马跃进,王 安,赵建国,郝建军,李建昌,马璐萍,赵伟博,吴 月
基于离散元法的凸圆刃式深松铲减阻效果仿真分析与试验
马跃进,王 安,赵建国,郝建军,李建昌,马璐萍,赵伟博,吴 月
(河北农业大学机电工程学院,保定 071001)
针对深松作业阻力大、能耗高等问题,该文在深松铲铲尖顶部设计了一种能有效减阻降耗的凸圆刃。以安装凸圆刃的凸圆刃式深松铲为研究对象,建立了土壤模型。为提高土壤模型的准确性,选用非线性粘结弹性塑形接触模型(edinburgh elasto-plastic adhesion model,EEPA),对凸圆刃式深松铲进行耕作阻力虚拟仿真。利用插件将颗粒与深松铲接触作用力导出,分析凸圆刃式深松铲应力和形变,校验其结构强度;采用EDEM软件分析不同耕深和速度对深松耕作阻力的影响,并以国标深松铲为比较对象,分析了凸圆刃式深松铲的减阻效果;通过田间试验验证了土壤模型和凸圆刃式深松铲设计的准确性和可行性。田间试验结果表明,与国标深松铲相比,凸圆刃式深松铲耕作阻力平均降低了10.24%。仿真结果与实测值较为接近,数值误差在3%~10%,证明土壤模型基本符合土壤的力学特性,能近似代替真实的土壤环境。该研究证明了采用离散元法分析深松耕作阻力可行性,可为进一步优化深松铲结构提供参考。
农业机械;离散元法;深松;试验;凸圆刃;耕作阻力
深松可以改善土壤的耕层结构,增强土壤的通透性,提高土壤蓄水能力和改善植物根系生长环境,从而提高作物的产量[1-2]。由于土壤工况复杂多变,欲通过田间试验的方法,研究土壤的变形、破碎和触土部件的受力状态,不仅过程繁琐,而且很难获得理想的结果。因此,Mouazen和张强等[3-4]采用有限元方法(finite element method,FEM)研究土壤对深松铲阻力作用,其把土壤假设成一个时间和空间上的连续介质模型,但其仅表征了土壤物理特性而未考虑土壤颗粒特性[5]。此外,文献[6]采用光滑质子动力学方法(smoothed particle hydrodynamics,SPH),该方法把土壤颗粒简化成单一的质点,并未考虑颗粒形状的影响。由于土壤是由呈胶状或凝聚状不同粒径的岩石风化矿物质颗粒堆积而成[7],本身具有离散性,耕作过程中土壤的运动、变形和撕裂用FEM或SPH方法处理存在较大的误差。于是Cundall和Strack[8]提出一种以不连续、独立运动单体为研究对象的离散元方法(discrete element method,DEM),单体的运动和力由与之接触单体之间的静态力和牛顿第二定律决定。采用离散元方法研究耕整地机械触土部件受力和土壤扰动情况,改变了将土壤视为连续单元的方式,与实际土壤条件较类似。Shmulevich等[9]通过对推土板的虚拟仿真分析研究发现,离散元方法更适合分析土壤高塑性变形和颗粒流动问题。目前,基于EDEM软件应用的土壤颗粒接触模型多数只考虑土壤颗粒间的接触力和摩擦力,只有少部分同时考虑土壤颗粒间的黏聚和塑性形变。赵淑红等[10]采用Hertz-Mindlin 无滑动接触模型研究了深松铲铲尖土壤颗粒的运动轨迹,并根据运动轨迹拟合设计了深松铲。但无滑动接触模型只考虑土壤间的接触力和摩擦力,并不能研究土壤塑性形变和黏性作用对深松铲尖的影响;Hang Chengguang和方会敏等[11-12]采用Hertz-Mindlin粘结模型,表征土壤的黏聚力,对土壤的扰动机理进行了研究。当颗粒间的接触力达到粘结模型最大可承受的法向或切向剪切应力时,颗粒间的粘结键断裂,但断裂后的颗粒不会发生二次黏聚,与实际的土壤颗粒存在一定差异;王金武等[13]采用Hertz-Mindlin JKR粘结模型,表征了含水土壤的黏聚力,分析了深埋秸秆还田机耕作业时土壤和秸秆的运动轨迹,但其接触模型并不能分析土壤塑性形变的影响;Walton等[14]针对塑性材料变形问题创建迟滞弹簧模型(hysteretic spring model,HSM),表征物料的塑性形变,以某一设定值为标准,当颗粒间接触未超过该值时,颗粒间接触按线弹性接触模型计算;反之,颗粒间接触按照塑性接触模型计算。Janda等[15-16]通过土壤在静态载荷作用下的力学特性仿真分析和后掠式深松铲在无黏性土壤中的仿真分析,验证了HSM的准确性;Ucgul等[17-18]将迟滞弹簧模型(HSM)和法向粘聚力模型(linear cohension model,LCM)结合来表征土壤的塑性形变和黏聚力,解决了黏性土壤塑性形变问题。郑凯等根据耕作层、犁底层和心土层的土壤性质,设计了具有不同滑切角的折线深松铲柄,通过试验分析,验证了HSM+ LCM接触模型和设计的合理性[19]。
近年来,HSM和LCM结合,常用来作为土壤颗粒的接触模型[17-20]。但研究发现HSM+LCM模型的法向力随颗粒间迭代量呈线性关系,实际在土壤挤压变形过程中塑性形变和黏聚力是非线性,与土壤挤压变形过程有一定差别。因此本文采用非线性粘结弹性塑形接触模型(edinburgh elasto-plastic adhesion model,EEPA),建立土壤模型并对自行设计的凸圆刃式深松铲耕作阻力进行分析和验证。
图1 凸圆刃式深松铲结构示意图
如图2所示,设计中,凸圆刃刃口曲线形式选用一元二次函数,并建立坐标系,曲线的方程为
=2++(2)
求导得
= 2+(3)
= -6.594×10–32+5.573×10–1+64.471 (4)
注:o为坐标原点;x为刃口曲线横坐标,mm;y为刃口曲线纵坐标,mm;AB为圆弧刃线;bA为在凸圆刃A点的滑切角,(°);g为深松铲入土角[24],g=23°;l为深松铲铲尖长度[24],l=165 mm;β凸圆刃刃口任意点滑切角,(°);n为凸圆刃刃口任意点法向方向;v为深松铲的运动速度,m·s-1。
根据文献[25-26],土壤颗粒的形状通常为核状、条状、片状、块状等几种形式,如图3所示。土壤颗粒的粒径越小,仿真计算用时越长,为提高计算效率节省计算时间,用半径10 mm的球形颗粒分别组合成核状、条状、片状和块状4种形式。因犁底层土壤团聚现象十分明显,为了模拟的准确性,犁底层土壤采用半径为1.5~3.5 mm球形颗粒填充的团聚体模拟[25];土壤颗粒密度为2 600 kg/m3,土壤剪切模量1´106Pa,土壤颗粒泊松比0.3[27]。土壤和土壤之间恢复系数0.6[16],土壤间静摩擦系数和滚动摩擦系数设置参考文献[19],如表1所示。
核状 Nucleation条状 Strip片状1 Flake 1片状2 Flake 2块状 Lump团聚体 Aggregate
表1 土壤间接触参数[19]
Table 1 Contact parameters between soils[19]
注:fn为颗粒间法向力,N;δ为颗粒间的法向重叠量,m;f0为颗粒间现存的接触力,如范德华力或静电力等,N;k1为初始加载刚度,N·m–1;k2为卸载/重新加载刚度,N·m–1;fmax为颗粒间最大粘结力,N;–kabh为粘结力衰减刚度,N·m–1。
由于长期的浅翻、旋耕作业和车轮碾压,致使耕作层和心土层之间形成一层坚硬密实的犁底层,故仿真用土壤模型分为耕作层、犁底层和心土层3层。土壤耕作层厚度在150 mm左右[33],犁底层平均厚度约为120 mm[34],通过土壤颗粒模型构建和接触模型的选取,建立1 200 mm(长)´800 mm(宽)´600 mm(高)虚拟土槽。参考文献[26],在填充虚拟土槽时,条状、片状1、片状2的颗粒数,在各土层的占比基本一致,变化不大;而核状颗粒数量占比随土层深度的增而增加,块状颗粒占比随土层深度增加而减少。因此,虚拟土槽仿真设置0~150 mm为耕作层,尺寸分布为0.95~1.05,随机填充核状2 948个、条状1 129个、片状1共1 285个、片状2共1 112个和块状565个;150~270 mm为犁底层,尺寸分布(生成颗粒半径同原始颗粒土壤模型半径的倍数)为1,随机填充粘聚体18 494个;270~570 mm为心土层,尺寸分布为0.95~1.05,随机填充核状24 980个、条状2 185个、片状1共3 615个、片状2共1 469个和块状57个。
采用INVENTOR三维软件创建的国标深松铲和凸圆刃式深松铲的几何模型,材料选用65 Mn,材料密度 7 820 kg/m3,弹性模量2.11×10-11N/m2,屈服极限强度430 MPa,泊松比0.288。深松铲和土壤之间恢复系数为0.6。深松铲同耕作层、犁底层和心土层之间的静摩擦因数分别为0.313、0.639和0.427;滚动摩擦因数分别为0.107、0.13和0.078[19]。三维模型和仿真土槽如图4所示。
图5 土槽与深松铲仿真模型
利用土槽仿真模型,对凸圆刃式深松铲和国标深松铲进行仿真试验,检验凸圆刃的减阻效果。根据虚拟土槽长度和深松深度农艺要求,设置深松铲作业速度为1.14和1.42 m/s,耕深250和350 mm。仿真Rayleigh时间步长采用自动时间步,网格尺寸单元为2.5倍的最小颗粒半径,进行离散元仿真分析。深松铲耕作阻力仿真曲线如图6所示。
如图6可知:凸圆刃式深松铲耕作阻力小于国标深松铲耕作阻力。随着深松铲从左侧进入虚拟土槽,深松铲的阻力从0开始逐渐增加,深松铲完全进入虚拟土槽后阻力基本处于稳定状态。因在仿真过程中深松铲前面的土壤颗粒的积累,导致耕作阻力增加,仿真曲线呈现上升趋势。采用深松铲完全入土后的平均阻力来模拟耕作阻力,结果如表2所示。耕深250 mm、作业速度1.14 m/s,耕深250 mm、作业速度1.42 m/s,耕深350 mm、作业速度1.14 m/s和耕深350 mm、作业速度1.42 m/s 的4种作业条件下,与国标深松铲相比,凸圆刃式深松铲的平均耕作阻力分别降低了7.89%、7.19%、7.26%和8.33%。仿真结果表明凸圆刃式深松铲具有减阻效果,平均减阻7.56%。
为了校验凸圆刃式深松铲的结构强度,本文采用EDEM_Addin_1.0.0接口,将仿真过程中土壤模型颗粒同凸圆刃式深松铲上的接触作用力导入ANSYS WORKBENCH 17.0中;对凸圆刃式深松铲进行网格划分,共划分633,得到1 412个节点;由于深松铲在铲柄端部由螺栓固定在机架上,所以对深松铲柄端部添加固定约束。有限元分析结果如图7所示,凸圆刃式深松铲工作时最大变形量发生在铲尖处,为8.68 mm;凸圆刃式深松铲其整体所受应力较小且多在80 MPa以下,在铲柄固定处应力最大为123.36 MPa,但远小于材料的屈服极限强度430 MPa,最大应力小于材料本身的许用应力[35](150~286 MPa),故凸圆刃式深松铲在工作状态下满足设计要求。
图6 深松铲耕作阻力仿真曲线
表2 凸圆刃式深松铲与对照深松铲耕作阻力仿真结果
图7 凸圆刃式深松铲有限元分析结果
为了进一步验证凸圆刃式深松铲设计的合理性并判断土壤模型构建的合理性,以牵引阻力为指标,于2018年3月在河北省定州市新兴庄村农田进行试验。试验地土壤质地为壤土,地势平坦,土壤紧实度、土壤容重和土壤含水率分别为2.215 MPa、1.453 g/cm3和19.8%。深松铲牵引阻力测量采用电阻应变片测力方法,试验设备主要包括东方红LG150-4拖拉机、深松机架(开元刀神1S-200深松机)、凸圆刃式深松铲、国标深松铲[21]、DH5908无线动态应变测试系统(量程:-30 000~+30 000,系统不确定度:不大于0.5%±3)、SL-TYD土壤硬度计(0~400 mm,0~50 kg/cm2)、BX120-5AA电阻式应变片(量程:120W,灵敏度:2.08,敏感栅尺寸:5 mm´3 mm)、环刀(体积:100 cm2)、BSA224S电子天平(量程:300 g,精度:0.001 g)、DGG-9626A电热恒温鼓风干燥箱(北京雅士林试验设备有限公司)、秤砣(质量:10 kg)、钢板尺(量程50 mm,精度:1 mm)、卷尺(量程:30 m,精度:1 mm)502胶水等。
深松铲由河北农哈哈机械集团有限公司加工,材料为65 Mn,深松铲实物如图8所示。将电阻式应变片粘贴在深松铲前后两侧。采用屏蔽线按照半桥连接方式将电阻应变片接入到东华DH5908无线动态应变采集器中。检查无误后,固定铲柄,在铲尖一侧垂直向下添加秤砣,每组试验重复3次,对深松铲进行标定[36],并采用Duncan氏新复极差法处理得出均值和标准误,结果如表3所示。由表3得出深松铲受力同应变片电阻值的关系,其标定结果为
将国标深松铲和凸圆刃式深松铲安装在同一深松机架上。田间试验速度和耕深同仿真试验相同,拖拉机的牵引速度设置1.14(低Ⅲ档)和1.42 m/s(低Ⅳ档)2个水平。耕深设置250和350 mm 2个水平。动态应变测试系统采样频率10 Hz,选取地势平坦的地块进行田间试验(图9),每组试验进行1次,待工作稳定后采集耕作阻力。分析对比田间试验同虚拟仿真阻力结果相似程度和凸圆刃式深松铲的减阻效果。
图8 试验用深松铲
表3 深松铲标定结果
图9 田间试验
图10为2种深松铲耕作阻力田间试验对比曲线。由图10可知,耕作阻力随时间变化呈现不规律的上下浮动,主要是由土壤条件差异和土壤中植物根系造成。总体上,凸圆刃式深松铲耕作阻力小于国标深松铲耕作阻力,表明凸圆刃式深松铲有较好的减阻效果。
图10 深松铲耕作阻力试验曲线
表4为2种类型深松铲在相同工况条件下的耕作阻力平均值。耕深250 mm、作业速度1.14 m/s,耕深250 mm、作业速度1.42 m/s,耕深350mm、作业速度1.14 m/s和耕深350 mm、作业速度1.42 m/s的4种条件下,与国标深松铲相比凸圆刃式深松铲的耕作阻力分别降低了11.57%、10.42%、9.29%和9.69%。结果表明,凸圆刃式深松铲具有减阻的效果,平均减阻10.24%。田间试验结果同仿真结果相比,误差在3%~10%。分析认为误差存在的原因:1)田间工况复杂,如存在秸秆、植物根系、碎石等,仿真中未能考虑到这些因素的存在;2)同仿真相比,田间地表平整度,差易造成数据的波动。3)仿真是在1 200 mm(长)´800 mm(宽)´500 mm(高)虚拟土槽中进行,土槽的刚性墙会对土壤颗粒的移动产生一定的影响,造成耕作阻力与实际情况不同。总体而言,仿真结果与田间试验结果基本一致,表明土壤模型基本符合实际土壤的力学特性,进一步验证了凸圆刃式深松铲具有较好的减阻效果。同时由表2和表4可知,耕深和作业速度对耕作阻力有一定的影响,耕作阻力随耕深或作业速度的增加而增加。
表4 深松铲耕作阻力试验结果
1)基于华北平原土壤特性,应用离散元软件EDEM建立了适用于壤土的土壤模型。采用非线性粘结弹性塑形接触模型(EEPA)来表征土壤的应力—应变关系。通过对比分析虚拟仿真与田间试验验的深松阻力值,仿真值与实测值之间误差在3%~10%,表明土壤模型的力学特性基本符合华北平原地区的土壤特性。
2)为降低深松作业阻力,在铲尖顶部设计了凸圆刃。田间试验结果表明,安装凸圆刃的凸圆刃式深松铲具有减阻的效果,与国标深松铲相比,耕作阻力平均降低10.24%。
3)利用EDEM_Addin插件将土壤颗粒同凸圆刃式深松铲的接触力导入到ANSYS WORKBENCH中对凸圆刃式深松铲进行静力学分析分析。凸圆刃式深松铲应力主要集中在铲柄固定处,最大应力值为123.36 MPa,最大变形量发生在铲尖处,为8.68 mm,满足设计强度需求。
4)通过仿真分析和田间试验研究发现。耕深和作业速度对耕作阻力影响显著,耕深或作业速度越大,耕作阻力越大。
现有深松铲类型较多,本文对照仅用国标深松铲深松铲,不能代替全部,后续将进一步同其他深松铲进行耕作阻力对比研究。此外,试验仅从阻力角度分析了凸圆刃式深松铲的减阻效果。下一阶段还需从土壤扰动系数、土壤蓬松度等多项指标,综合评定凸圆刃式深松铲的作业性能。
[1] 何明,高焕文,董培岩,等. 一年两熟地区保护性耕作深松试验[J]. 农业机械学报,2018,49(7):58-63. He Ming, Gao Huanwen, Dong Peiyan, et al. Sub-soiling experiment and research in two crops a year and conservation tillage adopted area[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(7): 58-63. (in Chinese with English abstract)
[2] Pikul J L, Aase J K. Water Infiltration and storage affected by subsoiling and subsequent tillage[J]. Soilence Society of America Journal, 2003, 67(3): 859-866.
[3] Mouazen A M, Neményi M. Finite element analysis of subsoiler cutting in non-homogeneous sandy loam soil[J]. Soil & Tillage Research, 1999, 51(1/2): 1-15.
[4] 张强,张璐,于海业,等. 复合形态深松铲耕作阻力有限元分析与试验[J]. 农业机械学报,2012,43(8):61-65. Zhang Qiang, Zhang Lu, Yu Haiye, et al. Finite element analysis and experiment of soil resistance of multiplex- modality subsoile[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(8): 61-65. (in Chinese with English abstract)
[5] 傅巍,蔡九菊,董辉,等. 颗粒流数值模拟的现状[J]. 材料与冶金学报,2004,3(3):172-175. Fu Wei, Cai Jiuju, Dong Hui, et al. Current status of numerical simulation of granular flow[J]. Journal of Materials and Metallurgy, 2004, 3(3): 172-175. (in Chinese with English abstract)
[6] 刘宏俊,韩济远,陈佳奇,等. 丘陵地区刚性镇压轮性能仿真与试验[J]. 农业机械学报,2018,49(11):114-122. Liu Hongjun, Han Jiyuan, Chen Jiaqi, et al. Performance simulation and experiment on rigid press wheel for hilly area [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(11): 114-122. (in Chinese with English abstract)
[7] Craig R F. Craig's Soil Mechanics[M]. London: Spon Press, 2004.
[8] Cundall P A, Strack O D L. A discrete numerical mode for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65.
[9] Shmulevich I, Horn R. State of the art modeling of soil-tillage interaction using discrete element method[J]. Soil & Tillage Research, 2010, 111(1): 41-53.
[10] 赵淑红,王加一,陈君执,等. 保护性耕作拟合曲线型深松铲设计与试验[J]. 农业机械学报,2018,49(2):82-92. Zhao Shuhong, Wang Jiayi, Chen Junzhi, et al. Design and experiment of fitting curve subsoiler of conservation tillage[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(2): 82-92. (in Chinese with English abstract)
[11] Hang Chengguang, Gao Xijie, Yuan Mengchan, et al. Discrete element simulations and experiments of soil disturbance as affected by the tine spacing of subsoiler[J]. Biosystems Engineering, 2017, 168: 73-82.
[12] 方会敏,姬长英,张庆怡,等. 基于离散元法的旋耕刀受力分析[J]. 农业工程学报,2016,32(21):54-59. Fang Huimin, Ji Changying, Zhang Qingyi, et al. Force analysis of rotary blade based on distinct element method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(21): 54-59. (in Chinese with English abstract)
[13] 王金武,王奇,唐汉,等. 水稻秸秆深埋整秆还田装置设计与试验[J]. 农业机械学报,2015,46(9):112-117. Wang Jinwu, Wang Qi, Tang Han, et al. Design and experiment of rice straw deep buried and whole straw returning device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(9): 112-117. (in Chinese with English abstract)
[14] Walton O R, Braun R L. Stress calculations for assemblies of inelastic speres in uniform shear[J]. Acta Mechanica, 1986, 63(1-4): 73-86.
[15] Janda A, Jin Y O. DEM modeling of cone penetration and unconfined compression in cohesive solids[J]. Powder Technology, 2016, 293: 60-68.
[16] Ucgul M, Fielke J M, Saunders C. 3D DEM tillage simulation: Validation of a hysteretic spring (plastic) contact model for a sweep tool operating in a cohesionless soil[J]. Soil & Tillage Research, 2014, 144(4): 220-227.
[17] Ucgul M, Fielke J M, Saunders C. Three-dimensional discrete element modelling (DEM) of tillage: Accounting for soil cohesion and adhesion[J]. Biosystems Engineering, 2015, 129: 298-306.
[18] Ucgul M, Fielke J M, Saunders C. Three-dimensional discrete element modelling of tillage: Determination of a suitable contact model and parameters for a cohesionless soil[J]. Biosystems Engineering, 2014, 121(2): 105-117.
[19] 郑侃,何进,李洪文,等. 基于离散元深松土壤模型的折线破土刃深松铲研究[J]. 农业机械学报,2016,47(9): 62-72. Zheng Kan, He Jin, Li Hongwen, et al. Research on polyline soil-breaking blade subsoiler based on subsoiling soil model using discrete element method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(9): 62-72. (in Chinese with English abstract)
[20] 石林榕,赵武云,孙伟. 基于离散元的西北旱区农田土壤颗粒接触模型和参数标定[J]. 农业工程学报,2017,33(21):181-187. Shi Linrong, Zhao Wuyun, Sun Wei. Parameter calibration of soil particles contact model of farmland soil in northwest arid region based on discrete element method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(21): 181-187. (in Chinese with English abstract)
[21] 全国农业机械标准化技术委员会. 深松铲和深松铲柄:JB/T9788-1999 [S]. 北京.中国标准出版社.1999:2-6
[22] 寻怀义. 滑切理论探讨[J]. 农业机械学报,1979(4): 107-111.
[23] 庞声海. 关于滑切理论与滑切角的选用[J]. 华中农学院学报,1982(2):64-69.
[24] 西涅阿科夫,李福桂,高尔光,等. 土壤耕作机械的理论和计算[M]. 北京:中国农业机械出版社,1981.
[25] 王燕. 基于离散元法的深松铲结构与松土效果研究[D].长春:吉林农业大学,2014. Wang Yan. Simulation Analysis of Structure and Effect of the Subsoiler Based on DEM[D]. Changchun: Jilin Agricultural University, 2014. (in Chinese with English abstract)
[26] 王宪良,胡红,王庆杰,等. 基于离散元的土壤模型参数标定方法[J]. 农业机械学报,2017,48(12):78-85. Wang Xianliang, Hu Hong, Wang Qingjie, et al. Calibration method of soil contact characteristic parameters based on DEM theory[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(12): 78-85. (in Chinese with English abstract)
[27] Das B M. Advanced soil mechanics[M]. London: TAYLOR & FRANCIS, 2008.
[28] Morrissey J P. Discrete Element Modelling of Iron Ore Pellets to Include the Effects of Moisture and Fines[D]. Edinburgh : University of Edinburgh, 2013.
[29] Thakur S C, Morrissey J P, Sun J, et al. Micromechanical analysis of cohesive granular materials using the discrete element method with an adhesive elasto-plastic contact model[J]. Granular Matter, 2014, 16(3): 383-400.
[30] EDEM 2018 documentation: Version 2018[EB/OL]. (2018-07-14).https://www.edemsimulation.com/login/?redirect_to=%2Fedem-2018-0-documentation. [2018-09-21]
[31] John P M, Subhash C T, Jin Y O. EDEM contact model:adhesive elasto-plastic model[EB/OL]. (2014-06-23).https:// www.edemsimulation.com/resources-learning. [2018-09-21]
[32] EDEM 2018 soils starter pack: compressible sticky materia [EB/OL]. https://www.edemsimulation.com. [2018-09-21].
[33] 石彦琴,高旺盛,陈源泉,等. 耕层厚度对华北高产灌溉农田土壤有机碳储量的影响[J]. 农业工程学报,2010,26(11):85-90. Shi Yanqin, Gao Wangsheng, Chen Yuanquan, et al. Effect of topsoil thickness on soil organic carbon in high-yield and irrigated farmland in North China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(11): 85-90. (in Chinese with English abstract)
[34] 郭家萌,刘振朝,高强,等. 深松对玉米产量和养分吸收的影响[J]. 水土保持学报,2016,30(2):249-254. Guo Jiameng, Liu Zhenchao, Gao Qiang, et al. Effect of subsoiling on yield and nutrient uptake of maize[J]. Journal Soil and Water Conservation, 2016, 30(2): 249-254. (in Chinese with English abstract)
[35] 郑侃,何进,李洪文,等. 反旋深松联合作业耕整机设计与试验[J]. 农业机械学报,2017,48(8):61-71. Zheng Kan, He Jin, Li Hongwen, et al. Design and experiment of combined tillage implement of reverse-rotary and Subsoiling [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(8): 61-71. (in Chinese with English abstract)
[36] 李惠利. 深松铲工作性能实时测试系统的研究[D]. 保定:河北农业大学,2017. Li Huili. Research on Real-time Working Performance Test System of the Deep Shovel [D]. Baoding: Agricultural University of Hebei, 2017. (in Chinese with English abstract)
Simulation analysis and experiment of drag reduction effect of convex blade subsoiler based on discrete element method
Ma Yuejin, Wang An, Zhao Jianguo, Hao Jianjun, Li Jianchang, Ma Luping, Zhao Weibo, Wu Yue
(071001,)
Due to long-term shallow ploughing, rotary tillage and tractor wheel rolling, a hard and compact Plow pan layer is formed between the tillage layer and the subsoil layer. The presence of plow pan layer can inhibit roots growing and prevent material transfer between tillage layer and the susoil layer, thus reducing crop yield. The subsoiling can improve the soil water storage, improve soil water retention capacity, promote roots growth, and effectively improve crop yield effectively, but the resistance and energy consumption of subsoiling is high. The convex blade subsoiler was designed to reduce the subsoiling resistance in the paper. The convex blade subsoiler was mainly composed of subsoiler handle, subsoiler tip and convex edge, in the process of subsoiling, the convex edge on the subsoiler tip slip cutting the soil on the upper surface of the subsoiler tip, which reducing the pressure of the soil on the upper surface of the subsoiler tip, thereby reducing the subsoiling resistance. Firstly, the curve expression of convex blade edge was calculated based on the sliding cutting condition. And then, the convex blade subsoiler with convex blade and stander subsoiler were selected as the study object by EDEM simulation and field experiment, which used to verify the drag reduction effect of convex blade and the accuracy of soil simulation model. Taking North China Plain as the research object, the physical parameters of soil particle was determined, and the soil geometry model which consists of tillage layer, the subsoil layer and plow pan layer was constructed by 3D graphics software NVENTOR. In order to improve the accuracy of the soil model, the Edinburgh Elasto-Plastic Adhesion Model was used as soil contact model to simulate the tillage resistance of subsoiler. The EDEM software was employed to analyze the drag reduction effect of convex blade subsoiler at different tillage depths and forward speeds, which had been compared with the stander subsoiler. The experiment results showed that convex blade subsoiler had a drag reduction effect compared with stander subsoiler, and the average drag reduction was 7.56%. In addition, the EDEM_Addin plug-in was used to introduce the contact force of the soil with convex blade subsoiler into ANSYS WORKBENCH 17.0 for finite element analysis, and the results of finite element analysis showed that the convex blade subsoiler stress was mainly concentrated in the fixed position of the subsoiler handle, the maximum stress value was 123.36 MPa and the maximum deformation variable was 8.68 mm at the tip of the subsoiler, which meetting the design requirements. In order to verify the rationality of the designed convex blade subsoiler and judge the rationality of the constructed soil model, the field experiments were carried out according to the tillage depth and the working speed of the simulation. The field experiments proved that the convex blade subsoiler had dragged reduction effect compared with stander subsoiler, and the average drag reduction was 10.24%, and compared with the simulation results, the numerical error was 3%-10%. the tillage depth and forward speed could have an appreciable impact on tillage resistance and the tillage resistance increased with the tillage depth and forward velocity. The results of simulation and experiment showed that the proposed soil model basically matched the soil mechanical properties in North China Plain and could approximating substitute the real soil environment. The study proved that it was feasible to analyze the tillage resistance of the subsoiler by using the DEM and it was of great significance to further optimize the structure of subsoiler.
agricultural machinery; discrete element method;subsoiling; experiment; convex blade; tillage resistance
马跃进,王 安,赵建国,郝建军,李建昌,马璐萍,赵伟博,吴 月. 基于离散元法的凸圆刃式深松铲减阻效果仿真分析与试验[J]. 农业工程学报,2019,35(3):16-23. doi:10.11975/j.issn.1002-6819.2019.03.003 http://www.tcsae.org
Ma Yuejin, Wang An, Zhao Jianguo, Hao Jianjun, Li Jianchang, Ma Luping, Zhao Weibo, Wu Yue. Simulation analysis and experiment of drag reduction effect of convex blade subsoiler based on discrete element method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(3): 16-23. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.03.003 http://www.tcsae.org
10.11975/j.issn.1002-6819.2019.03.003
S222.12+9
A
1002-6819(2019)-03-016-08
2018-09-26
2019-01-04
国家“十三五”科技支撑重大项目粮食丰产增效科技创新(2017YFD0300907)
马跃进,教授,博士生导师,主要从事农业机械装备与农机材料表面改性及涂层制备方面的研究。Email:mayuejin58@126.com
中国农业工程学会会员:马跃进(E041200452S)