严律南
20世纪医学的最大进步是器官移植和微创外科的兴起。21世纪将是在分子生物学突破基础上精准医学的成熟及人工智能(artificial intelligence)渗透到医学的各个领域。近 5年来,“人工智能+”应用于医疗研究已经成为现代科技的热点。美国的5大顶尖医院如梅奥、克里夫兰等都开始与人工智能公司合作,希望成为人工智能医疗应用领域的中心,对疾病进行探测、诊断、治疗和管理。整个医疗行业复杂程度高,涉及知识面广,人工智能可以在多个环节发挥作用,如医学影像识别、生物技术、辅助诊断、药物研发、营养学等领域,目前应用最为广泛的当属医学影像识别。
在医学领域,首先是涉及图像,如B超、CT、病理专业等,其次是内镜诊断领域已经开始了实践。医学影像是疾病诊断的主要路径之一,因此,通过机器读取医学影像成为了一个热点,无数的科研工作者已经对此展开了广泛的研究。
2016年美国加州大学的Gulshan等团队在《JAMA》杂志上首次报道了人工智能从10万余幅视网膜眼底照片中诊断糖尿病视网膜病变,与54位有美国医生执照的眼科医师及高年资住院医师相比较,其敏感性及特异性均高于人工判断。
2017年Golden在《JAMA》杂志发表了人工智能通过深度学习,可以迅速地阅读病理照片,从而诊断乳腺癌是否有淋巴结转移,尽管还不能完全代替病理学家,但大大提高了诊断速度,减轻了病理学家的负担,提高了效果。
英国曼切斯特大学Enshaei等对668例卵巢癌患者进行分析,认为人工智能优于常规的统计方法及人工神经网络计算的方法,可以更好地分析出患者的预后及影响预后的因子。
国家癌症中心公布的数据显示,肺癌在所有恶性肿瘤的发病及死亡中均占首位。胸部CT放射影像技术是肺癌早期筛查的有效手段。但是由于CT扫描影像数量多,医生诊断的时间长,加上工作量大,容易疲劳,人工误差不可避免。
2017年11月24日,一场人类和人工智能之间的对战在成都举行,代表人类出战的是 463名超声医生,代表人工智能出战的是名为“安克侦”的甲状腺肿瘤超声辅助侦测软件。双方比赛谁能更准确地读出甲状腺超声图像。来自全国各地的 300余位超声专家、学者见证了这次人机大战。最终,这个名为“安克侦”的人工智能与医生们打成了平手,但其实在效率上,人工智能已经超过了医生。
最近,人工智能已经在肺结节、乳腺癌、冠状动脉斑块、皮肤癌、眼底病、病理等领域取得了诸多成果。
诊断决策支持系统(clinical decision support system)是设计用来辅助医生在诊断时进行决策的支持系统,这种主动的知识系统通过对病患至少两种以上的数据进行分析,为医生给出诊断建议,医生再结合自己的专业进行判断,从而使诊断更快、更精准。
Viz.AI的ContaCT是FDA批准的第一个针对中风的人工智能诊断决策支持系统。ContaCT通过对中风患者的脑部CT图像进行学习,总结出与中风关系最紧密的 CT图像模式。一旦发现新的脑部CT图像符合先前的模式,患者有大血管闭塞的可能性,它便会自动向医生发送提示报告。
2017年 7月,FDA批准了Cardiolog Technologies的心电图分析平台,该技术是一项基于云计算的心脏监测分析网络服务,旨在帮助医生使用长期动态心电图监测记录来筛查心房颤动和其他心律失常的症状。
2018年2月21日,FDA宣布了Cognoa的同名APP获得认证,这也是第一款针对儿童自闭症的人工智能诊断决策支持系统。
美国 IDx公司近日宣布,FDA已加快对其人工智能诊断决策支持产品IDx-DR的审查进程,预计很快就将通过认证。这个人工智能系统致力于预测糖尿病视网膜病变,这是导致糖尿病患者失明的主要原因。
在癌症领域顶尖的美国纪念斯隆·凯特琳肿瘤中心(MSKCC)和人工智能领域顶尖的IBM相结合,便诞生了沃森肿瘤解决方案——这个由IBM研发的人工智能经过纪念斯隆·凯特琳肿瘤中心的专家历时4年半训练而成,它汲取了3469本医学专著、248000篇论文、69种治疗方案、61540次实验数据和106000份临床报告,同时还吸收了美国国立综合癌症网络发布的临床指南,可以为包括胃癌、肺癌、直肠癌、结肠癌、乳腺癌、宫颈癌等提供决策支持。
雅森与北京宣武医院、北京大学人民医院和协和医院合作研发的脑功能多模态人工智能产品问世,其通过对核磁共振、PET、SPECT、脑电等数据的分析,可以应用于阿尔兹海默症、癫痫、帕金森等各类脑功能疾病的量化分析、诊断和预测。截至2017年10月,此系统已经在全国超过30家大型三甲医院落地部署,累计完成病例分析超过7000余例,在各类病种上平均准确率超过84%。
中山大学与西安电子科技大学的研究小组合作,开发了一种能诊断先天性白内障的人工智能程序CC-Cruiser,利用深度学习算法,预测疾病的严重程度,并提出治疗决策建议。
就目前而言,人工智能诊断决策支持系统在具有“硬”数据的医学领域(如病理图像)比具有“软”数据的领域(诸如来自电子病历的一般诊断)发展要成熟得多。
美国 Bohannon 2015年在《Science》发表文章,首次报道了使用人机对话进行心理疾病的咨询和治疗取得成功,他通过人工智能的深度学习代替心理医师对心理障碍的患者进行疏导和治疗,由于许多患者顾虑自己的隐私而不愿意对医师敞开心扉,因而更愿意和机器对话,因此具有更大的应用价值。
医疗行业一直希望通过互联网来解决医疗资源过于集中、医疗资源分配不平衡等一系列问题。从2010年起,整个医疗市场中便诞生了一大批以互联网医疗为创业方向的公司,其中细分方向有在线问诊、专家挂号、医药电商、医疗保险等。
微医是一个智能医疗服务平台,为用户提供预约挂号、在线咨询、远程会诊、电子处方、慢病管理、健康消费、全科专科诊疗等线上线下结合的健康医疗服务
近期,微医发布了面向中医的人工智能辅助诊治系统——悬壶台,目前该平台已覆盖11个市、300家中医院、累计开方超160万张,已成为中国应用最广的“智能中医大脑”。
中国有14亿人口,但是只有200万基层医生,对于基层医生来说,最缺的便是医疗专家的经验和智慧,而在有了智能医疗的辅助后,其可以把专家的经验和智慧进行大规模的复制,让这些成为基层医生的教练,让基层医生的医术得到提高,通过提高量变引发质变,真正地促进医疗水平的提升。
现在的人工智能尚处于弱人工智能时代,并不具备沟通的功能,因此,现在的人工智能更多地应用在类似图像识别辅助分析这样的不需要与患者进行深入沟通的领域,其他领域的发展仍然需要人工智能技术的继续完善。未来,人工智能将在医疗领域发挥重要作用,将改变医疗手段甚至医疗模式,并将推动医学发展,重塑医疗产业,同时也必将对部分医生的未来产生影响。相信人工智能将给未来医疗技术带来深刻的变化,是未来医学创新和改革的强大动力。
(摘自《中国普外基础与临床杂志》2018年第5期)