脊髓背角P物质、ERK1/CREB信号通路激活在大鼠椎间盘源性内脏痛形成机制中的作用

2019-05-28 11:30唐元章孙晨力郭玉娜
中国医药导报 2019年10期
关键词:信号通路椎间盘

唐元章 孙晨力 郭玉娜

[摘要] 目的 探讨大鼠自体退变髓核注射导致椎间盘源性内脏痛的发生机制。 方法 将24只雄性SD大鼠按照随机数字表法分为空白对照组、假手术组、髓核注射组,每组8只。髓核注射组大鼠在X线下行右侧腰交感干自体退变髓核悬液注射,假手术组注射同等剂量生理盐水,空白对照组不做任何处理。注射后14 d收集各组大鼠L1~3脊髓节段,采用免疫印迹法半定量分析P物质(SP)和细胞外调节蛋白激酶1/2(ERK1/2)、p-ERK1/2和cAMP反应元件蛋白(CREB)、p-CREB表达的变化。 结果 髓核注射组大鼠脊髓SP及p-ERK1、p-CREB表达较假手术组及空白对照组明显增多(P < 0.05),三组p-ERK2表达比较,差异无统计学意义(P > 0.05)。 结论 大鼠自体退变髓核注射导致椎间盘源性内脏痛的产生可能与相应脊髓节段SP释放及ERK1/CREB磷酸化信号传导通路的激活有关。

[关键词] 脊髓背角;内脏痛;椎间盘;大鼠;信号通路

[中图分类号] R338.21 [文献标识码] A [文章编号] 1673-7210(2019)04(a)-0007-04

Effect of substance P and ERK1/CREB signaling pathway activation in spinal dorsal horn on the mechanism of discogenic visceral pain development in rats

TANG Yuanzhang SUN Chenli GUO Yu′na YANG Liqiang WU Baishan WEI Ya NI Jiaxiang▲

Department of Pain Management, Xuanwu Hospital, Capital Medical University, Beijing 100053, China

[Abstract] Objective To investigate the molecular mechanisms of discogenic visceral pain resulted from autologous degenerative nucleus pulposus (NP) injection. Methods A total of 24 male SD rats were divided into na?觙ve group (n = 8), sham group (n = 8) and NP-treated group (n = 8) according to random number table method, with 8 rats in each group. Under fluoroscopic, autologous degenerative NP suspension was injected into right sympathetic trunk of rats in NP-treated group and the same dose of saline was administrated to right sympathetic trunk of animals in sham group, while the rats in the na?觙ve group did not receive any treatment. After 14 days postoperatively, the expression of substance P (SP), extracellular regulated protein kinases 1/2 (ERK1/2), p-ERK1/2, cyclic AMP response element binding protein (CREB) and p-CREB in the L1-L3 spinal cord of each group was analyzed by Western blot. Results The SP, p-ERK1, p-CREB expression in NP-treated group was significantly increased compared with those in na?觙ve group and control group (P < 0.05), while there was no significant difference in p-ERK2 expression among the three groups (P > 0.05). Conclusion The development of discogenic visceral pain induced by autologous degenerative NP injection is concerned with SP release and p-ERK1/CREB signaling pathway activation.

[Key words] Spinal dorsal horn; Visceral pain; Intervertebral disc; Rat; Signaling pathway

椎間盘前突出导致的交感神经炎症是顽固性内脏痛的原因,称为“腰椎间盘源性内脏痛”[1],采取连续腰交感神经抗炎治疗消除神经炎症,取得了确定的治疗效果。为了更好地揭示该疾病的机制,有研究采用大鼠自体退变髓核悬液交感神经干注射,证实了退变髓核可导致腰交感神经干炎症的形成[2]。脊髓P物质(substance P,SP)的释放和细胞外调节蛋白激酶(extracellular regulated protein kinases,ERK)、cAMP反应元件蛋白(cyclic AMP response element binding protein,CREB)磷酸化传导通路的激活会导致疼痛的形成,因此可以作为标志性物质来反映疼痛的形成[3-5]。因此,本研究拟采用大鼠椎间盘源性内脏痛模型,探讨腰交感神经干炎症对脊髓SP释放及ERK/CREB疼痛信号传导途径的影响,揭示椎间盘源性内脏痛的产生机制。

1 材料与方法

1.1 主要试剂

抗ERK1/2(ab17942)、p-ERK1/2(ab76165)、CREB(ab32515)、p-CREB(ab32096)抗体购于美国Abcam公司;抗SP抗体购于美国Santa Cruz(sc-9758)公司;造影剂(omnipaque-180 dye)购于通用电气药业(上海)有限公司。

1.2 实验动物及分组

实验动物为8~10周的雄性SD大鼠,体重250~300 g,由北京维通利华实验动物中心提供,动物质量合格证号:SCXK(京)2016-0006。所有实验动物适应环境3 d后进入实验。将24只大鼠按照随机数字表法分为空白对照组(na?觙ve组)、假手术组(sham组)和髓核注射组(NP-treated组),每组8只。

1.3 动物模型制作

本研究設计及流程经首都医科大学宣武医院伦理委员会审议通过。按照之前本课题组报道进行自体退变髓核腰交感干注射建立椎间盘源性内脏痛模型[2],穿刺位置确定后,缓慢注射预先准备的Co4/5到Co8/9椎间盘髓核的0.5 mL髓核混悬液于腰交感干周围。注射完毕后,缓慢退针,穿刺点局部压迫止血。sham组腰交感干周围同样方法注射0.5 mL生理盐水。na?觙ve组不行任何处理。

1.4 免疫印迹

各组大鼠在腰交感干注射后14 d采用Western blot法检测脊髓L1~3节段SP、ERK1/2、p-ERK1/2、CREB和p-CREB的含量。各样本于液氮中取出,先放入匀浆液中低温匀浆,4℃静置10 min,加入90 μL NP-40(10%)后剧烈振荡30 s,4℃ 800 g离心15 min,取上清,即为胞浆蛋白。按lowry法测定样本蛋白浓度后加入4倍样本缓冲液,95℃ 5 min变性,等量的样本加在10%硝酸纤维素膜上,3%牛血清封闭3 h后分别给予多克隆兔抗p-ERK1/2、ERK1/2抗体(1∶1000),多克隆兔抗CREB、p-CREB(1∶1000),多克隆羊抗SP(1∶200),4℃孵育过夜,TBST冲洗,3×15 min,加入碱性磷酸酶标记二抗(1∶1000),室温振荡孵育2 h,TBST冲洗,3×15 min,用NBT/BCIP显色反应条带,图像分析软件(Labworks software,Uvp Upland,CA,美国)分析条带灰度值,光密度法半定量分析数据。

1.5 统计学方法

采用SPSS 17.0软件进行统计分析。计量资料以均数±标准差(x±s)表示,单因素方差分析用于三组间比较,组间两两比较采用Dunnett-t法。以P < 0.05为差异有统计学意义。

2 结果

大鼠自体退变髓核腰交感干注射后14 d,NP-treated组大鼠脊髓SP含量(图1A)、p-ERK1含量(图1B)及p-CREB含量(图1C)较na?觙ve组和sham组升高(P < 0.05)。但是三组p-ERK2含量比较,差异无统计学意义(P > 0.05)。

3 讨论

椎间盘突出症是临床上较为常见的脊柱疾病之一,髓核漏出引起的脊神经炎症椎间盘后突出导致的脊神经根痛性症状的主要原因[6];而部分顽固型内脏痛患者可在腰椎核磁影像上发现椎间盘前突出及腰交感神经干炎症影像,称之为“椎间盘源性内脏痛”。我们在前期研究中应用CT引导下腰交感干置管,连续抗炎治疗椎间盘源性内脏痛患者,取得了明显效果[1],并在大鼠盘源性内脏痛模型中,证实了椎间盘源性内脏痛的交感神经炎症机制[2]。

本研究进一步验证了椎间盘源性内脏痛的脊髓痛觉信号传导通路。结果显示,腰交感干注射后14 d,NP-treated组大鼠脊髓SP、p-ERK1、p-CREB含量较na?觙ve组及sham组升高,但是三组p-ERK2含量比较差异无统计学意义。

SP是中枢神经系统内疼痛的重要调质和递质,它被认为是脊髓伤害性信息的传递物质[7-8],可以用SP作为疼痛发生的标志物来推测疼痛的发生。ERK分为ERK1和ERK2,统称为ERK1/2,是丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)信号通路成员之一。ERK主要分布于胞浆,磷酸化后的ERK起到将胞外信号传到核内的介导作用。近年来发现磷酸化ERK引起CREB的磷酸化激活(p-CREB),在炎性痛敏的产生和维持中发挥了关键作用[9-10]。在多种疼痛模型(辣椒素或完全弗氏佐剂致炎、内脏痛、电刺激等)中发现ERK信号通路参与脊髓水平伤害性信号调制和中枢敏感化的形成[11-15],而ERK激活引起CREB磷酸化核内转位诱导新的突触形成及多种因子、受体表达是主要途径之一[16-18]。因此,ERK1/2-CREB的磷酸化激活(p-ERK1/2)已经作为疼痛标志物来反映疼痛的形成[13]。

既往对于疼痛刺激的研究显示,ERK1/2磷酸化信号传导途径多呈同向变化,但是,近年来发现,ERK1和ERK2两种信号途径可能有不同的功能,ERK1和ERK2细胞内信号传导途径对于Ras依赖性细胞的信号传导和增殖有不同的作用,ERK2对于促进Ras依赖性细胞的增殖有促进作用,但是ERK1可以影响整个信号传导途径抑制ERK2的激活,影响细胞增殖[19]。后来又有研究者证实ERK1和ERK2分子结构N端的不同造成了信号传导途径的差异,进而影响细胞增殖及突触可塑性变化等[20]。在关于疼痛方面的研究中,Cheng等[21]发现在雌激素缺乏的大鼠中,间质性膀胱炎(内脏痛)可使ERK1磷酸化增多,但是对于ERK2磷酸化没有影响。本研究结果和他们的发现类似,髓核悬液交感干注射引起的交感神经炎性内脏痛使ERK1磷酸化明显增多,对ERK2磷酸化无影响,而且ERK1和ERK2的总量表达没有增多。虽然机制不清,但是或许提示ERK1/2信号通路的激活在内脏痛产生过程中有不同的作用。

腰交感干注射后14 d,脊髓SP和p-ERK1、p-CREB表達明显增多,我们推测:通过髓核注射使腰交感干产生炎症后,长时间重复的炎症刺激及异位电活动可导致脊髓释放大量的伤害性神经递质或调质如SP等,从而触发一系列胞内信号通路的级联反应,例如ERK1的磷酸化,使疼痛信号传至细胞内,转录因子(CREB)磷酸化而调节转录活性并影响蛋白质的合成最终在细胞水平表现为脊髓神经元的敏感化,导致痛觉传导通路及激活。

本研究结果提示:大鼠自体退变髓核腰交感注射导致交感神经炎症,可诱导脊髓SP释放及ERK1/CREB磷酸化信号传导通路的激活。提示SP释放及ERK1/CREB磷酸化信号传导通路参与了椎间盘源性内脏痛的形成,为椎间盘源性内脏痛的治疗选择新靶点提供了理论依据。

[参考文献]

[1] Tang YZ,Shannon ML,Lai GH,et al. Anterior herniation of lumbar disc induces persistent visceral pain:discogenic visceral pain:discogenic visceral pain [J]. Chin Med J(Engl),2013,126(24):4691-4695.

[2] 卞晶晶,唐元章,武百山,等.大鼠退变髓核腰交感神经干注射对交感神经干炎症因子表达的影响[J].中国实验诊断学,2014,18(10):1567-1570.

[3] Hughes JP,Chessell I,Malamut R,et al. Understanding chronic inflammatory and neuropathic pain [J]. Ann N Y Acad Sci,2012,1255:30-44.

[4] Li ZY,Huang Y,Yang YT,et al. Moxibustion eases chronic inflammatory visceral pain through regulating MEK,ERK and CREB in rats [J]. World J Gastroenterol,2017, 23(34):6220-6230.

[5] Henry JL. Future basic science directions into mechanisms of neuropathic pain [J]. J Orofac Pain,2004,18(4):306-310.

[6] de Souza Grava AL,Ferrari LF,Defino HL. Cytokine inhibition and time-related influence of inflammatory stimuli on the hyperalgesia induced by the nucleus pulposus [J]. Eur Spine J,2012,21(3):537-545.

[7] Millan MJ. The induction of pain:an integrative review [J]. Prog Neurobiol,1999,57(1):1-164.

[8] V Euler US,Gaddum JH. An unidentified depressor substance in certain tissue extracts [J]. J Physiol,1931,72(1):74-87.

[9] Miletic G,Pankratz MT,Miletic V. Increases in the phosphorylation of cyclic AMP response element binding protein(CREB)and decreases in the content of calcineurin accompany thermal hyperalgesia following chronic constriction injury in rats [J]. Pain,2002,99(3):493-500.

[10] Ji RR,Befort K,Brenner GJ,et al. ERK MAP kinase activation in superficial spinal cord neurons induces prodynorphin and NK-1 upregulation and contributes to persistent inflammatory pain hypersensitivity [J]. J Neurosci,2002,22(2):478-485.

[11] Wang H,Dai Y,Fukuoka T,et al. Enhancement of stimulation-induced ERK activation in the spinal dorsal horn and gracile nucleus neurons in rats with peripheral nerve injury [J]. Eur J Neurosci,2004,19(4):884-890.

[12] Aley KO,Martin A,McMahon T,et al. Nociceptor sensitization by extracellular signal-regulated kinases [J]. J Neurosci,2001,21(17):6933-6999.

[13] Ji RR,Gereau RW,Malcangio M,et al. MAP kinase and pain [J]. Brain Res Rev,2009,60(1):135-148.

[14] Luo X,Fitzsimmons B,Mohan A,et al. Intrathecal administration of antisense oligonucleotide against p38alpha but not p38beta MAP kinase isoform reduces neuropathic and postoperative pain and TLR4-induced pain in male mice [J]. Brain Behav Immun,2017. [Epub ahead of print]

[15] Wu XB,Cao DL,Zhang X,et al. CXCL13/CXCR5 enhances sodium channel Nav1.8 current density via p38 MAP kinase in primary sensory neurons following inflammatory pain [J]. Sci Rep,2016,6:34-36.

[16] Kim Y,Kwon SY,Jung HS,et al. Amitriptyline inhibits MAPK/ERK,CREB pathway and proinflammatory cytokines through A3AR activation in rat neuropathic pain models [J]. Korean J Anesthesiol,2018. [Epub ahead of print]

[17] Liu S,Liu YP,Huang ZJ,et al. Wnt/Ryk signaling contributes to neuropathic pain by regulating sensory neuron excitability and spinal synaptic plasticity in rats [J]. Pain,2015,156(12):2572-2584.

[18] Liu S,Liu YP,Yue DM,et al. Protease-activated receptor 2 in dorsal root ganglion contributes to peripheral sensitization of bone cancer pain [J]. Eur J Pain,2014, 18(3):326-337.

[19] Vantaggiato C,Formentini I,Bondanza A,et al. ERK1 and ERK2 mitogen-activated protein kinases affect Ras-dependent cell signaling differentially [J]. J Biol,2006,5(5):14-22.

[20] Marchi M,D'Antoni A,Formentini I,et al. The N-terminal domain of ERK1 accounts for the functional differences with ERK2 [J]. PLoS One,2008,3(12):e3873.

[21] Cheng Y,Keast JR. Effects of estrogens and bladder inflammation on mitogen-activated protein kinases in lumbosacral dorsal root ganglia from adult female rats [J]. BMC Neurosci,2009,10:156-163.

(收稿日期:2018-06-19 本文編辑:张瑜杰)

猜你喜欢
信号通路椎间盘
基于T2mapping成像的后纤维环与腰椎间盘突出相关性研究
ProDisc-C人工颈椎间盘在颈椎间盘突出症患者中的临床应用
后纤维环T2弛豫时间与腰椎间盘突出的相关性
乌骨鸡黑色素的研究进展
从信号通路角度分析中药治疗儿童白血病的研究进展
栽培稻抽穗期多样性影响机制
人工颈椎间盘置换术治疗急性颈椎间盘突出症12例
椎间盘源性腰痛的影像学诊断
椎间盘源性腰痛的诊断进展