李书先, 蒲石林, 邓 飞, 王 丽, 胡 慧, 廖 爽, 李 武, 任万军
不同生态条件下氮肥优化管理对杂交中稻稻米品质的影响*
李书先, 蒲石林, 邓 飞**, 王 丽, 胡 慧, 廖 爽, 李 武, 任万军**
(四川农业大学农学院/农业部西南作物生理生态与耕作重点实验室 温江 611130)
在四川省温江和射洪试验点, 采用单因素随机区组试验设计, 以‘F优498’水稻品种为试验材料, 研究了不同氮肥处理[普通尿素优化施肥、减氮15%优化施肥、增氮15%优化施肥, PASP(聚天门冬氨酸)尿素1次施肥、2次施和优化施肥]对稻米品质的影响。结果显示, 温江的碾米品质、外观品质和籽粒粗蛋白含量较优; 射洪的峰值黏度和崩解值较高, 消减值较低, 蒸煮食味品质较好, 同时直链淀粉含量较高。随着氮肥的施用, 稻米碾米品质、直链淀粉含量和籽粒粗蛋白含量显著提高, 崩解值显著降低; 同时导致射洪生态点的峰值黏度增加, 消减值减少; 温江生态点的稻米外观品质变优, 峰值黏度减小, 消减值增加。较农民经验性施肥处理, 普通尿素优化处理和PASP尿素处理提高了直链淀粉含量和籽粒粗蛋白含量, 降低了温江垩白粒率和垩白度, 改善了外观品质; 氮肥优化处理降低了峰值黏度和崩解值, 提高了消减值, 使稻米蒸煮食味品质变差, 同时提高了射洪精米率和温江整精米率。较优化施肥处理, PASP尿素处理降低了两试验点的精米率、整精米率和温江垩白粒率, 增加了射洪的垩白粒率和垩白度, 使外观品质变差; 同时PASP尿素1次施肥和2次施肥处理降低了直链淀粉含量和籽粒粗蛋白含量; PASP尿素优化施肥处理降低了两试验点的峰值黏度、崩解值和温江直链淀粉含量, 提高了两试验点的籽粒粗蛋白含量和射洪直链淀粉含量。较优化施肥处理, 减氮15%和增氮15%优化施肥处理降低了两试验点的直链淀粉含量、整精米率及温江垩白粒率, 增加了射洪垩白粒率和垩白度。与PASP尿素1次和2次施肥相比, PASP尿素优化施肥显著降低了垩白度、峰值黏度和崩解值, 增加了消减值和籽粒粗蛋白含量; 同时导致射洪生态点的整精米率降低, 垩白粒率和直链淀粉含量增加; 温江生态点的垩白粒率降低, 整精米率增加。综合稻米碾米品质、外观品质、淀粉RVA、直链淀粉含量和籽粒粗蛋白含量的关系, 射洪PASP尿素2次施肥处理稻米综合品质较好, 温江优化施肥处理稻米综合品质较好。
水稻; 生态条件; 氮肥管理; PASP尿素; 稻米品质
随着生活水平的提高, 水稻优质生产逐渐成为我国水稻(L.)栽培研究的热点[1]。氮素是影响水稻生长发育最敏感的因素之一, 是水稻产量与品质形成的有力保障, 合理的氮素施用是改善稻米品质的关键[2-4]。为探讨氮素对稻米品质的影响, 前人已做了大量研究。已有研究表明, 适当增施氮肥有利于营养品质和加工品质的提高, 但高氮往往导致稻米垩白面积增加, 稻米外观和蒸煮食味品质变劣[5-8]。稻米糙米率、精米率、整精米率、最高黏度和崩解值随施氮量的增加而增加, 垩白粒率、垩白度和消减值则随施氮量的增加而降低[9]。适当氮肥后移可以提高整精米率、稻米蛋白质含量和消减值, 降低最高黏度和直链淀粉含量[10-12]。聚天门冬氨酸(PASP)是一种氨基酸聚合物, 天然存在于蜗牛和软体动物壳内, 是生物降解性好的环境友好型肥料增效剂。通过工业合成, PASP尿素逐渐被开发出来。本课题组前期研究表明, PASP尿素能提高叶片光合潜力, 促进水稻干物质生产; 调节叶片氮素代谢, 提高水稻氮素积累; 提高单位面积有效穗数来提高籽粒库容量(单位面积群体颖花量), 进而提高水稻产量; 同时PASP尿素还能有效调节稻田氮素供给平衡, 进而促进水稻对氮素的吸收[13-14]。但其对于稻米品质的影响鲜有报道。为此, 本研究选取四川省具有代表性的射洪(丘陵区, 低土壤肥力)和温江(平原区, 高土壤肥力)为试验点, 研究了普通尿素优化施肥和PASP尿素对稻米品质的影响, 以期为四川省不同生态稻区稻米品质改良提供理论和实践依据。
试验于2013年分别在四川省射洪县和温江区进行。射洪县地处四川盆地中部丘陵区, 试验田为冬水田; 温江地处成都平原, 前茬作物为小麦(L.)。各试验点气象资料和供试土壤肥力见图1[14]和表1[14], 具体数据由射洪和温江气象局提供和测定所得。供试材料为四川农业大学水稻研究所选育的杂交中籼稻‘F优498’。供试普通尿素(含氮率46%)和PASP尿素(含氮率46%)均由四川美青氰胺有限责任公司提供。
图1 温江和射洪试验点水稻生育期主要气象资料[14]
表1 温江和射洪试验点0~30 cm土壤基础肥力
各试验点采用单因素随机区组试验设计, 以不施氮肥为主对照(CK), 设4种普通尿素施肥处理:农民经验性施肥(FFP1)、优化施肥(ONM1)、减氮15%优化施肥(ONM-N1)、增氮15%优化施肥(ONM+N1), 其中农民经验性施肥(FFP1)为副对照; 3种PASP尿素施肥处理: 1次施肥(PASPT1)、2次施肥(PASPT2)、PASP尿素优化施肥(ONM2), 共8个处理, 氮肥施用量和施用时期见表2。每个处理重复3次, 共24个小区, 各小区面积10 m × 3 m = 30 m2。施P2O590 kg∙hm-2, K2O 180 kg∙hm-2, 磷肥用作底肥一次性基施, 钾肥按基肥∶促花肥= 5∶5施用。采用旱育秧方式培育壮秧, 分别于4月30日(射洪)和5月19日(温江)移栽, 移栽秧龄为35 d, 采用单苗优化定抛[15], 移栽行穴距为26.7 cm× 16.7 cm。统一采用高效灌溉技术, 前期湿润或浅湿交替灌溉促分蘖, 并适时晒田; 中期浅水灌溉促大穗; 后期干湿交替灌溉保根促灌浆。同时做好病虫草害防除。
表2 各处理氮肥施肥措施
成熟期在各小区随机选择没有病虫害的稻谷1 kg, 在室温下保存3个月, 待其理化特性趋于稳定后, 测定稻米品质。参照国标《GB/T17891—1999优质稻谷》测定所取样品加工品质(糙米率、精米率、整精米率)和外观品质(垩白度、垩白粒率、长宽比)。将精米用CT410旋风式粉样机粉碎, 过60目筛, 采用双波长比色法测定稻米直链淀粉含量[16]。
采用3-D型黏度速测仪(澳大利亚New port Scientific仪器公司)测定稻米淀粉RVA(Rapid Visco Analyzer, 简称RVA)谱, 用TCW(Thermal Cycle for Windows)配套软件进行分析。根据AACC操作规程(2000 61-02), 含水量为12.0%时, 水稻米粉的样品量为3.00 g, 加蒸馏水25.00 mL。加温过程为50 ℃保持1 min; 以恒速升至95 ℃(3 min 48 s); 95 ℃下保持2.5 min; 再以恒速下降到50 ℃(3 min 48 s), 在50 ℃下保持1 min 24 s。搅拌器在起始10 s内转动速率为960 r∙min-1, 之后保持在160 r∙min-1。RVA谱特征值主要以峰值黏度(peak viscosity, PKV)、热浆黏度(hot paste viscosity, HPV)、冷胶黏度(cool paste viscosity, CPV)、崩解值(breakdown viscosity, BDV, 峰值黏度与热浆黏度之差)、消减值(setback viscosity, SBV, 冷胶黏度与峰值黏度之差)、回复值(consistence viscosity, CSV, 冷胶黏度与热浆黏度之差)、峰值时间(peak time, PeT)和糊化温度(pasting temperature, PaT)表示。每个样品测定3次, 取其均值。
用凯氏定氮法测籽粒全氮含量。根据一般水稻籽粒中蛋白质约含16.8%氮的原理, 将测得的全氮含量乘以换算因子K=5.95, 推算籽粒蛋白质含量。
采用Microsoft Excel对数据进行整理和归纳, 利用DPS 7.05对数据进行方差及聚类分析。LSD(least significant difference tests)法比较所取样本的差异性。
表3表明, 氮肥管理极显著地影响两个生态点的整精米率, 此外, 温江糙米率和射洪精米率也受到氮肥管理极显著影响。不同生态点间, 射洪生态点的糙米率、精米率和整精米率均低于温江生态点。较对照处理, 氮肥施用显著提高了稻米的碾米品质, 射洪生态点糙米率、精米率和整精米率分别较对照增加0.84%~1.25%、1.01%~3.53%和6.67%~21.49%, 温江生态点则分别增加1.65%~2.06%、0.49%~2.96%和11.93%~44.01%。较FFP1处理, 氮肥优化处理(ONM1, ONM-N1, ONM+N1)和PASP尿素处理对糙米率影响不显著, 但射洪生态点氮肥优化处理(ONM1, ONM-N1, ONM+N1)和ONM2处理, 以及温江生态点ONM1处理显著提高了精米率。此外, ONM-N1、ONM+N1和PASP尿素处理导致射洪整精米率显著降低, 但氮肥优化处理(ONM1, ONM-N1, ONM+N1)和ONM2处理显著提高了温江生态点的整精米率。较ONM1处理, ONM-N1、ONM+N1和PASP尿素处理导致整精米率呈下降趋势, 同时PASP尿素处理还导致精米率呈下降趋势。随PASP尿素施肥次数的增加, 射洪整精米率呈下降趋势, 温江整精米率表现为ONM2>PASPT1>PASPT2。整体看来, ONM1处理下, 稻米具有较优的碾米品质。
表4表明, 氮肥管理对稻米长宽比影响不显著, 但显著或极显著地影响两个生态点的垩白粒率和垩白度。不同生态点间, 温江生态点的垩白粒率和垩白度均低于射洪生态点。较对照处理, 氮肥对不同生态点的垩白粒率和垩白度的影响不同。在射洪生态点, 除ONM1处理垩白粒率外, 氮肥施用使垩白粒率和垩白度较CK分别增加1.35%~8.53和2.34%~43.41%; 在温江生态点, 除FFP1处理垩白粒率外, 垩白粒率和垩白度则分别减少4.61%~24.69%和6.93%~42.23%。较FFP1处理, 射洪生态点ONM1处理显著降低了垩白粒率和垩白度, ONM-N1、ONM+N1和PASP尿素处理则显著增加了垩白度; 温江生态点, 除PASPT1处理对垩白度影响不显著外, 氮肥优化处理(ONM1, ONM-N1, ONM+N1)和PASP尿素处理均显著降低了稻米的垩白粒率和垩白度。较ONM1处理, ONM-N1、ONM+N1和PASP尿素处理显著增加了射洪的垩白粒率和垩白度, 但降低了温江的垩白粒率。较PASPT1处理, PASPT2和ONM2处理显著降低了温江的垩白粒率和垩白度。可见, ONM1处理有利于提高射洪生态点的稻米外观品质, ONM2处理则有利于提高温江生态点的稻米外观品质。
表3 氮肥管理对不同生态点稻米碾米品质的影响
同列数据后不同小写字母表示不同氮肥处理间差异达5%显著水平。**表示1%显著水平。Values within a column followed by different lowercase letters are significantly different at< 0.05 according to LSD test. **: significant at 1% probability level.
表4 氮肥管理对不同生态点稻米外观品质的影响
同列数据后不同小写字母表示不同氮肥处理间差异达5%显著水平。*和**分别表示5%和1%显著水平。Values within a column followed by different lowercase letters are significantly different at< 0.05 according to LSD test. * and ** mean significance at 5% and 1% probability level.
氮肥管理对稻米淀粉RVA谱特征值有着明显的调控作用(表5)。不同生态点间, 射洪生态点的峰值黏度、崩解值明显高于温江生态点, 热浆黏度、冷胶黏度、消减值和回复值则相反。不同生态点间, 氮肥施用对稻米淀粉RVA谱特征值的影响存在差异。较对照处理, 氮肥施用导致射洪生态点峰值黏度、热浆黏度呈上升趋势, 冷胶黏度、崩解值、消减值和回复值则呈降低趋势; 在温江, 氮肥施用则导致峰值黏度、热浆黏度、冷胶黏度、崩解值呈下降趋势, 消减值则呈上升趋势。较FFP1处理, 氮肥优化处理(ONM1, ONM-N1, ONM+N1)和ONM2处理显著降低了射洪和温江的峰值黏度和崩解值, 提高了消减值; ONM-N1和ONM+N1还导致射洪冷胶黏度显著降低, 温江峰值时间显著增加。较ONM1处理, ONM-N1处理导致崩解值呈上升趋势, 但ONM+N1处理显著降低了射洪生态点的冷胶黏度, 提高了温江生态点的消减值; 在射洪, PASPT1和PASPT2处理显著增加了峰值黏度和崩解值; 在温江, PASPT1和PASPT2处理显著增加了冷胶黏度和崩解值; ONM2处理则均显著降低峰值黏度、热浆黏度和崩解值。随着PASP尿素施肥次数的增加, 射洪试验点的峰值黏度、热浆黏度和崩解值呈递减趋势, 消减值呈递增趋势; 温江试验点, 峰值黏度、热浆黏度和崩解值表现为PASPT2>PASPT1>ONM2, 消减值表现为ONM2>PASPT1>PASPT2。
表5 氮肥管理对不同生态点稻米RVA谱特征值的影响
同列数据后不同小写字母表示不同氮肥处理间差异达5%显著水平。*和**分别表示5%和1%显著水平。Values within a column followed by different lowercase letters are significantly different at< 0.05 according to LSD test. * and ** mean significance at 5% and 1% probability level. PKV: peak viscosity; HTV: hot paste viscosity; CPV: cool paste viscosity; BDV: breakdown viscosity; SBV: setback viscosity; PeT: peak time; PaT: pasting temperature; CSV: consistence viscosity.
表6表明, 氮肥管理对水稻籽粒粗蛋白和直链淀粉含量有显著影响。不同生态点间, 射洪生态点的直链淀粉含量高于温江生态点, 籽粒粗蛋白含量则低于温江生态点。较对照处理, 氮肥施用有效提高了稻米直链淀粉含量和籽粒粗蛋白含量。较FFP1处理, 除射洪PASPT2和温江PASPT1外, 氮肥优化处理(ONM1, ONM-N1, ONM+N1)和PASP尿素处理均显著提高了稻米直链淀粉含量和籽粒粗蛋白含量。较ONM1处理, ONM-N1、PASPT1和PASPT2处理显著降低了直链淀粉含量和籽粒粗蛋白含量; ONM+N1处理导致直链淀粉含量显著降低, 籽粒粗蛋白含量则明显增加; ONM2处理显著提高了射洪和温江的籽粒粗蛋白含量以及射洪生态点的直链淀粉含量, 降低了温江生态点的直链淀粉含量。随着PASP尿素施肥次数的增加, 射洪生态点的直链淀粉含量和籽粒粗蛋白含量表现为ONM2>PASPT1>PASPT2; 温江生态点的直链淀粉含量表现为PASPT2>ONM2>PASPT1, 籽粒粗蛋白含量表现为ONM2>PASPT2>PASPT1。
表6 氮肥管理对不同生态点稻米直链淀粉含量和粗蛋白含量的影响
同列数据后不同小写字母表示不同氮肥处理间差异达5%显著水平。**表示1%显著水平。Values within a column followed by different lowercase letters are significantly different at< 0.05 according to LSD test. **: significant at 1% probability level.
由表7可知, 不同施氮处理间淀粉RAV谱特性与碾米品质、外观品质、直链淀粉含量和籽粒粗蛋白含量有密切关系。峰值黏度和崩解值与糙米率、精米率、整精米率和籽粒粗蛋白含量呈显著或极显著负相关关系, 与长宽比、垩白度和垩白粒率则呈显著或极显著正相关; 冷胶黏度与垩白度呈显著负相关; 消减值和回复值与糙米率、精米率以及粗蛋白含量呈显著或极显著正相关, 与长宽比、垩白度和垩白粒率则呈极显著负相关; 此外, 峰值时间与糙米率和精米率显著负相关, 与长宽比和垩白度极显著正相关。
表7 稻米淀粉RVA谱特征值与其他指标的相关性
**表示1%显著水平; *表示5%显著水平。**: significant at 1% probability level; *: significant at 5% probability level. BR: brown rice rate; MR: milled rice rate; HMR: head milled rice rate; AR: aspect ratio; CD: chalkiness degree; CR: chalkiness rate; AC: amylose content; CPC: crude protein content; PKV: peak viscosity; HTV: hot paste viscosity; CPV: cool paste viscosity; BDV: breakdown viscosity; SBV: setback viscosity; PeT: peak time; PaT: pasting temperature; CSV: consistence viscosity.
稻米品质受到遗传、环境和栽培措施等多种因素影响[17]。氮肥施用对稻米碾米品质和外观品质存在明显影响。研究指出, 氮肥施用能延缓水稻后期衰老, 为籽粒灌浆提供物质保证, 进而有效提高稻米糙米率、精米率和整精米率[8-9,18], 这与本研究结果相符。垩白的形成主要是因为灌浆期物质的供给不足导致了胚乳贮藏物填充的不充分所致[19-20]。戴平安等[21]认为土壤碱解氮和速效磷增加有利于垩白粒率和垩白度的降低。不同生态点间氮肥使用对稻米垩白的影响不同, 氮肥施用增加了射洪生态点垩白度和垩白粒率, 降低了温江生态点的稻米垩白, 这是土壤中碱解氮和速效磷含量差异所致。较农民经验性施肥处理, 氮肥优化处理和PASP尿素处理显著增加了射洪的精米率和温江的整精米率, 降低了温江的稻米垩白度和垩白粒率。氮肥后移满足了水稻中后期的氮素需求, 促进了籽粒胚乳细胞的发育, 增强了籽粒的灌浆强度[12,22]。PASP尿素, 作为一种新型高效缓释氮肥, 能有效调节土壤氮素平衡, 提高水稻氮素吸收利用效率和籽粒产量; PASP尿素促进抽穗后穗部干物质积累, 显著增加水稻产量[13-14]。较优化施肥处理, PASP尿素处理导致射洪稻米碾米品质和外观品质变劣, 但能有效降低温江的垩白粒率, 改善外观品质。可见, 氮肥的施用要因地制宜, 在射洪, 普通尿素处理能有效提高稻米碾米品质和外观品质; 在温江, PASP尿素处理能一定程度改善稻米外观品质。较PASP尿素1次施肥, PASP尿素优化施肥能显著提高温江整精米率, 降低射洪垩白度和温江垩白。PSAP尿素优化施肥能更好地提供水稻中后期生长发育的营养, 促进了籽粒胚乳细胞的发育, 增强了籽粒的灌浆强度[13]。
水稻籽粒粗蛋白和直链淀粉含量是评价稻米品质的两个主要指标[23]。袁天泽等[24]认为水稻粗蛋白和直链淀粉含量随着氮肥用量的增加而增加。郝虎林等[25]研究认为随着氮肥使用量的增加, 籽粒蛋白质含量增加, 直链淀粉含量降低。可见前人研究结果不尽相同。不同生态条件下, 氮肥施用提高了水稻籽粒粗蛋白含量和直链淀粉含量, 这与袁天泽等[24]研究结果一致。研究表明将基肥后移至抽穗期施用能增加籽粒粗蛋白含量[12]。较农民经验性施肥, 氮肥优化和PASP尿素处理显著提高了籽粒粗蛋白和直链淀粉含量, 是因为氮肥优化管理和PASP尿素能提供水稻中后期氮素营养, 导致水稻籽粒粗蛋白含量和直链淀粉含量增加。较优化施肥处理, PASP尿素优化施肥处理显著提高了籽粒粗蛋白含量, 因为PASP尿素能有效提高穗部和植株氮素积累量[14], 导致籽粒粗蛋白含量增加。同时PASP尿素优化施肥处理导致射洪生态点直链淀粉含量增加, 温江生态点却显著降低, 可能是土壤中的碱解氮和速效磷含量不同所致[21]。较PASP尿素1次和2次施肥, PASP尿素优化施肥能增加两个生态点的籽粒粗蛋白含量。PASP尿素优化管理能提供水稻中后期氮素营养[14], 导致水稻籽粒粗蛋白含量增加。
RVA谱特征值是稻米品质的重要组成部分[26]。叶全宝等[27]研究表明随着施氮量的增加, 峰值黏度、热浆黏度、崩解值、冷胶黏度等呈下降趋势, 消减值呈上升趋势。刘代银等[10]研究表明随施氮量的增加, 稻米淀粉RVA谱特征值的最高黏度和崩解值降低, 消减值和糊化温度升高。从夕汉等[28]认为随施氮量增加, 峰值黏度、热浆黏度、回复值和崩解值递减, 而消碱值递增。李永杰等[29]研究表明随着施氮量的增加, 最高黏度、热浆黏度、冷胶黏度、崩解值和消减值逐渐下降。可见前人研究结果不尽相同。氮肥施用导致射洪生态点峰值黏度显著增加, 崩解值和消减值明显降低; 同时导致温江生态点峰值黏度和崩解值明显降低, 消减值则明显增加。原因是随着氮肥的供应, 水稻营养生长旺盛, 绿叶面积增加, 导致后期籽粒氮素积累含量变多, 从而影响了稻米淀粉RVA谱特征值。这与叶全宝等[27]的研究结果相似, 稻米淀粉RVA谱特征值也受土壤环境影响[21]。施氮总量相同情况下, 增加穗肥用量会导致峰值黏度降低、崩解值减少、消解值增大和糊化温度提高[30]。张亚洁等[31]和蔡一霞等[32]认为一般情况下, 峰值黏度高、崩解值大、消减值的绝对值小, 稻米食味优。较农民经验性施肥, 优化施肥和PASP尿素处理降低了峰值黏度和崩解值, 提高了消减值。这可能是因为氮肥优化管理能提供水稻中后期氮素营养, 使水稻籽粒粗蛋白含量增加, 改变了RVA谱特征值, 这与徐大勇等[11]研究结果一致。较优化施肥处理, PASP尿素优化施肥处理导致稻米峰值黏度、热浆黏度和冷胶黏度呈下降趋势, 回复值则呈上升趋势, 同时导致射洪生态点崩解值增加。这是因为PASP尿素可以缓慢提供中、后期氮素营养[14], 满足水稻生长对氮素养分的需求, 从而影响稻米淀粉RVA谱特征值[33]。较PASP尿素1次施肥和2次施肥, PASP尿素优化施肥显著降低了两个生态点的峰值黏度、热浆黏度和崩解值, 提高了消减值。PASP尿素优化施肥能缓慢提供水稻中后期氮素营养[14], 使水稻籽粒粗蛋白含量增加, 改变了RVA谱特征值
稻米品质主要包括外观品质、加工品质、蒸煮食用品质和营养品质[34]。本研究结果表明, 合理的施肥方式有效提高了稻米精米率、直链淀粉含量和籽粒粗蛋白含量, 降低垩白, 改善稻米淀粉RVA谱特征值。因此, 通过施肥方式来调控稻米碾米品质、外观品质和稻米食味品质是有效可行的。本研究表明, 普通尿素和PASP尿素在不同生态点对稻米品质的作用结果不同。因此在合适的生态点选择合适的肥料种类可以改善稻米品质。从施肥方式来看, 张艳霞等[35]认为, 氮素穗肥与稻米品质和淀粉特性密切相关, 可通过调控氮素穗肥水平来改善稻米品质。普通尿素和PASP尿素优化施肥, 能有效改善稻米品质, 因此普通尿素和PASP尿素通过合理的多次施肥, 将氮肥后移提高水稻后期氮素需求从而调控稻米品质。从本试验稻米淀粉RVA谱特征值与品质性状的相关性来看, 施氮处理对稻米品质的影响存在品质特性间的差异。如崩解值和稻米碾米品质受氮肥的影响并非同向的, 即在提高碾米品质的同时不利于食味品质的提升[36]。稻米优质栽培必须考虑各品质指标间的协调关系, 使其综合性状良好表达, 因此综合稻米碾米品质、外观品质、淀粉RVA、直链淀粉含量和籽粒粗蛋白含量的关系, 选出最适合水稻优质栽培的方式。在本试验条件下, 射洪PASP尿素2次施肥处理(PASPT2)稻米综合品质较好, 温江优化施肥处理(ONM1)稻米综合品质较好。
氮肥施用能显著提高稻米碾米品质, 氮肥后移和PASP尿素处理能改变淀粉RVA谱特征值、直链淀粉含量和籽粒粗蛋白含量, 因此通过合理的肥料施用能提高稻米品质。同时PASP尿素在不同生态点对稻米品质影响不同; PASP尿素处理导致射洪稻米碾米品质和外观品质变劣, 但能有效降低温江的垩白粒率, 改善外观品质。可见, 氮肥的施用要因地制宜。综合稻米碾米品质、外观品质、淀粉RVA谱特征值、直链淀粉含量和籽粒粗蛋白含量的关系, 射洪PASP尿素2次施肥处理(PASPT2)稻米综合品质较好, 温江优化施肥处理(ONM1)稻米综合品质较好。
[1] 赵凌, 赵春芳, 周丽慧, 等. 中国水稻生产现状与发展趋势[J]. 江苏农业科学, 2015, 43(10): 105–107 ZHAO L, ZHAO C F, ZHOU L H, et al. Current situation and development trend of rice production in China[J]. Jiangsu Agricultural Sciences, 2015, 43(10): 105–107
[2] 魏颖娟, 夏冰, 赵杨, 等.15N示踪不同施氮量对超级稻产量形成及氮素吸收的影响[J]. 核农学报, 2016, 30(4): 783–791 WEI Y J, XIA B, ZHAO Y, et al. Effects of nitrogen application on yield formation and the nitrogen absorption and utilization of super rice based on15N-tracing[J]. Journal of Nuclear Agricultural Sciences, 2016, 30(4): 783–791
[3] 吴茂力, 姜心禄, 池忠志, 等. 机插秧模式下肥料配置对稻米主要品质的影响[J]. 核农学报, 2014, 28(10): 1905–1909 WU M L, JIANG X L, CHI Z Z, et al. Effects of different fertilizer allocation on grain qualities under mechanized transplanting rice mode[J]. Journal of Nuclear Agricultural Sciences, 2014, 28(10): 1905–1909
[4] WOPEREIS-PURA M M, WATANABE H, MOREIRA J, et al. Effect of late nitrogen application on rice yield, grain quality and profitability in the Senegal River valley[J]. European Journal of Agronom, 2002, 17(3): 191–198
[5] 陈莹莹, 胡星星, 陈京都, 等. 氮肥水平对江苏早熟晚粳稻食味品质的影响及其品种间差异[J]. 作物学报, 2012, 38(11): 2086–2092 CHEN Y Y, HU X X, CHEN J D, et al. Effect of nitrogen fertilizer application on eating quality of early-maturing late japonica rice in Jiangsu and its difference among varieties[J]. Acta Agronomica Sinica, 2012, 38(11): 2086–2092
[6] 张洪程, 王秀芹, 戴其根, 等. 施氮量对杂交稻两优培九产量、品质及吸氮特性的影响[J]. 中国农业科学, 2003, 36(7): 800–806 ZHANG H C, WANG X Q, DAI Q G, et al. Effects of N-application rate on yield, quality and characters of nitrogen uptake of hybrid rice variety Liangyoupeijiu[J]. Scientia Agricultura Sinica, 2003, 36(7): 800–806
[7] PENG S B, BURESH R J, HUANG J L, et al. Improving nitrogen fertilization in rice by sitespecific N management. A review[J]. Agronomy for Sustainable Development, 2010, 30(3): 649–656
[8] 潘圣刚, 翟晶, 曹凑贵, 等. 氮肥运筹对水稻养分吸收特性及稻米品质的影响[J]. 植物营养与肥料学报, 2010, 16(3): 522–527 PAN S G, ZHAI J, CAO C G, et al. Effects of nitrogen management practices on nutrition uptake and grain qualities of rice[J]. Plant Nutrition and Fertilizer Science, 2010, 16(3): 522–527
[9] 李国生, 张耗, 王志琴, 等. 氮素水平对水稻产量与品质的影响[J]. 扬州大学学报: 农业与生命科学版, 2007, 28(4): 66–70 LI G S, ZHANG H, WANG Z Q, et al. Effects of nitrogen levels on grain yield and quality of rice[J]. Journal of Yangzhou University: Agricultural and Life Science Edition, 2007, 28(4): 66–70
[10] 刘代银, 伍菊仙, 任万军, 等. 氮肥运筹对免耕高留茬抛秧稻氮素吸收、运转和子粒品质的影响[J]. 植物营养与肥料学报, 2009, 15(3): 514–521 LIU D Y, WU J X, REN W J, et al. Effects of nitrogen strategies on nitrogen uptake, utilization and grain quality of broadcasted rice under no-tillage with high standing-stubbles[J]. Plant Nutrition and Fertilizer Science, 2009, 15(3): 514–521
[11] 徐大勇, 金军, 胡曙鋆, 等. 氮磷钾肥运筹对稻米直链淀粉含量和淀粉黏滞谱特征参数的影响[J]. 作物学报, 2005, 31(7): 921–925 XU D Y, JIN J, HU S Y, et al. Effects of N, P, K fertilizer management on grain amylose content and RVA profile parameters in rice[J]. Acta Agronomica Sinica, 2005, 31(7): 921–925
[12] 蔡一霞, 刘春香, 王维, 等. 基肥氮后移对早造杂交稻产量、品质及米粉糊化特征的影响[J]. 华南农业大学学报, 2011, 32(2): 1–5 CAI Y X, LIU C X, WANG W, et al. Grain yield, quality and the gelatinization of rice flour in early hybrid rice as affected by basic nitrogen postponed for heading stage[J]. Journal of South China Agricultural University, 2011, 32(2): 1–5
[13] DENG F, WANG L, REN W J, et al. Optimized nitrogen managements and polyaspartic acid urea improved dry matter production and yield ofhybrid rice[J]. Soil and Tillage Research,2015, 145: 1–9
[14] DENG F, WANG L, REN W J, et al. Enhancing nitrogen utilization and soil nitrogen balance in paddy fields by optimizing nitrogen management and using polyaspartic acid urea[J]. Field Crops Research, 2014, 169: 30–38
[15] 任万军, 胡晓玲, 杨万全, 等水稻优化定抛的增产机理与关键技术[J]. 中国稻米, 2008, (3): 54–56 REN W J, HU X L, YANG W Q, et al.Rice optimization on the production mechanism and key technology[J]. China Rice, 2008, (3): 54–56
[16] 林美娟, 宋江峰, 李大婧, 等. 用双波长分光光度法测定鲜食玉米中直链淀粉和支链淀粉含量[J]. 江西农业学报, 2010, 22(12): 117–119 LIN M J, SONG J F, LI D J, et al. Determination of amylose and amylopectin content in fresh corn by dual-wavelength spectrophotometry[J]. Acta Agriculturae Jiangxi, 2010, 22(12): 117–119
[17] CHENG W D, ZHANG G P, ZHAO G P, et al. Variation in rice quality of different cultivars and grain positions as affected by water management[J]. Field Crops Research, 2003, 80(3): 245–252
[18] 谢黎虹, 叶定池, 胡培松, 等. 氮肥用量和施用方式对水稻“甬优6号”产量和品质的影响[J]. 植物营养与肥料学报, 2011, 17(4): 789–794 XIE L H, YE D C, HU P S, et al.Effects of nitrogen fertilizer application rate and management strategy on grain yield and quality of rice variety “Yongyou 6”[J]. Plant Nutrition and Fertilizer Science, 2011, 17(4): 789–794
[19] 高继平, 隋阳辉, 张文忠, 等. 水稻灌浆期冠层温度对植株生理性状及稻米品质的影响[J]. 中国水稻科学, 2015, 29(5): 501–510 GAO J P, SUI Y H, ZHANG W Z, et al. Effect of canopy temperature on physiological characteristic and grain quality at filling stage in rice[J]. Chinese Journal of Rice Science, 2015, 29(5): 501–510
[20] 王忠, 顾蕴洁, 陈刚, 等. 稻米的品质和影响因素[J]. 分子植物育种, 2003, 1(2): 231–241 WANG Z, GU Y J, CHEN G, et al. Rice quality and its affecting factors[J]. Molecular Plant Breeding, 2003, 1(2): 231–241
[21] 戴平安, 周坤炉, 黎用朝, 等. 土壤条件对优质食用稻品质及产量的影响[J]. 中国水稻科学, 1998, 12(S1): 51–57 DAI P A, ZHOU K L, LI Y C, et al. Effects of soil conditions on quality and yield of high-quality edible rice[J]. Chinese Journal of Rice Science, 1998, 12(S1): 51–57
[22] 胡群, 夏敏, 张洪程, 等. 氮肥运筹对钵苗机插优质食味水稻产量及品质的影响[J]. 作物学报, 2017, 43(3): 420–431 HU Q, XIA M, ZHANG H C, et al.Effect of nitrogen application regime on yield and quality of mechanical pot-seedlings transplanting rice with good taste quality[J]. Acta Agronomica Sinica, 2017, 43(3): 420–431
[23] 刘奇华, 吴修, 陈博聪, 等. 灌溉方式对黄淮稻区优质粳米品质的影响[J]. 应用生态学报, 2014, 25(9): 2583–2590 LIU Q H, WU X, CHEN B C, et al. Effects of different irrigation methods on grain quality of japonica rice in Huanghuai District of China[J]. Chinese Journal of Applied Ecology, 2014, 25(9): 2583–2590
[24] 袁天泽, 潘明安, 黄仁军, 等. 氮磷肥施用对水稻品质及稻田氮磷含量的影响[J]. 中国种业, 2010, (10): 53–55 YUAN T Z, PAN M A, HUANG R J, et al. The effects of nitrogen phosphorus fertilizer apply towards rice quality and NPD content on the field[J]. China Seed Industry, 2010, (10): 53–55
[25] 郝虎林, 魏幼璋, 杨肖娥, 等. 供氮水平对稻株铁、锰、铜、锌含量和稻米品质的影响[J]. 中国水稻科学, 2007, 21(4): 411–416 HAO H L, WEI Y Z, YANG X E, et al. Effects of different nitrogen fertilizer levels on concentrations of Fe, Mn, Cu and Zn and grain quality in rice ()[J]. Chinese Journal of Rice Science, 2007, 21(4): 411–416
[26] 程海涛, 马兆惠, 刘桂林, 等. 北方粳稻品种(系)资源淀粉RVA谱特征与品质性状典型相关分析[J]. 作物杂志, 2017, (2): 59–66 CHENG H T, MA Z H, LIU G L, et al. Canonical correlation analysis between RVA profile characteristics and quality traits of japonica rice varieties[J]. Crops, 2017, (2): 59–66
[27] 叶全宝, 张洪程, 李华, 等. 施氮水平和栽插密度对粳稻淀粉RVA谱特性的影响[J]. 作物学报, 2005, 31(1): 124–130 YE Q B, ZHANG H C, LI H, et al.Effects of amount of nitrogen applied and planting density on RVA profile characteristic of japonica rice[J]. Acta Agronomica Sinica, 2005, 31(1): 124–130
[28] 从夕汉, 施伏芝, 阮新民, 等. 氮肥水平对不同基因型水稻氮素利用率、产量和品质的影响[J]. 应用生态学报, 2017, 28(4): 1219–1226 CONG X H, SHI F Z, RUAN X M, et al. Effects of nitrogen fertilizer application rate on nitrogen use efficiency and grain yield and quality of different rice varieties[J]. Chinese Journal of Applied Ecology, 2017, 28(4): 1219–1226
[29] 李永杰, 崔晶, 李景龙, 等. 施氮量对津原E28产量和品质的影响[J]. 天津农学院学报, 2014, 21(1): 28–30 LI Y J, CUI J, LI J L, et al. Effects of nitrogen fertilizer on yield and quality of Jinyuan E28[J]. Journal of Tianjin Agricultural University, 2014, 21(1): 28–30
[30] 刘建, 魏亚凤, 徐少安. 蘖穗肥氮素配比对水稻产量、品质及氮肥利用率的影响[J]. 华中农业大学学报, 2006, 25(3): 223–227 LIU J, WEI Y F, XU S A. Effects of the ratio of tiller to panicle nitrogen fertilizer on rice yield and quality and nitrogen utilization efficiency[J]. Journal of Huazhong Agricultural University, 2006, 25(3): 223–227
[31] 张亚洁, 杨连新, 李俊贤, 等. 土壤水分对旱稻米质性状及RVA谱特征参数影响[J]. 扬州大学学报: 农业与生命科学版, 2004, 25(4): 7–11 ZHANG Y J, YANG L X, LI J X, et al. Effects of soil moisture on quality characters and RVA profile parameters of upland rice[J]. Journal of Yangzhou University: Agricultural and Life Science Edition,2004, 25(4): 7–11
[32] 蔡一霞, 朱庆森, 徐伟, 等. 结实期水分胁迫对水稻强、弱势粒主要米质性状及淀粉粘滞谱特征的影响[J]. 作物学报, 2004, 30(3): 241–247 CAI Y X, ZHU Q S, XU W, et al. Effects of water stress on the main characters of superior and inferior grains quality and the properties of RVA profile during grain-filling stage[J]. Acta Agronomica Sinica, 2004, 30(3): 241–247
[33] 曲均峰. 不同控氮比掺混肥在水稻上的应用效果[J]. 中国农学通报, 2014, 30(12): 176–180 QU J F. Application of different release duration control-released urea combined with conventional urea on rice[J]. Chinese Agricultural Science Bulletin, 2014, 30(12): 176–180
[34] 张昌泉, 赵冬生, 李钱峰, 等. 稻米品质性状基因的克隆与功能研究进展[J]. 中国农业科学, 2016, 49(22): 4267–4283 ZHANG C Q, ZHAO D S, LI Q F, et al.Progresses in research on cloning and functional analysis of key genes involving in rice grain quality[J]. Scientia Agricultura Sinica, 2016, 49(22): 4267–4283
[35] 张艳霞, 丁艳锋, 王强盛, 等. 氮素穗肥对不同品种稻米品质性状的影响[J]. 植物营养与肥料学报, 2007, 13(6): 1080–1085ZHANG Y X, DING Y F, WANG Q S, et al. Effect of panicle nitrogen fertilizer on quality properties of different rice varieties[J]. Plant Nutrition and Fertilizer Science, 2007, 13(6): 1080–1085
[36] 李刚, 邓其明, 李双成, 等. 稻米淀粉RVA谱特征与品质性状的相关性[J]. 中国水稻科学, 2009, 23(1): 99–102 LI G, DENG Q M, LI S C, et al. Correlation analysis between RVA profile characteristics and quality in rice[J]. Chinese Journal of Rice Science, 2009, 23(1): 99–102
Influence of optimized nitrogen management on the quality of medium hybrid rice under different ecological conditions*
LI Shuxian, PU Shilin, DENG Fei**, WANG Li, HU Hui, LIAO Shuang, LI Wu, REN Wanjun**
(College of Agronomy, Sichuan Agricultural University / Key Laboratory of Crop Physiology, Ecology, and Cultivation in Southwest, Ministry of Agriculture, Wenjiang 611130, China)
The effects of different nitrogen (N) treatments on rice quality were studied at two different ecological sites (Wenjiang and Shehong), using single-factor experiment with a randomized block design and ‘F You 498’ as the test material. The results showed that the milling quality, appearance, and grain crude protein content were better in the Wenjiang rice. In the Shehong rice, the peak viscosity and breakdown viscosity were higher and the setback viscosity was lower; the cooking and eating qualities were better and the amylose content was higher. With N fertilizer applied, the rice milling quality and amylose and grain crude protein contents were significantly increased, and the breakdown viscosity was significantly decreased. At the same time, N fertilization increased the peak viscosity and reduced the setback viscosity of Shehong rice, whereas it improved the appearance, decreased the peak viscosity, and increased the reduction value of Wenjiang rice. Compared with the fertilization practices of farmers, the optimal N fertilizer treatments (ONM1: optimized N management; ONM-N1: optimized N management with 15% N reduction; and ONM+N1: optimized N management with 15% N increase) and optimized N management of polyaspartic acid-urea (PASP-urea) treatment increased the amylose and grain crude protein contents. Optimal N fertilizer treatment reduced the chalky rice rate and chalkiness ratio, and improved the appearance of Wenjiang rice. At both ecological sites, the optimal N fertilizer treatment reduced the peak viscosity and breakdown viscosity, increased the setback viscosity, and worsened the cooking and eating qualities of the rice. At the same time, it increased the milled rice rate of Shehong rice and the head rice rate of Wenjiang rice. In comparison with the ONM1 treatment, PASP-urea treatment reduced the milled rice ratios and head rice rates of the two types of rice and the chalky rice rate of Wenjiang rice, whereas it increased the chalky rice rate and chalkiness ratio of Shehong rice, worsening its appearance. At the same time, PASP-urea applied at the basal stage only and spilt-applied at the basal stage and at panicle initiation reduced the amylose and grain crude protein contents. Optimized N management of PASP-urea treatment reduced the peak viscosity and breakdown viscosity of the two rice types and the amylose content of Wenjiang rice, whereas it increased the grain crude protein contents of the two rice types and the amylase content of Shehong rice. Compared with the OMN1 treatment, the ONM-N1 and ONM+N1 treatments reduced the amylose contents and the head rice rates of the two rice types and the chalky rice rate of Wenjiang rice, whereas they increased the chalky rice rate and chalkiness ratio of Shehong rice. Compared with that of PASP-urea applied at the basal stage alone and spilt-applied at the basal stage and at panicle initiation, optimized N management of PASP-urea treatment significantly decreased the chalkiness ratio, peak viscosity, and breakdown viscosity, and increased the setback viscosity and grain crude protein contents. At the same time, it reduced the head rice rate and increased the chalky rice rate and amylose content in Wenjiang rice, whereas it reduced the chalky rice rate and increased the head rice rate in Shehong rice. Overall, in terms of the milling quality, appearance, starch RVA, amylose content, and grain crude protein content, the two applications of PASP-urea fertilizer treatment resulted in better comprehensive qualities in Shehong rice, whereas optimized N fertilization treatment gave better comprehensive qualities in Wenjiang rice.
Rice; Ecological conditions; Nitrogen management; PASP urea; Rice quality
DENG Fei, E-mail: 273634096@qq.com; REN Wanjun, E-mail: rwjun@126.com
Dec. 16, 2018;
Feb. 28, 2019
S511.3+2
2096-6237(2019)07-1042-11
10.13930/j.cnki.cjea.181087
李书先, 蒲石林, 邓飞, 王丽, 胡慧, 廖爽, 李武, 任万军. 不同生态条件下氮肥优化管理对杂交中稻稻米品质的影响[J]. 中国生态农业学报(中英文), 2019, 27(7): 1042-1052
LI S X, PU S L, DENG F, WANG L, HU H, LIAO S, LI W, REN W J.Influence of optimized nitrogen management on the quality of medium hybrid rice under different ecological conditions[J]. Chinese Journal of Eco-Agriculture, 2019, 27(7): 1042-1052
* 国家自然科学基金项目(31871564)、国家粮食丰产增效科技创新专项课题(2018YFD0301204)和四川省育种攻关项目(2016NYZ0051)资助
邓飞, 主要研究方向为水稻高产优质栽培, E-mail: 273634096@qq.com; 任万军, 主要研究方向为水稻优质高产及机械化栽培, E-mail: rwjun@126.com
李书先, 主要研究方向为水稻高产优质栽培。E-mail: 2534619749@qq.com
2018-12-16
2019-02-28
* This study was supported by the National Natural Science Foundation of China (31871564), the National Science and Technology Innovation Project for Grain Yield Enhancement of China (2018YFD0301204) and Sichuan Breeding Program (2016NYZ0051).