于仲安 葛庭宇 何俊杰
摘 要: 针对传统的零电压(ZVS)、零电压零电流(ZVZCS)移相全桥变换器的各种缺陷以及实际参数选取困难的问题,采用一种改进型零电压移相全桥软开关变换器,即在原边钳位两个超快恢复二极管与一隔直电容来降低副边电路的寄生震荡以防止变压器进入磁饱和,为进一步提高变换器的效率,副边采用全波整流。对所设计的电路进行细致的原理分析,给出若干关键值的优化计算过程,并以UC3875作为控制芯片,通过saber仿真验证理论分析的合理性,结果表明电路在实现软开关的同时也抑制了副边整流器件的电压应力,证明了所提优化方案的可靠性。
关键词: 软开关变换器; 移相全桥变换器; 零电压开关; 电压应力; 全波整流; 优化计算
中图分类号: TN710?34; TM743 文献标识码: A 文章编号: 1004?373X(2019)13?0161?04
Optimization design and simulation of ZVS phase?shifted full?bridge converter
YU Zhongan, GE Tingyu, HE Junjie
(School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou 341000, China)
Abstract: Aiming at the defects of traditional zero voltage (ZVS) and zero voltage zero current (ZVZCS) phase?shifted full?bridge converters, and difficulties in selecting actual parameters, an improved ZVS phase?shifted full?bridge soft?switching converter is used. In the primary side, two ultrafast recovery diodes and a DC blocking capacitor are clamped to reduce the parasitic oscillation of the secondary circuit and prevent the transformer from entering its magnetic saturation. In order to further improve the efficiency of the converter, full?wave rectification is adopted in the secondary side. A detailed principle analysis is performed for the designed circuit. The optimization calculation process of several key values is given. The rationality of the theoretical analysis is verified by Saber simulation by taking UC3875 as the control chip. The results show that the voltage stress of the secondary side rectifying device is suppressed while the soft switch is realized in this circuit, which proves the reliability of the proposed optimization scheme.
Key words: soft?switching converter; phase?shifted full?bridge converter; zero?voltage switching; voltage stress; full?wave rectification; optimized calculation
0 引 言
移相全桥软开关变换器因其效率高、发展比较成熟、控制相对简单以及高频化和轻量化,常应用于中大功率场合[1?3]。目前软开关技术的实现主要有两种方法:一是ZVZCS,即超前臂实现零电压开通与滞后臂实现零电流关断;二是ZVS,即四个开关管均实现零电压开通。实现ZVZCS的关键在于变压器原边电流的复位,最初采用在原边串联一隔直电容与饱和电感,利用隔直电容提供复位电压,这使得滞后臂电压应力变大,而饱和电感则将原边电流钳位在零,但由于其损耗较大而仅限于中小功率场合[4]。通过给滞后臂开关管串联二极管来阻止原边电流反向,但却无法避免导通损耗[5]。
当前应用的ZVS技术普遍存在磁通不平衡、效率低下、占空比丢失严重等缺点[6?8]。通过在桥臂上附加谐振电路[9?11]或者把全桥改为半桥[12]可减小占空比的丢失,并能在负载较大的范围内实现ZVS,但原邊有环流且半桥电路效率较低。对于副边整流电路,二极管在正负半周期换流的过程中其寄生电容与原边电感发生谐振,再加上其反向恢复特性,导致应力急剧增大。一般采用的抑制方法有RCD缓冲电路、有源钳位电路[13]、副边双谐振电路,但仍有能量消耗在电阻上或者需要另加复杂的驱动电路,而副边双谐振电路只有电容滤波,与传统的LC滤波相比,在速度和效果上欠佳。
基于以上分析,本文设计通过在ZVS移相全桥变换器的原边串联一合适电容防止变压器因磁通不平衡而引起饱和,再附加一对钳位二极管将副边寄生震荡产生的能量回馈至原边。不仅能够抑制震荡和电压尖峰,而且结构简洁方便易于实现,最后通过仿真验证了所提电路以及参数选取的合理性。
1 电路结构及工作原理
图1为主电路拓扑,与传统的ZVS电路相较,多了隔直电容[Cb]与钳位二极管[Da1],[Da2],其中,[Lr]为谐振电感与漏感之和,副边采用全波整流。
2 关键参数的计算与选取
基于上述分析,电路基本参数的选取为:输入直流电压[Uin=390 V-410 V];输出电压[Uo=50] V;输出功率[Po=1 kW];效率[η=0.93];开关频率[fs=100] kHz;开关管选用IRF460型MOSFET;输出整流二极管选取MUR3060超快恢复型;变压器变比[n=7];最大占空比[Dmax=0.9]。由AP法计算采用EE42型磁芯。
2.1 死区时间与谐振电路的设计
从理论上讲,死区时间的设置不能一概而论,超前臂与滞后臂的工作状态不同,有着不同的设置方法。一般来讲死区时间需大于下降延迟时间和下降时间[td(off)+tf]。通过IRF460的手册可知两者之和为228 ns,为保险起见设置为[tdead=]500 ns。
2.2 输出滤波电路的设计
3 仿真结果分析
采用TI的UC3875作为主电路控制芯片,在saber中搭建电路代入以上参数进行仿真。图3分别为超前臂和滞后臂的驱动波形与开关管电压波形,可以明显看出在开通驱动信号来临之前MOS管压降已经降为零。
图4分别为超前臂和滞后臂的软开关波形,从图中可知MOS管电压降为零一段时间后电流才开始上升,零电压开通效果完全实现。零电压关断近似实现,极大地降低了开关管的损耗。
4 結 论
本文通过综合考虑传统的ZVS与ZVZCS移相全桥的各种不足之处,采用改进型拓扑加以分析,并对其主要参数进行优化设计。仿真结果表明,本文的优化设计能很好地实现软开关,降低副边整流电路的震荡应力,在降低电路损耗的同时也延长了电路的使用寿命,具有相应的工程价值以及参考性。
参考文献
[1] 张强,林维明,徐玉珍.一种用耦合电感实现零电压零电流开关的移相全桥变换器[J].电工技术学报,2016,31(21):142?149.
ZHANG Qiang, LIN Weiming, XU Yuzhen. Phase?shifted full?bridge converter with zero?voltage zero?current switching using coupled inductors [J]. Transactions of China electrotechnical society, 2016, 31(21): 142?149.
[2] 程实,郭育华,余璞.基于充电机的3 kW移相全桥变换器[J].电力电子技术,2016,50(3):88?90.
CHENG Shi, GUO Yuhua, YU Wei. 3kW phase?shifted full?bridge converter based on charger [J]. Power electronics, 2016, 50(3): 88?90.
[3] 程琼,刘潇.移相全桥ZVZCS DC/DC变换电路的PSpice仿真研究[J].电源技术,2015,39(3):588?590.
CHENG Qiong, LIU Xiao. PSpice simulation of phase?shifted full?bridge ZVZCS DC/DC converter circuits [J]. Power techno?logy, 2015, 39(3): 588?590.
[4] 马昆林,闫昌盛.带饱和电感的移相控制ZVS全桥变换器研究[J].计算机仿真,2014,31(7):229?233.
MA Kunlin, YAN Changsheng. Phase shift control with saturated inductors for ZVS full?bridge converters [J]. Computer simulation, 2014, 31(7): 229?233.
[5] 左鹏,李红,刘伟志,等.铁路空调客车8 kW充电机的研制[J].中国铁道科学,2010,31(2):137?140.
ZUO Peng, LI Hong, LIU Weizhi, et al. Development of an 8 kW charger for railway air?conditioned passenger cars [J]. China railway science, 2010, 31(2): 137?140.
[6] 殷文贵.移相全桥ZVS变换器研究[D].上海:上海交通大学,2012.
YIN Wengui. Research on phase?shifted full?bridge ZVS converter [D]. Shanghai: Shanghai Jiaotong University, 2012.
[7] 胡红林,李春华,邵波.移相全桥零电压PWM软开关电路的研究[J].电力电子技术,2009,43(1):12?14.
HU Honglin, LI Chunhua, SHAO Bo. Phase?shifted full?bridge zero?voltage PWM soft?switching circuit research [J]. Power electronics, 2009, 43(1): 12?14.
[8] 唐建山,林国庆.脉宽调制DC/DC全桥变换器软开关技术的研究[J].电工电气,2009(4):37?40.
TANG Jianshan, LIN Guoqing. Research on soft?switching technology of pulse?width modulation DC/DC full bridge converter [J]. Electrician, 2009 (4): 37?40.
[9] 陈仲,李梦南,汪洋.ZVS全桥变换器辅助网络技术的比较研究[J].电工技术学报,2015,30(22):89?99.
CHEN Zhong, LI Mengnan, WANG Yang. Comparative study of auxiliary network technology for ZVS full?bridge converters[J]. Transactions of China electrotechnical society, 2015, 30(22): 89?99.
[10] 张欣,陈武,阮新波.一种辅助电流可控的移相全桥零电压开关PWM变换器[J].电工技术学报,2010,25(3):81?88.
ZHANG Xin, CHEN Wu, RUAN Xinbo. Phase?shifted full?bridge zero?voltage switching PWM converter with auxiliary current controllable [J]. Transactions of China electrotechnical society, 2010, 25(3): 81?88.
[11] CHEN Z, JI B, JI F, et al. A novel ZVS full?bridge converter with auxiliary circuit [C]// Proceedings of 25th Annual Applied Power Electronics Conference and Exposition. Palm Springs: IEEE, 2010: 1448?1453.
[12] ZHANG J M, XIE X G, WU X K, et al. Comparison study of phase?shifted full bridge ZVS converters [C]// PESC Record?IEEE Annual Power Electronics Specialists Conference. New York: IEEE, 2004, 1: 533?539.
[13] 刘松斌,费跃,段志伟.新型移相全桥零电压开关PWM变换器[J].电工技术学报,2011,26(1):1?7.
LIU Songbin, FEI Yue, DUAN Zhiwei. A novel phase?shifted full bridge zero voltage switching PWM converter [J]. Transactions of China electrotechnical society, 2011, 26(1): 1?7.