罗兴锜,闫思娜,冯建军,朱国俊,孙帅辉,陈森林
气液两相离心泵受力特性分析
罗兴锜,闫思娜,冯建军,朱国俊,孙帅辉,陈森林
(西安理工大学水利水电学院,西安 710048)
离心泵在气液两相流工况运行时,叶轮内部流动极不稳定,为了研究叶轮在该工况下的受力情况,该文采用计算流体动力学的方法对某一气液两相离心泵进行了研究。基于欧拉-欧拉非均相流模型及SST湍流模型求解气液两相流离心泵的三维湍流流场,并将数值模拟结果与试验数据对比,两者吻合较好。通过对不同含气率工况下的离心泵瞬态特性进行分析发现,叶轮所受轴向力的大小随着时间的变化而波动,进口含气率达到3%时,轴向力脉动出现明显的峰值,这些峰值所对应的频率均为叶轮转频,随着进口含气率的增加,出现了2个及以上的峰值,进口含气率为7%工况的轴向力脉动峰值是3%工况的3倍,是5%工况的2倍;叶轮所受径向力大小及径向力脉动幅值均随进口含气率的增加呈先增加后减小的趋势,各工况下径向力脉动峰值所对应的频率均为叶片转频的倍数;通过分析进口含气率分别为1%、3%及7%工况下叶轮中间截面的含气率分布、涡量分布以及静压分布可得,叶轮内含气率较高区域的涡量也较大,而该区域的压力分布也不均匀,由此可见,叶轮内气液分布不均导致了叶轮内的压力分布不均,从而使叶轮受力不均。
泵;两相流;数值模拟;径向力;轴向力
离心泵以其高扬程、高效率以及结构简单等优点广泛应用于各个领域[1-3]。当离心泵传输工质为气液混合物时,泵的外特性会发生改变。Murakami等[4]通过对气液两相流泵进行了试验研究证实了离心泵的传输介质为气液两相流会使泵的扬程降低,同时,作者采用高速摄影技术来观察不同工况下叶轮内气泡的变化规律,并将叶轮内的流型分为孤立气泡流、泡状流、段塞流以及分离流4类。Lea和Bearden[5]通过试验发现进口压力、液相流量以及含气率对气液两相离心泵外特性有很重要的影响,并且指出叶轮内气体聚集造成了泵的扬程降低。Barrios和Gamboa[6-7]对泵进行了可视化试验,采用高速摄影技术观察到叶轮内的气泡尺寸随着含气率的升高而增大,随着泵转速的升高而减小,从而影响泵的外特性。
气液两相流动不但会使泵的外特性发生恶化,还会造成泵的振动和噪音等不稳定现象的产生。气液两相流泵在实际运行中叶轮受力大小和方向会随时间发生变化,即会受到非定常力的作用,这些非定常力直接影响了泵运行的稳定性。径向力可以理解为叶轮流场对叶轮产生的作用力在半径方向上的分力[8],王洋等[9]和江伟等[10]采用数值计算的方法对离心泵的径向力特性进行了研究,指出变化的径向力会使泵的轴承受到交变应力的作用,从而泵轴产生定向的挠度,使轴封间隙变得不均匀从而导致泄漏。Barrios[11]通过对离心泵进行机理研究发现气液两相之间的滑移速度会造成气体在叶轮中的聚集,造成叶轮流场及叶片表面的压力分布不均匀,接着,钱晨等[12]研究了出流条件对多级泵径向力的影响,通过对内流场分析发现叶轮内部荷载分布不均会导致叶轮受到的径向力发生变化。轴向力会拉动叶轮轴向移动,产生该力的主要因素是叶轮前后盖板不对称及传输介质对叶轮的动反力[1]。刘瑞祥等[13-15]分别对离心式泵的轴向力进行试验及数值模拟研究,结果表明叶轮所受轴向力过大,会烧毁转动轴承并且损坏轴端密封,甚至造成断轴事故,而非定常轴向力的产生,同样会使轴承及轴端密封受到交变应力,加快材料的损坏速率。
目前对气液两相流离心泵产生振动的研究较少,特别是叶轮受力特性对泵的影响机理还不是很明确。国内外很多学者[16-21]采用CFD技术研究气液两相流泵的外特性,并将数值模拟结果与试验结果进行对比,验证了数值模拟的准确性。为此,本文针对某一气液两相离心泵,采用CFD技术进行非定常数值模拟研究,分析了不同含气率工况下叶轮所受轴向力和径向力的大小及脉动值的变化、离心泵内部流场对叶轮受力的影响等。
本文选用德国布伦瑞克工业大学的某一离心泵模型[22]进行研究,该实验室公开了该泵的几何参数、单相工况以及气液两相工况的试验结果。模型泵为闭式中比转速离心泵,该泵的主要的几何参数见表1所示。
表1 离心泵主要参数
图1为叶轮0.5倍叶高处的截面图,叶轮叶片骨线由2段半径分别为169和270 mm的圆弧组成,在叶片的压力面和吸力面处各设置了8个监测点测量该布点处的压力。计算域由进口管、叶轮、环形室、叶轮间隙以及出口管等5部分组成。该模型采用环形腔作为离心泵的扩压器,从而避免了叶轮叶片与蜗壳式扩压器的隔舌产生动静干涉。12个出口管在环形腔的圆周方向上均匀布置。为了避免叶轮进口处回流对流场预测的影响,对该模型的进口管进行了加长处理,延长至进口管直径的2.5倍[23],此时进口管长度为520 mm。
注:MP1~8为叶轮叶片吸力面侧的8个压力测点,MP1¢~8¢为叶轮叶片压力面侧的8个压力测点。
图2为数值计算模型的面网格,采用UG软件对该计算模型进行三维建模,并采用ICEM软件对三维模型的所有部件进行结构化网格划分,并采用局部网格加密技术对近壁面区域及叶片头部区域进行网格加密以保证数值计算的准确性[24]。
图2 离心泵计算域和面网格
离心泵混合扬程m定义如下
式中MPPn表示环形室出口绕圆周方向均布的8个监测点的总压(分别取1~8),in表示离心泵进口总压,Pa;g表示进口含气率(inlet gas volume fraction, IGVF),纯水工况下,g=0。
为了在保证计算精度的基础上节约计算资源,本文对纯水工况和气液两相工况均进行了网格无关性验证[25],图3表示纯水工况(液相流量l=412 m3/h,=540 r/min,g=0)和气液两相流工况(液相流量l=400 m3/h,=540 r/min,g=3%)离心泵的扬程随网格数的变化曲线(网格数为离心泵全流道网格数之和)。由图3可知,当网格数达到503万时2条曲线趋于稳定,波动均在1%以内,故最终选用的网格数为503万。
注:IGVF为入口含气率,%;d0为离心泵进口处气泡直径,mm。
采用欧拉-欧拉非均相流模型[26-28]来捕捉各相分布及其对压力和速度场的影响,该模型考虑了气液两相间的滑移速度,能够准确地预测气液两相的流场分布。由于气液两相流场湍流强度较强,故湍流模型选用SST(剪切应力传输)模型[29]。
数值计算作如下假设:离心泵进口段气液两相流型为混合均匀的泡状流;进口处所有气泡为直径相等的均匀球形,本文称离心泵进口处气泡直径为初始气泡直径0;离心泵入口处气液两相流速分布均匀且相等;气液两相均为不可压缩介质;气液两相之间互不溶解;壁面水力光滑且无滑移。
边界条件设置:1)进口设置:总压、初始气泡直径0、进口含气率g;2)出口处设置质量流量,每一个工况对应不同的质量流量;3)叶轮出口与扩压器进口的动静交界面采用冻结转子的方法。
进口含气率g和进口处液相体积分数l如下式所示
式中g和l分别为气相和液相流量,m3/h。
在非定常计算的过程中,将定常计算结果作为非定常计算的初始值。叶轮每旋转3°为一个时间步长,旋转一圈需要0.111 s,旋转20圈作为总时间步长,选取最后5圈的数值模拟结果进行分析。
液相流量l=400 m3/h时,该模型泵数值模拟结果与试验结果外特性对比见表2所示。
由表2可知,数值模拟结果与试验结果的误差均在2%以内,由此可见,本文选用的数值模型具有一定的准确性,为了进一步验证气液两相流工况数值模拟的准确性,在气液两相流工况(液相流量l=400 m3/h,g=3%)下将模型泵叶片中间截面上压力分布的数值模拟结果与试验数据[22]进行对比,结果如图4所示。数值模拟结果与试验得到的叶片正背面压力分布规律基本一致,而叶片头部和尾部位置的误差较大,这可能是造成表2中数值模拟与试验结果误差的主要原因。
图4 50%叶高处叶片表面压力分布曲线
叶轮在旋转过程中的受力可分解为、、3个方向的力,和方向的合力即为叶轮所受径向力r,N;方向的力即为叶轮所受轴向力z,N。各个方向上力的计算公式[30]如下
式中1表示叶轮进口过流断面面积,m2;F、F分别表示叶轮在、方向的受力,N;V为流体质点的径向速度,m/s;V与V分别表示流体质点在、方向的分速度,m/s;为叶轮旋转角速度,rad/s;为流体质点初始角度,(°);为时间,s;为压力,Pa。第二项代表叶轮进出口产生的压力,第三项代表叶轮内部流体动量变化引起的力,括号里面的项代表叶轮的动量通量。
无量纲参数便于对不同监测点或不同工况的某一参数进行比较,因此本文引入无量纲参数C来反应力的脉动幅度(分别取和),其中C为轴向力脉动系数,C为径向力脉动系数,该参数的值越大,说明该力的波动幅度越大。C的计算公式如下
式中ΔF为叶轮瞬时受力与平均受力之差,2表示叶轮出口过流断面面积,m2;为叶轮出口圆周速度,m/s;为流体密度,kg/m3;为叶轮出口直径,m。
液相流量不变(l=400 m3/h),对模型泵在纯水工况及进口含气率分别为1%、3%、5%及7%气液两相流工况进行非定常计算。
3.2.1 轴向力的分析
图5为不同工况下非定常计算收敛后,叶轮旋转一周所受轴向力的平均值。由图5可知,各个工况下轴向力的方向与进口水流方向相同;纯水工况,叶轮所受轴向力的大小在200 N左右波动,气液两相工况下其大小在480 N左右波动,约为纯水工况的2.4倍,这是因为叶轮所受动反力与正向轴向力方向相反其指向叶轮背面,当流场中含有气体时,流场流速的不均匀性增加,主流方向改变,动反力快速增加,导致叶轮所受总轴向力加大。由此可见,离心泵传输介质中含有气体对其轴向力影响较大。
图5 不同工况下的轴向力
为了研究轴向力的非定常特性,对轴向力脉动系数随时间变化的时域图进行快速傅里叶变换(fast Fourier transform, FFT),得到轴向力脉动频域图,见图6所示。
图6 轴向力脉动频域图
由图6可以看出,叶轮所受轴向力的脉动幅值随着进口含气率的增加而增加:纯水工况及含气率较低的工况(g=1%)轴向力脉动不明显,此时,叶轮所受轴向力随着叶轮的旋转其大小基本不会发生变化;进口含气率大于等于3%的工况,轴向力脉动系数开始出现峰值,且随着含气率的增加峰值大小也在增大,这些峰值所对应的频率均为叶轮转频的倍数;同时,随着含气率的增加,气液两相流动出现气液分离现象,叶轮流道产生旋涡以及气塞等现象,这些不稳定流动会产生低频脉动,使得进口含气率为5%和7%工况出现了2个及以上峰值;7%工况的轴向力脉动系数的最大值是3%工况的3倍,是5%工况的2倍。由此可见,离心泵在气液两相工况下运行时,叶轮所受轴向力会在某些频率下产生幅值较大的脉动,且该脉动幅值大小随着含气率的增加呈倍数增加。
3.2.2 径向力分析
为了直观地反映叶轮所受径向力随时间的变化规律,非定常计算稳定后,取叶轮旋转一周的参数作如图7所示的径向力矢量分布,图中曲线上点的坐标代表旋转时某一瞬时径向力的大小和方向。由图7可知,进口含气率的改变影响了径向力的大小和方向。纯水工况下叶轮所受径向力最大,叶轮旋转一周径向力矢量分布呈椭圆形;进口含气率为1%时,径向力的大小相对于纯水工减少了30%,其矢量分布还是呈椭圆形;进口含气率大于等于3%的工况,叶轮旋转一周径向力大小随时间变化较剧烈,各个工况的矢量图呈不规则的多边形分布。
图8为叶轮旋转一圈的径向力时域特性图,可以看出进口含气率会影响径向力的幅值。纯水工况及进口含气率为1%的工况下,径向力曲线呈周期性波动,出现了5个波峰和5个波谷,即为叶轮叶片个数;进口含气率为3%和5%时,波峰及波谷的幅值不同,且其个数与叶片数不同;进口含气率为7%时,径向力曲线又出现了5个波峰和5个波谷。进口含气率为1%工况的径向力幅值最小,其次是纯水工况,进口含气率为3%和5%工况的径向力幅值最大。Murakami等[31]指出少量气泡的存在会增大流速的不均匀性,促使主流方向发生改变,叶轮内部流体质点的径向速度也发生改变,使得径向力幅值低于纯水工况。径向力幅值变化的主要原因是叶轮中的流型分布引起的,进口含气率为1%的工况下,叶轮中的气泡为孤立的泡状流,此时流场分布较均匀;进口含气率为3%和5%的工况下,流型为由一些小气泡聚合而成的不稳定气囊状流,这些气囊会不断地破裂或者聚合;随着进口含气率增加至7%时,气囊越来越大且较稳定,占据了流道的大部分面积。因此,从纯水工况到进口含气率为7%的工况,叶轮流场经历了一个由稳定到轻微振荡再到变化剧烈最后再稳定的过程,而这个过程伴随着径向力的变化。
图7 径向力矢量分布
图8 径向力时域特性
径向力的脉动值可以反映叶轮所受非定常径向力的大小,因此,对径向力系数随时间变化的曲线进行快速傅里叶变换(FFT),得到径向力脉动频域图,见图9所示。由图9可以看出含气率对叶轮径向力脉动影响较大:纯水工况、含气率为1%和7%的工况径向力脉动仅出现了1个峰值,径向力脉动系数分别为0.018 34、0.011 4以及0.029 31,其脉动峰值所对应的频率均为叶片转频,进口含气率为7%工况的径向力系数峰值是纯水工况的1.6倍,是进口含气率为1%工况的2.6倍,这是由于含气率达到7%时,叶轮流道中的气泡聚集形成一个大的气囊,见图10a,该气囊会对流场造成扰动,扰动频率即为叶轮叶片的通过频率。含气率为3%的工况出现了2个峰值,主频对应的峰值为0.097 22,主频为2倍的叶轮频率,次主频对应的峰值为0.062 36,次主频为5倍的叶轮转频;同样地,含气率为5%的工况也出现了2个峰值,主频对应的峰值为0.110 59,主频为3倍的叶轮频率,次主频对应的峰值为0.069 99,次主频为5倍的叶轮转频。
3.2.3 叶轮内流场分布
由于叶轮流道内压力分布是否均匀直接影响了叶轮的受力,因此,接下来分析了含气率分布和涡量分布对压力分布的影响,涡量是流体速度矢量的旋度,流体涡量的绝对值越大,其能量耗散越大。图10为=0.1s时不同含气率工况下叶轮中间截面的含气率分布、涡量分布以及压力分布瞬时值的对比。
图9 径向力脉动系数频域特性
图10 气液两相工况下叶轮中间截面的内流场分布
由图10可以看出,叶轮内含气率分布规律与涡量分布规律基本一致:进口含气率为1%的工况下,叶轮流道中既没有气体聚集区也没有涡量较大区;进口含气率为3%的工况下,叶轮流道气体开始聚集,同时气体聚集区的涡量较大,可以看出该涡量较大区域是以气体聚集区向外扩散形成的;进口含气率为7%的工况下,气体聚集面积以叶片压力面头部为核心进一步扩大,流道中涡量较大区域与之相对应,同样是以叶片压力面头部为核心,向叶轮流道及出口扩散,见图10a和10b所示。同时,含气率和涡量大小会对压力分布产生影响,在图10c中,进口含气率为1%工况,叶轮从进口到出口,压力均匀增加,流线方向上的压力梯度为正,随着进口含气率的增加,压力梯度开始不均匀,特别是在进口含气率为7%的工况,局部压力梯度出现了负值。
1)通过泵模型气液两相工况外特性和叶片表面压力分布的数值模拟结果与试验数据对比发现两者吻合性较好,验证了气液两相流数值模拟的准确性。
2)气液两相介质对离心泵轴向力大小及脉动影响较大。气液两相流工况叶轮所受轴向力超过纯水工况的2倍,随着进口含气率的增加,轴向力脉动幅值呈倍数增加,同时出现一些低频脉动。
3)气液两相介质对离心泵径向力影响明显,纯水工况下叶轮所受径向力大于气液两相工况,由于气泡的存在,内流场分布不均,叶轮所受径向力波动峰值呈先增加后降低的趋势。
4)叶轮内涡量分布规律受气液分布影响较大。气液两相气体聚集区域的涡量较大,导致叶轮内压力梯度分布不均,从而使叶轮受力不均。
[1]关醒凡. 现代泵理论与设计[M]. 北京:中国宇航出版社, 2011.
[2]江伟,陈帝伊,秦钰祺,等. 半高导叶端面间隙对离心泵水力性能影响的数值模拟与验证[J]. 农业工程学报,2017,33(17):73-81.
Jiang Wei, Chen Diyi, Qin Yuqi, et al. Numerical simulation and validation of influence of end clearance in half vane diffuser on hydraulic performance for centrifugal pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(17): 73-81. (in Chinese with English abstract)
[3]司乔瑞,崔强磊,袁寿其,等. 气液两相条件下进口含气率对离心泵相似定律的影响[J]. 农业机械学报,2018,49(2):107-112.
Si Qiaorui, Cui Qianglei, Yuan Shouqi, et al. Influence of inlet gas volume fraction on similarity law in centrifugal pumps under gas-liquid two-phase condition[J]. Transaction of the Chinese Society for Agricultural Machinery, 2018, 49(2): 107-112. (in Chinese with English abstract)
[4]Murakami M, Minemura K. Effects of entrained air on the performance of a centrifugal pump(1st report, Performance and flow conditions)[J]. Bulletin of the JSME, 1974, 17(110): 1047-1055.
[5]Lea J F, Bearden J L. Effect of gaseous fluids on submersible pump performance[J]. Journal of Petroleum Technology, 1982: 2922-2930.
[6]Barrios L. Visualization and Modeling of Multiphase Performance inside an Electrical Submersible Pump[D]. Tulsa: The University of Tulsa, 2007.
[7]Gamboa J. Prediction of the Transition in Two-Phase Performance of an Electrical Submersible Pump[D]. Tulsa: The University of Tulsa, 2008.
[8]关醒凡. 现代泵技术手册[M]. 北京:中国宇航出版社,1995.
[9]王洋,张翔,黎义斌. 离心泵变工况流场分析及径向力数值预测[J].排灌机械工程学报,2008,26(5):18-22.
Wang Yang, Zhang Xiang, Li Yibin. Off-design flow field analysis and radial force prediction of centrifugal pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2008, 26(5): 18-22. (in Chinese with English abstract)
[10]江伟,李国君,张新盛,等. 离心泵蜗壳进口边对叶轮径向力影响的数值模拟[J]. 水利学报,2014,45(2):248-252.
Jiang Wei, Li Guojun, Zhang Xinsheng, et al. Numerical simulation of radial force on impeller in a centrifugal pump with different volute inlet edges[J]. Journal of Hydraulic Engineering, 2014, 45(2): 248-252. (in Chinese with English abstract)
[11]Barrios L, Prado M G, Kenyery F. CFD modeling inside an electrical submersible pump[J]. ASME, 2009: 1-13.
[12]钱晨,杨从新. 高压端出流条件对多级泵径向力的影响[J]. 西安交通大学学报,2019,53(1):106-113.
Qian Chen, Yang Congxin. Influence of high pressure side outflow condition on radial force in multistage pump[J]. Journal of Xi'an Jiao tong University, 2019, 53(1): 106-113. (in Chinese with English abstract)
[13]刘瑞祥,曹蕾,张弋扬,等. 考虑轴向间隙影响的挖泥泵轴向力数值分析[J]. 农业工程学报,2014,30(18):101-108.
Liu Ruixiang, Cao Lei, Zhang Yiyang, et al. Numerical analysis of axial force on dredging pump considering influence of axial clearance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(18): 101-108. (in Chinese with English abstract)
[14]李彩虹,薛志宽,李红. 叶轮前盖板与泵体轴向间隙对轴向力的影响[J]. 排灌机械工程学报,2016,34(4):295-300.
Li Caihong, Xue Zhikuan, Li Hong. Effects of axial clearances between impeller front shroud and pump body on axial force[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34(4): 295-300. (in Chinese with English abstract)
[15]周岭,施卫东,陆伟刚,等. 深井离心泵轴向力数值预测与试验[J]. 农业机械学报,2012,43(7):100-103.
Zhou Ling, Shi Weidong, Lu Weigang, et al. Numerical prediction and experiment of axial force on deep-well centrifugal pump[J]. Transaction of the Chinese Society for Agricultural Machinery, 2012, 43(7): 100-103. (in Chinese with English abstract)
[16]孔祥领,吕杨,高进伟,等. 螺旋轴流式多相泵多级可压缩模拟研究[J]. 石油机械,2016,44(5):77-86.
Kong Xiangling, Lü Yang, Gao Jinwei, et al. Research on multi-stage compressible simulation of helico-axial multiphase pump[J]. China Petroleum Machinery, 2016, 44(5): 77-86. (in Chinese with English abstract)
[17]苗长山,李增亮,赵新学,等. 多相混输泵的数值模拟及与试验结果对比[J]. 石油机械,2007,35(11):1-4.
Miao Changshan, Li Zengliang, Zhao Xinxue, et al. The numerical simulation of multiphase pump and its comparison with the experimental result[J]. China Petroleum Machinery, 2007, 25(11): 1-4. (in Chinese with English abstract)
[18]Barrios L. Modeling two-phase flow inside an electrical submersible pump stage[J]. ASME Journal of Energy Resources Technology, 2011, 133: 1-10.
[19]Jose C. CFD analysis of ESP handling two-phase mixtures[J]. ASME Journal of Energy Resources Technology, 2004, 126: 99-104.
[20]Jose C. Characterization of a centrifugal pump impeller under two-phase flow conditions[J]. Journal of Petroleum Science and Engineering, 2008, 63: 18-22.
[21]袁建平,张克玉,司乔瑞,等. 基于非均相流模型的离心泵气液两相流动数值研究[J]. 农业机械学报,2017,48(1):89-95.
Yuan Jianping, Zhang Keyu, Si Qiaorui, et al. Numerical investigation of gas-liquid two-phase flow in centrifugal pumps based on inhomogeneous model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(1): 89-95. (in Chinese with English abstract)
[22]Kosyna S. Improved Understanding of two phase flow phenomena based on unsteady blade pressure measurements[J]. Journal of Computational and Applied Mechanics, 2001, 2(1): 45-52.
[23]王洋,吕忠斌,曹璞钰,等. 双吸泵吸入室挡板的数值模拟和正交试验[J]. 江苏大学学报:自然科学版,2014,35(5):525-530.
Wang Yang, Lü Zhongbin, Cao Puyu, et al. Numerical simulation and orthogonal test of baffle in suction chamber of double suction pump[J]. Journal of Jiangsu University: Natural Science Edition, 2014, 35(5): 525-530. (in Chinese with English abstract)
[24]张帆,Martin B,裴吉,等. 侧流道泵叶轮轴径向间隙内流动特性数值模拟与验证[J]. 农业工程学报,2015,31(10):78-83.
Zhang Fan, Martin B, Pei Ji, et al. Numerical simulation and verification on flow characteristics of impeller axial and radial gaps in side channel pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(10): 78-83. (in Chinese with English abstract)
[25]Ferziger J H. Computational Methods for Fluid Dynamic[M]. Berlin: Springer Berlin Heidelberg, 2002.
[26]郭烈锦. 两相与多相流动力学[M]. 西安:西安交通大学出版社,2002.
[27]Zhu Jianjun, Zhu Haiwen, Zhang Jiecheng, et al. A numerical study on flow patterns inside an electrical submersible pump(ESP) and comparison with visualization experiments[J]. Journal of Petroleum and Engineering, 2019, 173: 339-350.
[28]Zhu Jianjun, Zhang Hongquan. A review of experiments and modeling of gas-liquid flow in electrical submersible pumps[J]. Energies, 2018, 11: 1-41.
[29]冯建军,罗兴锜,吴广宽,等. 间隙流动对混流式水轮机效率预测的影响[J]. 农业工程学报,2015,31(5):53-58.
Feng Jianjun, Luo Xingqi, Wu Guangkuan, et al. Influence of clearance flow on efficiency prediction of francis turbines[J]. Transactions of the Chinese society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(5): 53-58. (in Chinese with English abstract)
[30]Zhangm T. Unsteady hydrodynamic forces due to rotor-stator interaction on a diffuser pump with identical number of vanes on the impeller and diffuser[J]. Journal of Fluids Engineering, 2005, 127(4): 743-751.
[31]Murakami M, Minemura K. Effects of entrained air on the performance of a centrifugal pump (2st report, Effects of number of blades)[J]. Bulletin of the JSME, 1974, 17(112): 1286-1295.
Force characteristics of gas-liquid two-phase centrifugal pump
Luo Xingqi, Yan Sina, Feng Jianjun, Zhu Guojun, Sun Shuaihui, Chen Senlin
(710048)
Centrifugal pumps are widely used in various fields because of their high head, high efficiency and simple structure. It will be accompanied by instability phenomena, such as vibration and noise, when a centrifugal pump is operated at gas-liquid two-phase conditions. Uneven force on impeller is an important reason for these unstable phenomena of pump. The variable radial force will make the bearing of pump subject to alternating stress and produce directional deflection of pump shaft, so that the clearances of seal become uneven, leading to leakage.The impeller is also moved axially by axial force. Therefore, it is very important to study the force acting on gas-liquid two-phase centrifugal pump. In this study, a gas-liquid two-phase centrifugal pump was studied by computational fluid dynamics (CFD) to analyze the unsteady force characteristics. The CFX-18.0 was used to solve the three-dimensional turbulent flow field of the gas-liquid two-phase centrifugal pump. The inhomogeneous Eulerian-Eulerian two-fluid model was used to capture the distribution of each phase and its influence on the pressure and velocity fields. The SST (Shear Stress Transmission) model was adopted as turbulence model in the process of numerical simulation. The transient characteristics of the pump under different gas volume fraction conditions were studied. The results showed that the numerical simulation results were coincident with the experimental data. IGVF affected the magnitude of the axial force. The magnitude of axial force at gas-liquid two-phase flow conditions was 2.4 times that of water single-phase flow condition. Under gas-liquid two-phase conditions, the unsteady axial force acting on the impeller was produced a large amplitude fluctuation under some frequency. And the magnitude of the amplitude was increased exponentially with the increase of the IGVF. IGVF had a great influence on the magnitude and direction of radial force. Under water single-phase condition, the magnitude of the radial force on the impeller was the largest, and the direction of radial force on the impeller's rotating circle distributed in an elliptical shape. Under gas-liquid two-phase condition, the impeller radial force magnitude changed dramatically, and the vector diagram of each working condition had an irregular polygonal distribution. IGVF affected the number of radial force fluctuation period. There were 5 wave peaks and troughs of periodic fluctuation for one impeller cycle which was the same as the number of impeller blades at the condition of 0, 1% and 7% IGVF, while it was four for the condition of 3% and 5% IGVF. IGVF also affected the radial force fluctuation of impeller. The peak value of radial force coefficient at 7% IGVF was 1.6 times that of 0 IGVF and 2.6 times that of 1% IGVF. IGVF affected the gas liquid two phase flow pattern. It was isolated bubble flow at the 1% IGVF, the flow pattern was unstable gas-pocket formed by the aggregation of some small bubbles under the3% and 5% IGVF, and the gas-pocket becomed large and more stable which occupying most of the area of the flow channel as IGVF increased to 7%. Therefore, the impeller flow field had undergone a process from stability to slight oscillation, then to drastic change and finally to stability as IGVF increased from 0 to 7%, which was accompanied by the change of radial force. In addition, the distribution law of vorticity in impeller was consistent with that of gas-liquid two-phase distribution. The large vorticity in gas accumulation area resulted in uneven pressure gradient distribution in impeller and uneven force distribution in impeller.
Pumps; two-phase flow; numerical simulation; radial force; axial force
罗兴锜,闫思娜,冯建军,朱国俊,孙帅辉,陈森林. 气液两相离心泵受力特性分析[J]. 农业工程学报,2019,35(23):66-72.doi:10.11975/j.issn.1002-6819.2019.23.008 http://www.tcsae.org
Luo Xingqi, Yan Sina, Feng Jianjun, Zhu Guojun, Sun Shuaihui, Chen Senlin. Force characteristics of gas-liquid two-phase centrifugal pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(23): 66-72. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.23.008 http://www.tcsae.org
2019-05-31
2019-10-31
国家自然科学基金(51527808, 51679195);陕西省自然科学基础研究计划(2018JM5102)
罗兴锜,教授,博士生导师,研究方向为流体机械流动理论及优化设计。Email:luoxq@xaut.edu.cn
10.11975/j.issn.1002-6819.2019.23.008
TH311
A
1002-6819(2019)-23-0066-07