冯婉玲 陈水飞 何立恒 吴迪
摘 要:为了研究如何绘制虚拟环境中的真实植被模型,利用SketchUp进行树木的三维建模,以实验区10个优势树种为例,先精确绘制单株植物,再分块建立成片植被景观模型,以不同视图展出,最后进行建模结果分析,得到植被树种组成分布格局。从建立的模型图来看,实验区的中小型树种较多,大型树木较少,推断实验区新生树木多,植物生长势头较好;整体来看,米槠和甜槠占有绝对优势。本文采用SketchUp模拟出单个树木的形态,并考虑环境因素设置树木形态参数,较好地模拟树木,使树木形象化、信息化和简单化。分块进行树木的建模,不仅简化建模过程、易于完善模型和集成模型,还使电脑运行负担降低,加快软件运行速度。最后拼合成整体,较好地实现了林分可视化,为林业科学研究提供参考。
关键词:树木模型;SketchUp;分块建模;视图展示
中图分类号:S758 文献标识码:A 文章编号:1006-8023(2019)01—0022-07
Abstract: In order to study how to draw real vegetation model in virtual environment, this paper used SketchUp for three-dimensional modeling of trees, taking ten dominant tree species in experimental area for example. Individual plant was drawn accurately, and then a piece of vegetation landscape model in blocks was established, which was displayed in different views. Finally, the distribution pattern of vegetation tree species was obtained by analyzing the modeling results. According to the model diagram, there were more small and medium-sized tree species and fewer large trees in the experimental area. It was concluded that there were more new trees and better plant growth momentum in the experimental area. Overall, Castanopsis carlesii and Castanopsis eyrei occupied the habitat first. In this paper, SketchUp was used to simulate the shape of an individual tree, and environmental factors were taken into account to set the shape parameters of trees, which can better simulate trees and make them visualized, informative and simplified. Building trees in blocks not only simplified the modeling process, but also improved the model and integration model, reduced the running burden of the computer and sped up the software operation. Finally, the whole forest was integrated to achieve the standing forest visualization. The tree model constructed in this paper provided a reference for forestry scientific research.
Keywords: Tree model; SketchUp; blocking modeling; view display
0 引言
植物三维建模[1]可为探索植物生命的奥秘和生长过程规律,以及改善人类生存环境质量带来新的契机。1962年,ULam应用细胞自动化机制来模拟植物树枝的生长,随后Linden提出了将L-system作为构造植物虚拟模型的一般框架,紧接着Honda第一次将树的结构用计算机表现出来[2]。
目前,主流的三维树木建模方法主要有3种:基于规则、基于图像和基于三维测量数据 [3-4]。各建模方法的对比见表1。基于规则方法强调植物拓扑结构的表示,具有结构化程度高、易于实现等优点。但此方法产生的树种生硬单一,树木形态不容易控制。基于图像方法使用了源于现实的植物图像照片,成本低廉、真实感强,但难以获取完整的植物信息。本文的树木建模是基于测量数据方法[5],此方法忠实于植物的三維形态特征,能以较强的真实感重现自然界中存在的植物。本文实验区在武夷山,利用实验区植物数据,在SketchUp中建模[6-7],精确建立树木模型后以视图展出,为武夷山景区的开发以及珍稀植物的保护提供基础三维可视化平台。
1 研究方法
1.1 研究区概况
武夷山位于闽、赣两省之间,平均海拔
1 000 m左右。整个武夷山脉成东北-西南走向。调查区基准点地理坐标为117°50′40.525″E,27°53′1.876″N,总体上北高南低,坡度10° ~ 50°。调查区内森林生态系统完整,地带性物种成分占绝对优势,种群天然更新状况良好。调查区优势树种为:赤楠、福建含笑、港柯、罗浮栲、毛锥、米槠、格药柃、矩叶鼠刺、少叶黄杞和甜槠[20]。在调查区内随机选取36个连续的5 m×5 m的正方形小地块为实验区。
3 结论与展望
3.1 结论
(1)采用SketchUp模拟出单个树木的形态,并考虑环境因素设置树木形态参数。通过实测数据输入树木的位置、冠幅、树高和枝下高,较好地模拟树木,使树木形象化、信息化和简单化。
(2)分块进行树木的建模,不仅简化建模过程、易于完善模型和集成模型,还使电脑运行负担降低,加快软件运行速度。最后拼合成整体,较好地实现了林分可视化,为森林景观经营提供可视化的平台。
3.2展望
随着科技的进步,三维数据的获取已不再是难题。本文的研究只在小区域内实现树木建模,还有一些问题值得深入研究:
(1)林木的三维模型由大量的基本单元构成,如何有效改进模型,加入更多影响树木形态的参数,例如光照、温度、水分及其他气候因素等,使树木的仿真度提高。
(2)本文只是在平面上模拟出树木的模型,还需要依据武夷山地形实测数据进行三维地形的创建,并扩大研究范围,将树木的创建扩展至整个武夷山,实现整个山体树木模型的创建。
【参 考 文 献】
[1]郭俊,牛铮.植被三维建模及应用进展[J].计算机工程与应用,2009,45(10):26-29.
GUO J, NIU Z. Progress in 3D modeling and visualization of vegetation[J]. Computer Engineering and Applications, 2009, 45(10):26-29.
[2]HONDA H. Description of the form of trees by the parameters of the tree-like body: effects of the branching angle and the branch length on the shape of the tree-like body[J]. Journal of Theoretical Biology, 1971, 31(2): 331-338.
[3]谭云兰,贾金原,张晨,等.3D树木建模技术研究进展[J].中国图象图形学报,2013,18(11):1520-1528.
TAN Y L, JIA J Y, ZHANG C, et al. Survey on virtual 3D tree modeling technologies[J]. Journal of Image and Graphics, 2013, 18(11):1520-1528.
[4]杨垠晖,王锐.树木的真实感建模与绘制综述[J].计算机辅助设计与图形学学报,2018,30(2):191-216.
YANG Y H, WANG R. Realistic modeling and rendering of trees: a survey[J]. Journal of Computer-Aided Design & Computer Graphics, 2018, 30(2):191-216.
[5]孙智慧,赵元棣,郭新宇,等.基于实测数据的植物建模研究进展[J].农机化研究,2012,34(3):24-30.
SUN Z H, ZHAO Y D, GUO X Y, et al. The research progress on real data-based plant modeling[J]. Journal of Agricultural Mechanization Research, 2012, 34(3):24-30.
[6]馬玲,李书杰,刘晓平.基于简单手绘的树木快速建模[J].系统仿真学报,2017,29(8):1667-1676.
MA L, LI S J, LIU X P. Fast tree modeling method based on simple freehand sketch[J]. Journal of System Simulation, 2017, 29(8):1667-1676.
[7]黄曼.基于灯光和投影的数字景观建模研究与应用[D].
武汉:华中师范大学美术学院,2017.
HUANG M. The research and application for the modeling of digital landscape based on lighting and projection[D]. Wuhan: Central China Normal University Academy of Fine Arts, 2017.
[8]戴济平.GoogleSketchUp三维可视化技术[J].测绘科学,2011,36(5):231-233.
DAI J P. 3D visualization technology based on Googlesketchup[J]. Science of Surveying and Mapping, 2011, 36(5):231-233.
[9]徐永胜.SketchUp/3ds max/Piranesi建筑设计表现技法实例精解[M].北京:中国电力出版社,2009.
XU Y S. SketchUp/3ds max/Piranesi examples of architectural design techniques[M]. Beijing: China Power Press, 2009.
[10]孙赫,冯仲科,王海平,等.基于SketchUp和ArcGIS的校园树木三维可视化[J].林业调查规划,2011,36(6):17-20.
SUN H, FENG Z K, WANG H P. 3D modeling visualization of campus trees based on SketchUp and ArcGIS[J]. Forest Inventory and Planning, 2011, 36(6):17-20.
[11]唐凌凌,教忠意,徐自坤,等.福建武夷山自然保护区野生观赏植物资源及其园林应用[J].三明学院学报,2008,25(4):432-437.
TANG L L, JIAO Z Y, XU Z K, et al. Wild ornamental plant resources in Wuyi Mountain Nature Reserve and rheir landscape application[J]. Journal of SanMing University, 2008, 25(4):432-437.
[12]潘珩.基于Ruby API的SketchUp快速建模插件的应用研究
[J].轻工科技,2012(12):59-60.
PAN H. Application research of SketchUp rapid modeling based on Ruby API[J]. Light Industry Science and Technology, 2012(12):59-60.
[13]宋全记.受环境影响的虚拟树木生长预测与仿真[J].软件工程,2017,20(1):33-36.
SONG Q J. Prediction and simulation of virtual tree growth influenced by the environment[J]. Software Engineering, 2017, 20(1):33-36.
[14]王斐,臧丽鹏.光热和水分条件对石灰岩山地侧柏人工林更新的影响[J].防护林科技,2016(7):1-6.
WANG F, ZANG L P. Effect of the photothermal and water conditions on regeneration of Platycladus orientalis plantation in calcareous mountain sites[J]. Protection Forest Science and Technology, 2016(7):1-6.
[15]陈宏,邱荣洲,杨如兴,等.基于SketchUp的海峡茶博园三维景观建模实现[J].福建农业学报,2014,29(2):183-187.
CHEN H, QIU R Z, YANG R X, et al. 3D landscape model of strait tea expo park construction based on Sketchup[J]. Fujian Journal of Agricultural Sciences, 2014, 29(2):183-187.
[16]郝以慶,高晓波,董鑫,等.分块区域三维地质建模及可视化过程研究[J]港工技术,2017,54(4):59-64.
HAO Y Q, GAO X B, DONG X, et al. Research on 3D geologic sub-region modeling and visualized process[J]. Port Engineering Technology, 2017, 54(4):59-64.
[17]吴兆艳,汤孟平.基于SketchUp与GIS的森林景观可视化实现[J].浙江农林大学学报,2012,29(3):352-358.
WU Z Y, TANG M P. Forest landscape visualization based on SketchUp and GIS[J]. Journal of Zhejiang A&F University, 2012, 29(3):352-358.
[18]徐颖,林定,黄国新.基于Web GL的参数化三维树木建模
[J].微型机与应用,2017,36(22):109-111.
XU Y, LIN D, HUANG G X. Parametric modeling of 3D tree based on Web GL[J]. Microcomputer & Its Applications, 2017, 36(22):109-111.
[19]李彦强,胡晓健,孙小艳.基于Sketch Up樟树树冠仿真技术
[J].江西科学,2016,34(4):12-15.
LI Y Q, HU X J, SUN X Y. Simulation on tree crown of Cinnamomum camphora based on Sketch Up[J]. JiangXi Science, 2016, 34(4):12-15.
[20]丁晖,杨云方,徐海根,等.武夷山典型常绿阔叶林动态监测样地:物种组成与群落结构[J].生态学报,2015,35(4):1-18.
DING H, FANG Y M, YANG Q, et al. Community characteristics of a mid-subtropical evergreen broad-leaved forest plot in the Wuyi Mountains, Fujian Province, southeastern China[J]. Biodiversity Science, 2015, 23(4): 479-492.
[21]丁晖,杨云方,徐海根,等. 武夷山典型常绿阔叶林物种组成与群落结构[J].生态学报,2015,35(4):1142-1154.
DING H, YANG Y F, XU H G, et al. Species composition and community structure of the typical evergreen broad leaved forest in the Wuyi Mountains of Southeastern China[J]. Acta Ecologica Sinica, 2015, 35(4):1142-1154.
[22]FEKEDULEGN D, HICKS R R, COLBERT J J. Influence of topographic aspect, precipitation and drought on radial growth of four major tree species in an Appalachian watershed[J]. Forest Ecology & Management, 2003, 17(1):409-425.