和上三叠统黄山街组半深湖—浅湖相泥岩、中下侏罗统八道湾组和西山窑组半深湖-河流沼泽相含煤沉积和中侏罗统七克台组黑色泥岩[11,14,20]。其中中下侏罗统的八道湾组和西山窑组是盆地中最主要的烃源岩层,煤化程度较低,西山窑组顶面Ro值为0.4%~0.9%,多数是成熟源岩,部分为低熟源岩,其下伏下侏罗统成熟度更高,下侏罗统八道湾组是成熟—高成熟源岩[13]。西山窑组暗色泥岩厚达600 m,主体厚度为200~400 m,暗色泥岩TOC值为0.5%~3.6%,煤层厚度为40~60 m,最大厚度可达100 m;八道湾组暗色泥岩厚度为50~300 m,暗色泥岩TOC值为0.5%~3.0%,煤层厚度为40~60 m[11,13]。盆地中三工河组暗色泥岩厚度为50~100 m,三间房组和七克台组暗色泥岩厚度分别为50~200 m和100~200 m[13]。盆地中煤层厚度平均为70~80 m,西山窑组相比八道湾组含煤更多,三工河组、三间房组和七克台组含煤较少或几乎不含煤[13]。

2 样品和测试方法

在吐哈盆地台北凹陷巴喀、鄯善、丘陵和温米等油气田共采集23个天然气样品,另外对比分析了红台气田的12个气样和丘东气田的11个气样[3]。天然气样品的采集采用双阀门高压钢瓶,天然气组分和碳氢同位素组成测试均在中国石油勘探开发研究院完成。天然气组分分析采用Agilent 7890型气相色谱仪,碳同位素组成分析则采用气相色谱-同位素质谱联用仪(GC-IRMS),该装置由一台Thermo Delta V质谱仪和一台Thermo Trace GC Ultra色谱仪连接组成。天然气氢同位素组成分析是在GC/TC/IRMS上进行的,该装置由一台MAT253质谱仪与一台装有温度为1 450 ℃显微热解炉的Trace GC Ultra色谱仪相连接。每个样品至少重复测试2次,碳同位素组成分析精度为±0.3‰,标准为VPDB,氢同位素组成分析精度为±3‰,标准为VSMOW[21]。

图1 吐哈盆地台北凹陷油气田分布图

图2 吐哈盆地台北凹陷侏罗系、中上三叠统地层柱状图

3 天然气地球化学特征

通过对台北凹陷巴喀、鄯善、温米和丘陵等油气田天然气样品的测试分析(见表1),并结合前期对丘东和红台气田天然气的研究(见表2),进一步分析该区天然气的地球化学特征。

3.1 组分特征

台北凹陷巴喀、丘陵、鄯善和温米等地区天然气以烃类气体为主,甲烷含量为65.84%~97.94%,平均为81.29%,重烃气(C2—5)含量为1.55%~34.98%,平均值为18.70%(见表1)。天然气干燥系数(C1/C1—5)为0.66~0.98,平均值为0.81,略低于丘东(干燥系数均值0.83)和红台(干燥系数均值0.85)的天然气,全部为湿气。非烃气体(CO2、N2)含量非常低,只在个别井含微量N2(小于0.04%),未检测到CO2。

3.2 碳同位素组成特征

台北凹陷巴喀、丘陵、鄯善和温米等地区天然气δ13C1值变化范围为-44.9‰~-40.4‰,平均值为-41.6‰;δ13C2值为-28.2‰~-24.9‰,平均值为-26.9‰;δ13C3值为-27.1‰~-18.0‰,平均值为-25.2‰;δ13C4值为-26.7‰~-22.1‰,平均值为-24.9‰;δ13C5值为-25.9‰~-22.5‰,平均值为-24.4‰(见表1)。除了巴喀油田巴23井和柯19井,天然气甲烷及其同系物(C2—C5)基本上表现为碳同位素组成正序排列(δ13C1<δ13C2<δ13C3<δ13C4<δ13C5),这与典型的有机成因烷烃气碳同位素组成特征一致[25]。该区天然气甲烷碳同位素组成总体上与丘东气田(δ13C1均值-41.2‰)的比较相近,而比红台(δ13C1均值-38.4‰)的轻。总体上,巴喀、丘陵、鄯善和温米等4个油气田甲烷碳同位素组成相近,均轻于-40‰,说明天然气成熟度较低,与丘东气田的相近,比红台气田的要低[3]。巴喀油田巴23井和柯19井天然气丙烷和/或丁烷碳同位素组成相对变重,使整个碳同位素组成序列出现部分倒转现象(见图3),表明后期发生次生改造作用。巴喀、丘陵、鄯善和温米等4个油气田乙烷碳同位素组成也都相近,巴喀油田乙烷δ13C均值为-26.5‰,丘陵油田乙烷δ13C均值为-27.8‰,鄯善油田乙烷δ13C均值也为-27.8‰,温米油田乙烷δ13C均值为-26.8‰。温米油田乙烷δ13C值总体上较重,变化范围很小,为-26.4‰~-27.0‰,巴喀油田除了巴23井和柯19井乙烷δ13C值较重外(巴23井δ13C2值为-25.4‰,柯19井δ13C2值为-24.9‰),其余井乙烷δ13C值变化范围很小,-26.7‰~-27.3‰。巴23井和柯19井的丙烷δ13C值也相对较重,巴23井丙烷δ13C值为-18.0‰,柯19井丙烷δ13C值为-23.8‰,均高于其他井。

表1 吐哈盆地台北凹陷巴喀、鄯善、丘陵和温米等油田天然气组分、碳氢同位素组成地球化学特征

表2 吐哈盆地台北凹陷红台和丘东气田天然气组分、碳氢同位素组成地球化学特征

图3 吐哈盆地台北凹陷天然气甲烷及其同系物碳(a)、氢(b)同位素组成分布特征(丘东和红台数据据文献[3])

3.3 氢同位素组成特征

台北凹陷巴喀、丘陵、鄯善和温米等地区天然气δD1值变化不大,为-272‰~-252‰,平均值为-262‰;乙烷氢同位素组成值变化范围稍大,为-236‰~-200‰,平均值为-225‰;而丙烷氢同位素组成值变化范围则更大,为-222‰~-174‰,平均值为-211‰(见表1)。该区天然气甲烷及其同系物(C2、C3)表现为正序排列(δD1<δD2<δD3)(见图3)。

4 天然气成因和来源

台北凹陷巴喀、丘陵、鄯善和温米等地区天然气甲烷及其同系物(C2—C5)整体上表现为正序碳氢同位素组成特征(δ13C1<δ13C2<δ13C3<δ13C4<δ13C5,δD1<δD2<δD3)(见图3),即烷烃气的碳同位素组成随着碳数的增加而更加富集13C,这与典型有机成因烷烃气一致[2]。这是同位素组成动力学分馏效应的结果,即当一个烷基从其母源有机质分离的时候,12C-12C键比12C-13C键弱,所以优先断裂,使得热解产物相对于其高分子母质更加贫13C[26]。根据Whiticar图版[27](见图4)和Bernard图版[28](见图5),研究区天然气样品都落在热成因气区,数据相对比较集中,没有出现与生物气之间的混合现象。与丘东和红台的样品数据相近,有的几乎是重叠。在Whiticar图版中,样品主要落在低成熟的热成因气区,而在Bernard图版中,则主要偏向于Ⅲ型干酪根母质类型。

图4 吐哈盆地台北凹陷天然气甲烷碳(a)、氢(b)同位素

图5 吐哈盆地台北凹陷天然气δ13C1-C1/(C2+C3)图

根据原始有机质类型不同,可以将热成因气划分为煤成气(主要来自于陆相腐殖型有机质)和油型气(主要来自于海相或湖相腐泥型及腐泥-腐殖型有机质)两种类型。煤成气气源岩干酪根类型为Ⅲ和Ⅱ2型,其主要是由相对富集13C的芳香结构及短支链结构组成;油型气则是由烃源岩中Ⅰ和Ⅱ1型干酪根形成,主要由相对富集12C的长链脂肪族结构组成[29]。烃源岩在相同或相近成熟度进行成气作用,腐殖型和腐泥型干酪根在生气过程中,其碳同位素组成均会发生继承作用,致使煤成气甲烷及其同系物比油型气甲烷及其同系物的δ13C值重[30]。乙烷碳同位素组成具有较强的原始母质继承性,尽管也受源岩热演化程度的影响,但受影响程度远小于甲烷碳同位素组成;因此,乙烷碳同位素组成经常被用来作为区别煤成气和油型气的有效指标[30]。目前国内学者主要采用-28‰[31-32]或者-29‰[30,33-34]作为界限值。根据前人的研究成果,Ni等[3]采用-28‰作为煤成气和油型气的界限,指出丘东和红台两气田天然气乙烷碳同位素组成都不低于-27.5‰,属于煤成气。本区天然气乙烷碳同位素组成为-28.2‰~-24.9‰,均值为-26.9‰。除了鄯13-61C井,其乙烷碳同位素组成为-28.2‰,其他井乙烷碳同位素组成都重于-28‰(见图6)。采用-28‰作为煤成气和油型气的界限,根据乙烷碳同位素组成比值,分析认为台北凹陷鄯善、巴喀、丘陵和温米等4个油气田的天然气主要为煤成气。

乙烷碳同位素组成除了主要受母质类型影响外,还会受到烃源岩热演化程度的影响。一般来说,甲烷和乙烷的碳同位素组成随着烃源岩热演化程度的增加而增加[7,29,35],如图6所示,成熟度越高的气样则越落在图版右上方,而成熟度越低的气样则越落在图版的左下方。对于没有经历过次生改造的原生气,如果落在同一个成熟度趋势线上,则可能代表其处于不同热演化阶段,而如果落在不同成熟度趋势线上,则更可能反映其不同源或者后期发生过次生改造。图6出示了前人有关来自Ⅲ型干酪根煤成气的不同类型δ13C1-δ13C2关系[23,36-38]。台北凹陷鄯善、巴喀、丘陵和温米的气样与Sacramento盆地来自Ⅲ型干酪根的气样相似[36],落在同一个成熟度趋势线上,这说明研究区气样属于来自Ⅲ型干酪根的煤成气。与红台的气样相比,研究区部分井气样在图6的落点更偏向右下方,即处在成熟度趋势线的下端位置,与丘东的气样相似,说明这些井气样所代表的烃源岩成熟度更低,这与其组分中含有更多的重烃气即干燥系数更低一些完全对应。因此,台北凹陷鄯善、巴喀、丘陵和温米等4个油气田天然气为成熟度较低的煤成气。中下侏罗统煤系源岩在小草湖凹陷的热演化程度相对于丘东凹陷的要高,这与前人的研究完全一致[3,11]。总体上来说,台北凹陷鄯善、巴喀、丘陵和温米油田天然气成熟度较低,甲烷和乙烷的碳同位素组成也相应较低,与四川盆地须家河组天然气相比[8],在δ13C1-δ13C2图版中明显落在左下方(见图6)。

图6 吐哈盆地台北凹陷天然气δ13C1-δ13C2相关特征

利用Dai等[39]的δ13C1-δ13C2-δ13C3图版(见图7),研究区气样也都主要落在煤成气区,这与红台和丘东的气样相似。巴23和柯19井气样在图6中明显偏离了δ13C1-δ13C2成熟度曲线,巴23井在图7中也落在煤成气区域外。这两口井的丙烷和丁烷之间的碳同位素组成都发生了倒转(δ13C3>δ13C4)。许多因素可能都会导致烷烃气碳同位素组成系列倒转,比如混合、生物降解等[25]。巴23井和柯19井则符合生物降解成因,主要有以下4点原因:①巴23井(埋深1 174.0~1 180.0 m、1 854.6~1 876.2 m、1 901.8~1 916.0 m和1 930.0~1 951.2 m)储集层埋藏深度比较浅,在2 000 m以浅,地层温度一般低于80 ℃,生物活性强,容易发生生物降解作用;②除了柯21C井为干气外,研究区其余22口井气样中, 巴23井和柯19井C2—5重烃含量是最低的,其中巴23井C2—5含量为10.92%,柯19井C2—5含量为7.16%;研究区剩余20口井气样C2—5含量则为12.67%~34.15%,平均为20.50%,明显高于巴23井和柯19井。巴23井和柯19井的C3—5重烃含量则更低,其中巴23井C3—5含量为2.54%,柯19井C3—5含量为0.75%;研究区剩余20口井气样(除了柯21C井为干气)C3—5含量则为4.87%~17.31%,平均为9.86%,明显高于巴23井和柯19井。③巴喀油田7口井中,巴23井和柯19井的乙烷和丙烷δ13C值明显偏重。巴23井乙烷和丙烷δ13C值分别为-25.4‰和-18.0‰,柯19井乙烷和丙烷的δ13C值分别为-24.9‰和-23.8‰,而巴喀油田其余5口井乙烷和丙烷的均值分别为-27.0‰和-25.2‰。④巴喀油田7口井中,巴23井和柯19井的甲烷碳同位素组成明显偏轻。巴23井和柯19井的甲烷δ13C值分别为-44.9‰和-42.3‰,而其余5口井甲烷δ13C均值为-41.0‰。在生物降解过程中细菌会优先氧化12C-12C键,使得剩余组分富集13C,从而使其δ13C变重。菌种不同,被氧化降解的组分也不同,比如存在丙烷氧化菌,天然气中丙烷就优先被降解消耗,致使剩余丙烷的δ13C值变重,组分变轻[29];同时,生物降解过程中还可以产生以甲烷为主的、碳同位素组成偏轻的次生生物气。因此,推断巴23井和柯19井发生重烃生物降解作用,导致其重烃含量降低,重烃碳同位素组成偏重,丙烷和丁烷之间发生碳同位素组成倒转,甲烷碳同位素组成偏轻。巴喀油田离盆地北缘主要供水区最近,且断裂发育。储集层埋藏较浅,地下水活动和地表水渗入都会破坏油气藏,对烃类进行改造[18]。巴23井气藏埋藏最浅,为1 174~1 951 m,最容易遭受地下水活动和地表水渗入导致的生物降解。根据台北凹陷地表温度为20 ℃,地温梯度为2.3 ℃/100 m,则巴23井对应的储集层温度为47~65 ℃[40]。考虑到地质历史过程中可能存在地层抬升,该储集层温度完全适宜细菌活动,不构成限制因素。另外,天然气中丙烷、丁烷和戊烷碳同位素组成倒转最明显,甲烷碳同位素组成也比其他探井天然气偏轻(见表1、图3),充分表明该天然气确实遭受了生物降解。这一认识与前人研究结果一致[40-41]。

图7 吐哈盆地台北凹陷天然气δ13C1-δ13C2-δ13C3分布特征

甲烷碳同位素组成随烃源岩成熟度增加而变重,δ13C1与Ro之间存在对数线性相关性,但这种δ13C1-Ro成熟度模型有一定的适用范围,比如成熟度范围、地域范围、母质类型等[11,23,42]。吐哈盆地台北凹陷天然气尽管属于煤成气,但是成熟度较低,因此本文采用戴金星和戚厚发[23]、沈平等[22]、王昌桂等[11]、刘文汇和徐永昌[24]的δ13C1-Ro成熟度计算公式对研究区天然气进行Ro的计算,其计算结果Ro平均值分别为0.31%、0.65%、0.69%、0.70%(见表1)。戴金星和戚厚发[23]和沈平等[22]的δ13C1-Ro关系式反映了长期连续演化的煤成气特征,前者体现的主要为高演化阶段,而后者则更反映了低演化阶段煤成甲烷碳同位素组成分馏特征[24,43]。在高演化阶段,煤成甲烷碳同位素组成比油型甲烷的重;但有研究指出,低演化阶段煤成甲烷的碳同位素组成并不一定比油型甲烷的重[22],说明不同演化阶段的煤系成气机制可能不同[24]。因此,刘文汇和徐永昌[24]提出了煤系甲烷的二阶段碳同位素组成分馏模式,即煤系成气过程中,早期主要为脂肪侧链降解为主,其形成的煤成气δ13C也较轻,后期主要为芳香核缩聚作用,形成的煤成气δ13C则较重。王昌桂等[11]的计算公式则是基于吐哈盆地天然气而推导的。不同的关系式具有不同的适用范围,王昌桂等[11]和刘文汇和徐永昌[24]的δ13C1-Ro关系式得出的Ro均值相似,分别为0.69%和0.70%。王昌桂等[11]的δ13C1-Ro关系式主要是基于吐哈盆地天然气归纳总结的,理论上该关系式计算的Ro值应该最接近于实际值。但δ13C1-Ro关系式准确度在很大程度上依赖于所统计的样品,王昌桂等[11]当时统计的气井深度主要都在3 000 m以浅,埋深超过3 000 m的气井较少,这在一定程度上可能会导致其δ13C1-Ro关系式所计算的Ro值低于实际值。在吐哈盆地4套烃源岩中,中下侏罗统西山窑组和八道湾组为半深湖-河流沼泽相含煤沉积,被认为是台北凹陷内煤成气的主要气源岩[3,11,13]。研究区西山窑组顶部的现今Ro值约为0.4%~0.9%,八道湾组顶部的现今Ro值约为0.6%~1.0%,已经进入生烃门限,具备大量生烃的条件[11,13]。西山窑组暗色泥岩在全盆地都有分布,厚度一般为200~400 m,煤层厚度一般为40~60 m,八道湾组暗色泥岩厚度一般为50~200 m,煤层厚度一般为40~60 m[11,13]。西山窑组暗色泥岩TOC值平均为1.51%,热解生烃潜量(S1+S2)平均值为1.84 mg/g,八道湾组暗色泥岩TOC值平均为2.08%,(S1+S2)值平均为3.79 mg/g;从全盆地来看,煤显微组分中镜质组含量60%~80%,壳质组含量小于10%,惰质组含量为10%~40%,其中西山窑组煤层TOC值平均为62.07%,(S1+S2)平均值为154.14 mg/g,八道湾组煤层TOC值平均为68.35%,(S1+S2)值平均183.43 mg/g,总体上台北凹陷西山窑组和八道湾组煤系烃源岩的TOC值和热解生烃潜量都明显高于全盆地平均值,具有较好的生烃潜力[13]。两套烃源岩在研究区也均有分布,生烃潜力都较大,热演化程度匹配,综合认为其为研究区天然气的主要气源岩。

5 天然气氢同位素组成及地质意义

在所有元素中,氢的两种稳定同位素组成(H:99.985%;D:0.015%)之间的相对质量差最大,导致了氢具有最大的稳定同位素组成比值变化范围[44-45]。成熟阶段的天然气甲烷碳同位素组成变化范围从-50‰到-20‰,而甲烷氢同位素组成的变化范围可以从-250‰到-150‰[46];因此,氢同位素组成由于具有更大的变化范围,相比较碳同位素组成,其变化增量更大,对同一环境地球化学变化的反应也相对更加灵敏。前人已经针对油气中的氢同位素组成开展了一系列卓有成效的研究[7-8,10,29,46-50],指出天然气氢同位素组成除了受到烃源岩热演化程度的影响外,还受到水介质条件的影响。海相和咸水湖相环境下形成的生物甲烷氢同位素组成一般重于-190‰[7]或-200‰[51],而陆相淡水环境下形成的生物甲烷氢同位素组成则轻于-190‰[7]或-200‰[51]。煤成甲烷氢同位素组成也具有类似特征,其主要取决于水介质性质,即随水介质盐度的增加,煤成甲烷的氢同位素组成变重[9]。研究区天然气甲烷的氢同位素组成都比较轻,小于-200‰。但巴喀油田天然气甲烷的氢同位素组成总体上比鄯善、丘陵和温米的偏重,大于-260‰,与红台地区相当,而鄯善、丘陵和温米等油田天然气甲烷氢同位素组成则与丘东气田的相当,均小于-260‰(见图8b)。这与中下侏罗统煤系源岩在台北凹陷的形成环境可能存在水体局部咸化有关[52],与烃源岩热演化程度关系不大,其甲烷碳氢同位素组成之间相关性不强。总体上来说,研究区天然气甲烷氢同位素组成反映的烃源岩形成环境具备陆相淡水环境特征;中国其他类似地区,比如以松辽为代表的煤成甲烷氢同位素组成为-257‰~-217‰,属于陆相淡水—微咸水沼泽成煤环境[9]。吐哈盆地中下侏罗统煤系源岩主要为淡水湖沼沉积,没有发生过海水入侵,可能只在巴喀地区发生过水体局部咸化[11,52],因此研究区天然气甲烷氢同位素组成(δD1)均小于-250‰,比松辽的煤成甲烷氢同位素组成要轻。

台北凹陷天然气甲烷在碳氢同位素组成上存在一定的差异。总体上来说,红台气田天然气甲烷的碳氢同位素组成相对偏重,丘东、鄯善、巴喀、丘陵和温米等4个油气田天然气甲烷碳氢同位素组成则相对偏轻,但其中巴喀气田天然气甲烷的氢同位素组成与红台气田的类似。这主要是因为中下侏罗统煤系源岩在小草湖凹陷的热演化程度相对于丘东凹陷的要高,因此,红台气田天然气的成熟度相对要高,其碳氢同位素组成也相应偏高[3,11]。巴喀油田甲烷氢同位素组成与红台气田的相似,则主要与中下侏罗统煤系源岩在台北凹陷的形成环境存在水体局部咸化有关[11,52]。

图8 吐哈盆地台北凹陷天然气甲烷和乙烷碳同位素组成(a)和氢同位素组成(b)的线性相关性

研究区甲烷和乙烷的碳同位素组成和氢同位素组成之间都各自具有较好的相关性,比如δ13C1-δ13C2的线性相关系数R2为0.717 4(不包含巴23井和柯19井),δD1-δD2的线性相关系数R2为0.816 5(不包含巴23井和柯19井)(见图8)。这是由于随着烃源岩热演化程度的增加,甲烷和乙烷的碳氢同位素组成都逐渐变重,并呈现线性相关性(成熟度趋势线)[26,40]。随着烃源岩热演化程度的逐渐增加,甲烷和乙烷之间的碳氢同位素组成差值也将逐渐变小,在高过成熟阶段甚至可能发生倒转现象,其分别与甲烷的碳氢同位素组成之间呈现线性相关性。除了巴23井和柯19井外,鄯善、丘陵、巴喀、温米、红台和丘东等地区天然气δ13C1-δ13C2—1(δ13C2—1表示δ13CC2H6—CH4)之间有着很好的线性相关性(R2=0.912 6)(见图9a),说明随着烃源岩热演化程度的增加,甲烷和乙烷之间的碳同位素组成差异变得越来越小。但随着烃源岩热演化程度的增加,甲烷和乙烷之间的氢同位素组成差异并没有变得越来越小,两者之间没有相关性(见图9b)。如果与碳同位素组成相似,烃源岩热演化程度为天然气氢同位素组成的主要影响因素,则随着烃源岩热演化程度的增加,δD2-1(δD2—1表示δDC2H6—CH4)与δD1之间将具有线性相关性。结合图8b中δD1与δD2之间具有较好的线性相关性(R2=0.816 5),但图9b中δD2—1与δD1之间的相关系数R2为0.071,认为天然气氢同位素组成虽然受到烃源岩热演化程度的影响,但烃源岩热演化程度不是唯一的影响因素。研究发现,自然界中,水介质条件对天然气氢同位素组成具有较强的影响[7,51,53]。海相和咸水湖相环境下形成的生烃母质氢同位素组成远重于陆相淡水环境下的;另外,由于成岩过程中的同位素组成交换反应,水介质条件也会影响生烃母质氢同位素组成,但天然气形成过程中,水介质条件对其氢同位素组成的影响相对较小[53]。这可能是导致甲烷和乙烷之间的氢同位素组成差异与烃源岩热演化程度之间没有线性相关性的重要原因。

图9 吐哈盆地台北凹陷甲烷与乙烷之间的碳氢同位素组成差异(δ13C2—1表示δ13CC2H6—CH4,δD2—1表示δDC2H6—CH4,

尽管天然气氢同位素组成可以反映许多地质过程的重要特征,但是,野外地质样品中氢同位素的解释可能存在一系列的不确定性。比如,与水[54]和/或黏土[55]之间的同位素交换、热成熟过程[56-57]、生物降解[58]、水洗以及运移等都会严重改变氢同位素比值。本文通过对吐哈盆地台北凹陷巴喀、鄯善、丘陵和温米等油气田天然气的研究,证实研究区天然气氢同位素受到烃源岩热演化程度和烃源岩形成环境水介质条件的影响。可见,甲烷氢同位素组成这一指标可以应用到有关烃源岩形成环境水介质条件的判识研究中。总体上,陆相淡水湖沼条件下形成的甲烷氢同位素组成较轻,在研究区甲烷δD均小于-250‰。而由海相或者海陆交互相烃源岩形成的甲烷,其氢同位素组成普遍偏重,比如,四川盆地须家河组天然气也为来自煤系烃源岩的煤成气,但其甲烷氢同位素组成相对较重(δD1值为-155‰~-173‰),这可能与其海陆交互相背景下存在海水咸化有关[8]。

6 结论

根据吐哈盆地台北凹陷巴喀、鄯善、丘陵和温米等油气田23个天然气样品的组分和碳氢同位素组成数据分析,结合前人研究成果和区域地质背景,指出研究区天然气以烷烃类气体为主,甲烷含量为65.84%~92.84%,几乎不含非烃气体(N2、CO2),属于湿气。根据δ13C1-Ro计算公式,天然气成熟度Ro均值为0.7%。研究区天然气δ13C2值为-28.2‰~-24.9‰,属于成熟度比较低的煤成气,主要来自中下侏罗统煤系源岩。天然气甲烷及其同系物(C2—5)基本上为碳氢同位素组成正序排列(δ13C1<δ13C2<δ13C3<δ13C4<δ13C5、δD1<δD2<δD3),与典型的有机成因烷烃气碳氢同位素组成特征一致,没有遭受后期的次生改造,但巴喀油田巴23井和柯19井天然气为生物改造气,其重烃碳同位素组成偏重,丙烷和丁烷之间发生碳同位素组成倒转。研究区天然气甲烷δD较轻,小于-250‰,表明其烃源岩形成环境为陆相淡水湖沼相沉积,没有发生海水入侵事件。

致谢:本文写作过程中,得到戴金星院士和陈建平教授的悉心指导,样品采集得到邹才能院士和吐哈油田金颖、余进之、周国兵、余飞等主任的帮助,样品分析得到中国石油勘探开发研究院米敬奎教授、张文龙博士的帮助,在此一并表示诚挚感谢!

猜你喜欢
乙烷烃源同位素
苏北盆地金湖凹陷三河次凹有效烃源岩评价
二氧化碳对乙烷燃烧着火延迟时间的影响
巴布亚盆地烃源岩分布及生烃潜力评价
中美乙烷贸易与运输发展趋势
2-(2-甲氧基苯氧基)-1-氯-乙烷的合成
东濮凹陷西南部晚古生代—早新生代烃源研究
《同位素》变更为双月刊暨创刊30周年征文通知
中国近海湖相优质烃源岩形成的主要控制因素
《同位素》(季刊)2015年征订通知
硼同位素分离工艺与生产技术