李江存 严坤 朱勇兵 李廷 王阳阳 杜镇潇 江丁洋
摘 要:随着我国经济的发展,人们生产和生活所需化学品的数量也在逐年上升,危险化学品泄漏事故呈现逐年增加的趋势。危险化学品泄漏扩散模型的研究能为化学事故救援提供有效参考。本文主要介绍了发展比较成熟的几类危险化学品泄漏模型,包括sutton模型、P-G模型、高斯模型、重气模型等,分析对比几种模型的优缺点,阐述了危险化学品泄漏扩散典型模型的实际应用。
关键词:危化品 泄漏扩散模型 研究进展
中图分类号:D631 文献标识码:A 文章编号:1672-3791(2018)06(c)-0098-02
随着化学工业的日益发展,危险化学品使用量也日益增加。危险化学品在生产、储存及运输中发生泄漏造成灾难性事件也随之增加。危险化学品泄漏事故严重威胁着人民的生命和财产安全。本文对危险化学品泄漏扩散模型的研究现状进行分析比较,阐述典型模型在危险化学品泄漏事故及危害评估中的实际应用,为此类事故应急救援提供参考。
1 危险化学品泄漏扩散模型研究现状
国外对危险化学品泄漏扩散模型的研究始于20世纪70年代,直到现在扩散模型的研究也很活跃。在此期间人们提出了许多数学模型,比较成熟的扩散模型[1]包括Sutton模型、Pasquill-Gifford模型、高斯模型和重气扩散模型。我国在這方面起步较晚,直到20世纪90年代初期才开展此方面的研究并取得了一些成果。
Sutton模型[2]依据湍流扩散统计理论,该模型最主要应用在物质的湍流扩散的问题上。由于没有考虑重力对扩散过程的影响,所以该模型只适用于密度较小气体的扩散,另外该模型不适宜应用在可燃气体泄漏扩散,否则会出现较大误差。在环保领域中Sutton模型也得到了广泛的应用。
Pasquill-Gifford模型即适当的边界条件和初始条件的结合,作为一种中性浮力扩散模型,Pasquill-Gifford模型可用于描述中等密度气云的浓度分布。但是Pasquill-Gifford模型由于其自身局限性,在实际运用中受到了限制,但其所提出的扩散系数方程得到了广泛的应用,是现在较为公认的一种扩散系数计算方法。
高斯模型[3,4]的基础是湍流扩散梯度理论。梯度理论采用欧拉法,讨论空间固定点上由于湍流运动引起的质量通量(污染的物浓度)的变化,湍流通量正比于该点的浓度梯度,比例系数称为湍流扩散系数,用常数K表示。依据是在风速、气流相对接近于稳定和均匀的大气条件下,物质沿着风向运动,然后再向各个方向扩散,扩散粒子位移的概率服从正态分布即高斯分布。具体包括高斯烟羽模型和高斯烟团模型两种。该模型适用于和空气密度接近的气体扩散或者是在短时间内与空气混合后密度和空气相近的气云团扩散。由于该模型是最早开发的数学模型,提出的时间早,被研究的次数多,研究得到的数据量大,已经是一个较完善实用的大气扩散模型。
重气扩散模型包括唯像模型、浅层模型、三维模型。唯象模型是R.E.Britten和Mc-Quaid[5]在收集了大量重气扩散的实验室和现场实验结果的基础上以无因次的形式将数据连线并绘制成与数据匹配的曲线或列线图,也称为经验方法,它很好地反映了重气瞬时连续施放的规律。其中BM模型为其代表模型,BM模型是R.E.Britten和Mc-Quai[6]在《重气扩散手册》中的推荐模型。已知泄漏物质的部分参数,通过查询该图表可以得出泄漏物质在某点的浓度。唯象模型的特点是计算简便,精确度一般。
浅层模型,是以重气扩散的控制方程加以简化来描述其物理过程,是对于三维模型和简单箱模型的折中。浅层模型使用了浅层理论的近似值原理,假设在气云主体内,压强分布可以用流体静力学理论来描述,而这种现象是只在气云前边缘处才会出现的特殊情况。模型采用了厚度平均变量来描述流场特征,有利于考虑复杂地形的重气扩散情况。和一般模型相比,浅层模型可以更好地模拟复杂地形重气的扩散,近年来浅层模型进一步开发已成为相关的研究热点。
三维模型[7]是采用计算流体力学(CFD)方法对重气扩散过程进行模拟,最终给出三维非定常态湍流流动过程。这种数值方法通过建立不同条件下的基本守恒方程,如质量守恒方程、动量守恒方程、能量守恒方程和组分守恒方程,并结合初始条件和边界条件,将数值计算理论和方法运用到计算过程中,进而求解Naver-stokes方程,实现预报真实过程各种场的分布。近年通过不断的研究和进一步完善、改进,模型已经大范围应用在各种危险气体的扩散问题中。
2 危险化学品泄漏扩散模型的应用
2.1 液氨泄漏事故的模拟分析
2012年潘旭海教授,根据高斯烟羽模型[8],以氨气连续泄漏扩散为例,基于国内评价标准,采用MATLAB数值分析法来实现对应急区域和事故后果影响区域的划分计算及绘图。根据危险化学品中毒风险剂量响应模型以及通过概率函数法,计算出泄漏源下风向人员中毒概率并绘制风险云图和人员致死概率图。
2.2 高斯模型在确定泄漏事故中救援警戒区的应用
2001年武警学院训练部应用高斯扩散模型[9]来估算连续点源泄漏事故的应急救援警戒区。讨论了常见危险化学品在不同大气条件下发生泄漏事故时的成灾模型。并在离泄漏源一定距离处对有害物质的浓度和不同伤害剂量的范围进行了估算,进而探讨了在发生化学事故后如何确定应急救援警戒区,为消防部队的救援行动提供理论参考。气体潜在危险性范围的划定或应急救援警戒区的确定,是依据气体浓度和作用时间对人体的伤害程度来区分的。一般分为重、中、轻三个区域。重度区为半致死区,是由毒气对人体的半致死剂量Lct50来确定;中度区为半失能区,由半失能剂量Ict50确定。
2.3 苯储罐事故后果模拟计算与分析
2012年赵英程[10]对苯储罐事故特性的分析,利用ALOHA软用来模拟危险化学品泄漏后的毒气扩散、火灾、爆炸等产生的毒性、热辐射和冲击波等情景。
分析了不同场景下事故后果的严重程度,并根据事故后果进行危险区域划分。
2.4 三维大气扩散模型反化学恐怖危害评估
2004年黄顺祥[11]针对恐怖分子袭击化工厂及储存库等设施,建立了复杂地形上三维大气扩散模式,模拟流场、浓度场和各种剂量场,对事故目标进行危害评估,确定危害区域和危害程度。
2.5 三维模型在城市街区毒气扩散模拟中的应用
2015年陈存杨,朱勇兵[12]为了对毒气扩散过程进行及时、有效的模拟,利用三维模型(CFD),将开源计算流体动力学软件OpenFOAM与PISO算法相结合,进行城市街区毒气扩散模拟研究。以福州大学怡山校区为扩散区虚拟地理环境,选用氯气为假定毒气,利用OpenFOAM对氯气的扩散传播过程进行了模拟,并与商用软件FLUENT在相同条件下的模拟结果进行了对比。
3 结语
本文对比分析了危化品泄漏扩散的几种典型模型及模型实验方法,重点介绍了扩散模型在一些泄漏事故和大气扩散中的应用。由于大气湍流扩散的复杂性,考虑实际情况需要对模型进行修正,使其计算模拟结果更接近真实情况。同时随着科学技术的发展进步,一些新的模型和模拟手段不断出现。危化品泄漏扩散模型的研究可为此类事的预测预警和应急救援提供指导和参考。
参考文献
[1] 孙莉,趙颖,曹飞,等.危险化学品泄漏扩散模型的研究现状分析与比较[J].中国安全科学学报,2011,21(1):37-42.
[2] 李云云.高斯烟云模型的改进及在危化品泄漏事故模拟中的应用[D].广州大学,2013.
[3] 陈彦平.基于MATLAB的氨泄漏扩散动态模拟研究[D].安徽理工大学,2016.
[4] 蔡凤英,谈宗山,孟赫,等.化工安全工程[M].北京:科学出版社,2001.
[5] Britter RE,McQuaid J.Workbook on the dispersion of dense gases[R].UK.1988.
[6] Markiewicz, MT.Mathematical modeling of the heavy gas atmospheric dispersion[Z].2007.
[7] 魏利军,张政.重气扩散过程的数值模拟[J].北京化工,2004,1(1):7-19.
[8] 华敏,尹新,潘旭海.氨气泄漏事故应急区域及中毒风险的MATLAB分析[J].工业安全与环保,2012,38(11):5-6.
[9] 董希琳.常见有毒化学品泄漏事故模型及救援警戒区的确定[J].武警学院学报2001,6(4):25-27.
[10]赵英程,田玉敏.苯储罐事故后果模拟计算与分析[J].安全与环境学报2013,13(2):191-195.
[11]黄顺祥,胡非,李昕,等.反化学恐怖危害评估[J].北京大学学报:自然科学版,2004,40(1):121-128.
[12]陈存杨,朱勇兵,陈崇成,等.基于OpenFOAM 的城市街区毒气扩散模拟[J].环境科学研究,2015,28(5):697-703.